Module 9: A Reusable Frame Window Base Class

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

A Reusable Frame Window Base Class

Why Reusable Base Classes Are Difficult to Write
The CPersistentFrame Class

The CFrameWnd Class and the ActivateFrame() Member Function
The PreCreateWindow() Member Function

The Windows Registry

Unicode

Using the CString Class

The Position of a Maximized Window

Control Bar Status and the Registry

Static Data Members

The Default Window Rectangle

The MYMFC14 Example

A Reusable Frame Window Base Class

C++ promises programmers the ability to produce "software Lego blocks" that can be taken "off the shelf" and fitted
easily into an application. The MFC Library version 6.0 classes are a good example of this kind of reusable software.
This module shows you how to build your own reusable base class by taking advantage of what the MFC library
already provides.

In the process of building the reusable class, you'll learn a few more things about Microsoft Windows and the MFC
library. In particular, you'll see how the application framework allows access to the Windows Registry, you'll learn
more about the mechanics of the CFrameWnd class, and you'll get more exposure to static class variables and the
CString class.

Why Reusable Base Classes Are Difficult to Write

In a normal application, you write code for software components that solve particular problems. It's usually a simple
matter of meeting the project specification. With reusable base classes, however, you must anticipate future
programming needs, both your own and those of others. You have to write a class that is general and complete yet
efficient and easy to use.

This module's example showed me the difficulty in building reusable software. I started out intending to write a frame
class that would "remember" its window size and position. When I got into the job, I discovered that existing Windows-
based programs remember whether they have been minimized to the taskbar or whether they have been maximized to
full screen. Then there was the oddball case of a window that was both minimized and maximized. After that, I had to
worry about the toolbar and the status bar, plus the class had to work in a dynamic link library (DLL). In short, it was
surprisingly difficult to write a frame class that would do everything that a programmer might expect.

In a production programming environment, reusable base classes might fall out of the normal software development
cycle. A class written for one project might be extracted and further generalized for another project. There's always the
temptation, though, to cut and paste existing classes without asking, "What can I factor out into a base class?" If you're
in the software business for the long term, it's beneficial to start building your library of truly reusable components.

The CPersistentFrame Class
In this module, you'll be using a class named CPersistentFrame (the files are Persist.h and Persist.cpp) that is
derived from the CFrameWnd class. This CPersistentFrame class supports a persistent SDI (Single Document

Interface) frame window that remembers the following characteristics.

. Window size.
. Window position.

http://www.tenouk.com/ModuleO.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/Module25.html

. Maximized status.
. Minimized status.
. Toolbar and status bar enablement and position.

When you terminate an application that's built with the CPersistentFrame class, the above information is saved on
disk in the Windows Registry. When the application starts again, it reads the Registry and restores the frame to its state
at the previous exit. You can use the persistent view class in any SDI application, including the examples in this book.
All you have to do is substitute CPersistentFrame for CFrameWnd in your application's derived frame class files.

The CFrameWnd Class and the ActivateFrame() Member Function

Why choose CFrameWnd as the base class for a persistent window? Why not have a persistent view class instead? In an
MEFC SDI application, the main frame window is always the parent of the view window. This frame window is created
first, and then the control bars and the view are created as child windows. The application framework ensures that the
child windows shrink and expand appropriately as the user changes the size of the frame window. It wouldn't make
sense to change the view size after the frame was created.

The key to controlling the frame's size is the CFrameWnd : : ActivateFrame member function. The application
framework calls this virtual function (declared in CFrameWnd) during the SDI main frame window creation process
(and in response to the File New and File Open commands). The framework's job is to call the CWnd : - ShowWindow
function with the parameter NCmdShow. ShowWindow() makes the frame window visible along with its menu, view
window, and control bars. The NnCmdShow parameter determines whether the window is maximized or minimized or
both.

If you override ActivateFrame in your derived frame class, you can change the value of nCmdShow before passing
it to the CFrameWnd: : ActivateFrame function. You can also call the CWnd: : SetWindowPlacement
function, which sets the size and position of the frame window, and you can set the visible status of the control bars.
Because all changes are made before the frame window becomes visible, no annoying flash occurs on the screen. You
must be careful not to reset the frame window's position and size after every File New or File Open command. A first-
time flag data member ensures that your CPersistentFrame: : ActivateFrame function operates only when the
application starts.

The PreCreateWindow() Member Function

PreCreateWindow(), declared at the CWnd level, is another virtual function that you can override to change the
characteristics of your window before it is displayed. The framework calls this function before it calls
ActivateFrame(). AppWizard always generates an overridden PreCreateWindow() function in your project's
view and frame window classes.

This function has a CREATESTRUCT structure as a parameter, and two of the data members in this structure are style
and dwExStyle. You can change these data members before passing the structure on to the base class
PreCreateWindow() function. The style flag determines whether the window has a border, scroll bars, a minimize
box, and so on. The dWEXSty l e flag controls other characteristics, such as always-on-top status.

The CREATESTRUCT member IpszClass is also useful to change the window's background brush, cursor, or icon. It
makes no sense to change the brush or cursor in a frame window because the view window covers the client area. If you
want an ugly red view window with a special cursor, for example, you can override your view's
PreCreateWindow() function like this:

BOOL CMyView: :PreCreateWindow(CREATESTRUCT& cs)
{
if (ICView: :PreCreateWindow(cs)) {
return FALSE;

}
cs.IpszClass = AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW,
AfxGetApp()->LoadCursor(1DC_MYCURSOR),
::CreateSol idBrush(RGB(255, 0, 0))):
if (cs.lpszClass = NULL) {
return TRUE;
¥

else {
return FALSE;

}

If you override the PreCreateWindow() function in your persistent frame class, windows of all derived classes will
share the characteristics you programmed in the base class. Of course, derived classes can have their own overridden
PreCreateWindow() functions, but then you'll have to be careful about the interaction between the base class and
derived class functions.

The Windows Registry

If you've used Winl16-based applications, you've probably seen INI files. You can still use INI files in Win32-based
applications, but Microsoft recommends that you use the Windows Registry instead. The Registry is a set of system
files, managed by Windows, in which Windows and individual applications can store and access permanent information.
The Registry is organized as a kind of hierarchical database in which string and integer data is accessed by a multipart
key.

For example, a text processing application, TEXTPROC, might need to store the most recent font and point size in the
Registry. Suppose that the program name forms the root of the key (a simplification) and that the application maintains
two hierarchy levels below the name. The structure looks something like this:

TEXTPROC
Text formatting
Font = Times Roman
Points = 10

Unicode

European languages use characters that can be encoded in 8 bits, even characters with diacritics. Most Asian languages
require 16 bits for their characters. Many programs use the double-byte character set (DBCS) standard: some characters
use 8 bits and others 16 bits, depending on the value of the first 8 bits. DBCS is being replaced by Unicode, in which all
characters are 16-bit "wide" characters. No specific Unicode character ranges are set aside for individual languages: if a
character is used in both the Chinese and the Japanese languages, for example, that character appears only once in the
Unicode character set.

When you look at MFC source code and the code that AppWizard generates, you'll see the types TCHAR, LPTSTR, and
LPCTSTR and you'll see literal strings like _T(*'string’"). You are looking at Unicode macros. If you build your
project without defining _ UN1CODE, the compiler generates code for ordinary 8-bit ANSI characters (CHAR) and
pointers to 8-bit character arrays (LPSTR, LPCSTR). If you do define _ UNICODE, the compiler generates code for 16-
bit Unicode characters (WCHAR), pointers (LPWSTR, LPCWSTR), and literals (L""'wide string™).

The _UNICODE preprocessor symbol also determines which Windows functions your program calls. Many Win32
functions have two versions. When your program calls CreateWindowEx (), for example, the compiler generates
code to call either CreateWindowExA () (with ANSI parameters) or CreateWindowExW() (with Unicode
parameters). In Microsoft Windows NT, which uses Unicode internally, CreateWindowExXW() passes all parameters
straight through, but CreateWindowEXA() converts ANSI string and character parameters to Unicode. In Microsoft
Windows 95, which uses ANSI internally, CreateWindowExXW() is a stub that returns an error and
CreateWindowEXA() passes the parameters straight through. If you want to create a Unicode application, you
should target it for Windows NT and use the macros throughout. You can write Unicode applications for Windows 95,
but you'll do extra work to call the "A" versions of the Win32 functions. Component Object Model (COM) calls
(except Data Access Object - DAO) always use wide characters. Although Win32 functions are available for converting
between ANSI and Unicode, if you're using the CString class you can rely on a wide character constructor and the
AllocSysString() member function to do the conversions. For simplicity, this book's example programs use ANSI
only. The code AppWizard generated uses Unicode macros, but the code I wrote uses 8-bit literal strings and the char,
char*, and const char™ types. The MFC library provides four CWinApp member functions, holdovers from the
days of INI files, for accessing the Registry. Starting with Visual C++ version 5.0, AppWizard generates a call to
CWinApp: :SetRegistryKey in your application's InitInstance() function as shown here:

SetRegistryKey(_T(*'Local AppWizard-Generated Applications™));

http://www.tenouk.com/ModuleO.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cnwin32tutorials.html

If you remove this call, your application will not use the Registry but will create and use an INI file in the Windows
directory. The SetRegistryKey() function's string parameter establishes the top of the hierarchy, and the following
Registry functions define the bottom two levels: called heading name and entry name:

. GetProfilelnt()

. WriteProfilelnt()

. GetProfileString(Q)

. WriteProfileString(Q

These functions treat Registry data as either CString objects or unsigned integers. If you need floating-point values
as entries, you must use the string functions and do the conversion yourself. All the functions take a heading name and
an entry name as parameters. In the example shown above, the heading name is Text Formatting and the entry names
are Font and Points.

To use the Registry access functions, you need a pointer to the application object. The global function AFXGetApp()
does the job. With the previous sample Registry, the Font and Points entries were set with the following code:

AfxGetApp()->WriteProfileString(''Text formatting', "Font", "Times Roman');
ATxGetApp()->WriteProfilelnt('Text formatting™, *‘Points'™, 10);

You'll see a real Registry example in MYMFC14, and you'll learn to use the Windows Regedit program to examine and
edit the Registry. The application framework stores a list of most recently used files in the Registry under the heading
Recent File List.

Using the CString Class

The MFC CString class is a significant de facto extension to the C++ language. As the Microsoft Foundation Classes
and Templates section of the online help points out, the CString class has many useful operators and member
functions, but perhaps its most important feature is its dynamic memory allocation. You never have to worry about the
size of a CString object. The statements here represent typical uses of CString objects:

CString strFirstName("Elvis");
CString strLastName(*'Presley™);
CString strTruth = strFirstName +
strTruth += " is alive";
ASSERT(strTruth == "Elvis Presley is alive");
ASSERT(strTruth.Left(5) == strFirstName);
ASSERT(strTruth[2] == "v"); // subscript operator

+ strLastName; // concatenation

In a perfect world, C++ programs would use all CString objects and never use ordinary zero-terminated character
arrays. Unfortunately, many runtime library functions still use character arrays, so programs must always mix and match
their string representations. Fortunately, the CString class provides a const char™ operator that converts a
CString object to a character pointer. Many of the MFC library functions have const char™ parameters. Take the
global AfxMessageBox () function, for example. Here is one of the function's prototypes:

int AFXAPI AfxMessageBox(LPCTSTR IpszText, UINT nType = MB_OK, UINT nIDHelp = 0);

Note: LPCTSTR is not a pointer to a CString object but rather is a Unicode-enabled replacement for const char>*.
You can call AfxMessageBox () this way:

char szMessageText[] = "Unknown error";
AfxMessageBox(szMessageText) ;

Or you can call it this way:

CString strMessageText("'Unknown ;error™);
AfxMessageBox(strMessageText);

Now suppose you want to generate a formatted string. CString: :Format does the job, as shown here:

http://www.tenouk.com/Module24.html

int nError = 23;

CString strMessageText;
strMessageText.Format("'Error number %d', nError);
AfxMessageBox(strMessageText);

Suppose you want direct write access to the characters in a CString object. If you write code like this:

CString strTest("test");
strncpy(strTest, "T", 1);

You’ll get a compile error because the first parameter of strncpy () is declared char™, not const char™. The
CString: :GetBuffer function "locks down" the buffer with a specified size and returns a char®. You must call
the ReleaseBuffer () member function later to make the string dynamic again. The correct way to capitalize the T
is shown here.

CString strTest(test");
strncpy(strTest.GetBuffer(5), "T", 1);
strTest.ReleaseBuffer();
ASSERT(strTest == "Test');

The const char™* operator takes care of converting a CString object to a constant character pointer; but what about
conversion in the other direction? It so happens that the CString class has a constructor that converts a constant
character pointer to a CString object, and it has a set of overloaded operators for these pointers. That's why statements
such as the following work:

strTruth += " is alive';

The special constructor works with functions that take a CStr ing reference parameter, such as CDC: : TextOut. In
the following statement, a temporary CString object is created on the calling program's stack and then the object's
address is passed to TextOut():

pDC->TextOut(50, 50, "Hello, MFC world!");
It's more efficient to use the other overloaded version of CDC: - TextOut if you're willing to count the characters:
pDC->TextOut(50, 50, "Hello, MFC world!", 17);

If you're writing a function that takes a string parameter, you've got some design choices. Here are some programming
rules.

. If the function doesn't change the contents of the string and you're willing to use C runtime functions such as
strcpy(), use aconst char* parameter.

. If the function doesn't change the contents of the string but you want to use CString member functions
inside the function, use a const CStringé& parameter.

. If the function changes the contents of the string, use a CString& parameter.

The Position of a Maximized Window

As a Windows user, you know that you can maximize a window from the system menu or by clicking a button at the top
right corner of the window. You can return a maximized window to its original size in a similar fashion. It's obvious that
a maximized window remembers its original size and position. The CWnd function GetWindowRect() retrieves the
screen coordinates of a window. If a window is maximized, GetWindowRect() returns the coordinates of the screen
rather than the window's unmaximized coordinates. If a persistent frame class is to work for maximized windows, it has
to know the window's unmaximized coordinates. CWnd : : GetWindowP lacement retrieves the unmaximized
coordinates together with some flags that indicate whether the window is currently minimized or maximized or both.
The companion SetWindowP lacement() function lets you set the maximized and minimized status and the size and
position of the window. To calculate the position of the top left corner of a maximized window, you need to account for

the window's border size, obtainable from the Win32 GetSystemMetrics() function. See Listing 1 for the
CPersistentFrame: :ActivateFrame code for an example of how SetWindowP lacement() is used.

Control Bar Status and the Registry

The MFC library provides two CFrameWnd member functions, SaveBarState() and LoadBarState(), for
saving and loading control bar status to and from the Registry. These functions process the size and position of the status
bar and docked toolbars. They don't process the position of floating toolbars, however.

Static Data Members

The CPersistentFrame class stores its Registry key names in static const char array data members. What were the
other storage choices? String resource entries won't work because the strings need to be defined with the class itself.
String resources make sense if CPersistentFrame is made into a DLL, however. Global variables are generally not
recommended because they defeat encapsulation. Static CString objects don't make sense because the characters must
be copied to the heap when the program starts.

An obvious choice would have been regular data members. But static data members are better because, as constants,

they are segregated into the program's read-only data section and can be mapped to multiple instances of the same
program. If the CPersistentFrame class is part of a DLL, all processes that are using the DLL can map the
character arrays. Static data members are really global variables, but they are scoped to their class so there's no chance of
name collisions.

The Default Window Rectangle

You're used to defining rectangles with device or logical coordinates. A CRect object constructed with the statement:

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0);

has a special meaning. When Windows creates a new window with this special rectangle, it positions the window in a
cascade pattern with the top left corner below and to the right of the window most recently created. The right and bottom
edges of the window are always within the display's boundaries.

The CFrameWnd class's static rectDefaul t data member is constructed using CW_USEDEFAULT this way, so it
contains the special rectangle. The CPersistentFrame class declares its own rectDefaul t default window
rectangle with a fixed size and position as a static data member, thus hiding the base class member.

The MYMFC14 Example

The MYMFC14 program illustrates the use of a persistent frame window class, CPersistentFrame. Listing 1 shows
the contents of the files Persist.h and Persist.cpp. In this example, you'll insert the new frame class into an
AppWizard-generated SDI application. MYMFC14 is a "do-nothing" application, but you can insert the persistent frame
class into any of your own SDI "do-something" applications.

PERSIST.H
// Persist.h

#ifndef _INSIDE_VISUAL_CPP_PERSISTENT FRAME
#define _INSIDE_VISUAL_CPP_PERSISTENT FRAME

class CPersistentFrame : public CFrameWnd

{ // remembers where it was on the desktop
DECLARE_DYNAMIC(CPersistentFrame)

private:
static const CRect s_rectDefault;
static const char s_profileHeading[];
static const char s_profileRect[];
static const char s_profilelcon[];
static const char s_profileMax[];
static const char s_profileTool[];
static const char s_profileStatus[];

BOOL m_bFirstTime;
protected: // Create from serialization only
CPersistentFrame();
~CPersistentFrame();
//{{AFX_VIRTUAL(CPersistentFrame)
public:
virtual void ActivateFrame(int nCmdShow = -1);
protected:
//}}AFX_VIRTUAL

//{{AFX_MSG(CPersistentFrame)
afx_msg void OnDestroy();
//}YARX_MSG

DECLARE_MESSAGE_MAP()
};

#endif // _INSIDE_VISUAL_CPP_PERSISTENT FRAME

PERSIST.CPP
// Persist.cpp Persistent frame class for SDI apps

#include '"'stdafx.h"
#include "persist.h"

#ifdet _DEBUG

#undef THIS_FILE

static char BASED _CODE THIS_FILE[] = _ _FILE_;

#endi

L1117 7777777777/77777777/7777/7/777/7/7/777/7/7/777/77/7/77777/77/7777
// CPersistentFrame

const CRect CPersistentFrame::s_rectDefault(10, 10, 500, 400);
// static

const char CPersistentFrame::s_profileHeading[] = "Window size";
const char CPersistentFrame::s_profileRect[] = "Rect";

const char CPersistentFrame::s_profilelcon[] = "icon";

const char CPersistentFrame::s_profileMax[] = "max";

const char CPersistentFrame::s_profileTool[] = "tool™;

const char CPersistentFrame::s_profileStatus[] = "status';

IMPLEMENT_DYNAMIC(CPersistentFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CPersistentFrame, CFrameWnd)
//{{AFX_MSG_MAP(CPersistentFrame)
ON_WM_DESTROY()

//}}YAFX_MSG_MAP

END_MESSAGE_MAPQ)

I1/1/17777777777777777777777777777/7777/7/7//////////////////7/7777
CPersistentFrame: :CPersistentFrame(){

m_bFirstTime = TRUE;
}

////7/77777777777777777/7777/777777/77/77/77/77/77/77/77/77/7/7/7/7/77/77/77/7777
CPersistentFrame: :~CPersistentFrame()

{

¥

L1177 7777777777/777777/7/777/7/7777/7/7/777/77/7/777/77/7/777/77/77/7777
void CPersistentFrame: :OnDestroy()
{

CString strText;

BOOL blconic, bMaximized;

WINDOWPLACEMENT wndpl ;
wndpl . length = sizeof(WINDOWPLACEMENT) ;

// gets current window position and
// iconized/maximized status
BOOL bRet = GetWindowPlacement(&wndpl);
if (wndpl.showCmd == SW_SHOWNORMAL) {
blconic = FALSE;
bMaximized = FALSE;

¥

else it (wndpl.showCmd == SW_SHOWMAXIMIZED) {
blconic = FALSE;
bMaximized = TRUE;

}
else it (wndpl.showCmd == SW_SHOWMINIMIZED) {
blconic = TRUE;
it (wndpl.flags) {
bMaximized = TRUE;

else {
bMaximized = FALSE;
ks
}

strText_Format("'%04d %04d %04d %04d™,
wndpl .rcNormalPosition. left,
wndpl _.rcNormalPosition.top,
wndpl .rcNormalPosition.right,
wndpl _.rcNormalPosition_bottom);
AfxGetApp()->WriteProfileString(s_profileHeading,
s_profileRect, strText);
AfxGetApp()->WriteProfilelnt(s_profileHeading,
s_profilelcon, blconic);
AfxGetApp()->WriteProfilelnt(s_profileHeading, s_profileMax,
bMaximized);
SaveBarState (AfxGetApp()->m_pszProfileName);
CFrameWnd: :OnDestroy();

}

//1777777777777777777777777/777777/7777777777777/7/77777777777777
void CPersistentFrame: :ActivateFrame(int nCmdShow)
{

CString strText;

BOOL blconic, bMaximized;

UINT flags;

WINDOWPLACEMENT wndpl ;

CRect rect;

it (m_bFirstTime) {
m_bFirstTime = FALSE;
strText = AfxGetApp()-
>GetProfileString(s_profileHeading, s_profileRect);

if (IstrText.IsEmpty()) {
rect._left = atoi((const char*) strText);
rect.top = atoi((const char*) strText + 5);
rect_.right = atoi((const char*) strText + 10);
rect.bottom = atoi((const char*) strText + 15);

else {
rect = s_rectDefault;
3

blconic = AfxGetApp()->GetProfilelnt(s_profileHeading,
s_profilelcon, 0);
bMaximized = AfxGetApp()-
>GetProfilelnt(s_profileHeading, s_profileMax, 0);
it (blconic) {
nCmdShow = SW_SHOWMINNOACTIVE;
it (bMaximized) {
flags = WPF_RESTORETOMAXIMIZED;
b4

else {
flags = WPF_SETMINPOSITION;
¥

else {
if (bMaximized) {
nCmdShow = SW_SHOWMAXIMIZED;
flags = WPF_RESTORETOMAXIMIZED;

}
else {
nCmdShow = SW_NORMAL;
flags = WPF_SETMINPOSITION;
}

}
wndpl . length = sizeof(WINDOWPLACEMENT);

wndpl .showCmd = nCmdShow;
wndpl . flags = flags;
wndpl .ptMinPosition = CPoint(0, 0);
wndpl . ptMaxPosition =
CPoint(-: :GetSystemMetrics(SM_CXBORDER), -
1 :GetSystemMetrics(SM_CYBORDER));
wndpl.rcNormalPosition = rect;
LoadBarState(AfxGetApp()->m_pszProfileName);
// sets window"s position and minimized/maximized status
BOOL bRet = SetWindowPlacement(&wndpl);

}
CFrameWnd: : ActivateFrame(nCmdShow) ;

Listing 1: The CPersistentView class listing.
Here are the steps for building the MYMFC14 example program.
Run AppWizard to generate mfcproject\mymfc14 (or any other directory that you have designated your Visual C++

project for). Accept all default settings but two: select Single Document and deselect Printing and Print Preview and
ActiveX Controls. The options and the default class names are shown in the following illustration.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application bwpe of mymfcl 4:
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc] 34pp in mymfc] 4 b and mymfcld.cpp
Frame: CMainFrame in MainFrm b and kainFrm.cpp
Document: Chpmfct 4Doc in mymfcl4Doc.h and mymfc140oc.cpp
Wiew: Chlymfc $iew in myemfc] 44iew.h and mymfcl $iew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL)
+ Localizable text in:
Englizh [United States]

Froject Directory:
F:\mfcprojectsmymfc]4

Cancel

Figure 1: MYMFC14 project summary.
Modify MainFrm.h. You must change the base class of CMainFrame. To do this, simply change the line:
class CMainFrame : public CFrameWnd

To:

class CMainFrame : public CPersistentFrame

£ MainFrm .k : interface of the CHainFrame class

e

#if ldefined(AFX MAINFEM H FEC13Eed E044_ 4034 90°
#define AFE MATHFRM H FEC153Ef4 _E0O44_4034_905C_DET

#1f _HSC VEE > 1000

#pragma once

#endif -~ _HSC VER » 1000

¢ olazs CHMainFrame : public CEFramelnd
class CHainFrame : public CPersistentFrane

{

protected: -~ create from =serialization only
Listing 1.
Also, add the line:

#include "persist.h"

A MainFrm . h interface of the CHainFrame class

B P R R R

#include "persist k"

#if ldefined(AFY_MAINFEM H FEC13E64_E044_4034_90
#defins AFY WAINFRM H FEC13E64 E044 4034 905C_DE

Listing 2.

Modify MainFrm.cpp. Globally replace all occurrences of CFrameWnd with CPersistentFrame. Use the find and
replace menu.

Edit Yiew Insert Project Buld Tools W

. Copy Chrl+C

¥ Delete Del

Select Al Chrl+A

dh Find... Chrl+F
gy Find in Files. ..

Zkrl+H

Replace. ..

Go Ta... Chrl+a

Fs

Figure 2: Visual C++ find and replace menu.

Replace

Find what: |CFrameiwnd > ¥ EindMext
Replace with: |EF'ersistentFrame ﬂ ﬂ
[Match whole word anly Replace in Replace Al
[Match caze " Selection -

* wihale file Lancel

[Regular expression

Figure 3: Replacing all occurrences of CFrameWnd with CPersistentFrame.

Modify mymfcl4.cpp. Replace the line:
SetRegistryKey(_T('Local AppWizard-Generated Applications'™));

With the line:

SetRegistryKey("'Programming using Visual C++ and MFC™);

F¥endif

Change the registrv key under which our =sttings are stored.

S TODD: You should modify this string to be zomething appropriate
< =zuch a= the name of vour company or organization.

< SetRegistrvEev(_T({"Local AppWizard-Generated Application=")):
SetRegiztrvEev("Programming using Vi=zual C++ and HFC"):

LoadStdProfileSetting=(); . Load =tandard INI file option= {incl.

Listing 3.

Add the Persist.h and Persist.cpp file to the project. You can create the Persist.h and Persist.cpp files and add to the
mymfc14 project as shown below and don’t forget to copy the source code for the Persist.h and Persist.cpp as shown in

the previous listing into the files respectively then save those files. Don’t forget to make sure the Add to project check
box is ticked.

Qpen. .. Chrl+D

Open Workspace. ..

Save Workspace
lose Workspace
H Save Chrl+5

Figure 4: Adding new files to the project.

Files l Frojects | “Workspaces Other Documents

=] Active Server Page v Add to project:
2l Bimary File I”"
wmfc] 4 L]
45 Bitnap File
[+ CAC++ Header File
[Co++ Source File File name:
E@ Curzor File]F"ersist.H
[®] HTML Page
Eﬁ Ican File Location:

5| Rezource Scrpt
&9l Besource Template
SCL Scrpt File
Tesxt File

E tacro File]F:'xmfn::pn:niec:t'xm_l,lmfcﬂ 4 ____l

0k, | Cancel

Figure 5: Entering the new file name to be added to the project.

Rebuild the ClassWizard file to include the new CPersistentFrame class.

Compiling resources. . .
Compiling. ..
Stdif=z.cpp
Compiling. ..
mymnfcld cpp
HainFrm. cpp
mynfcldloc . cpp
mnynfcldView . cpp
Per=i=t cpp
Generating Code. . .
Linking. ..

mynfcld exe — 0 errori(=). 0 warningi=)
Build / Debug % FindinFiles1 % FindinFiles 2 % Resuts % SOL Debugging /

Figure 6: Rebuilding the project to include new CPersistentFrame class.

Use Windows Explorer to delete the ClassWizard file mymfcl4.clw.

fame Size | Type
|CIDebug File F
[Chres File F
@ MainFrm.cpp 3KE 4+
[h] MainFrm.h ZKB i+
mymfcl4.aps I0KE APST
ryrnfcl 4. cla e

@ mymfcl4.cpp Open
mychH.dsp Upload using WS_FTP Upload Wizard

GO mymFcl 4. dsw E-rnail with ahool

@ rymfcl4.h Send Ta ,
@mymfcl-ﬂr.ncb

mymfcld.opk| SUE

:Ejmymfcl-#.plg Copy

EQJmymfci4.rc
@ rmyrficl 4Doc,
@ rmyrficl40oc,
@ rymifcl 4iew
@mymfcldr'-.-'iew Properties

Create Sharkouk

Renarme

Figure 7: Manually deleting the ClassWizard file mymfc14.clw file.

Back in Visual C++, choose ClassWizard from the View menu. Follow Visual C++'s instructions if it asks you to close
any files. Click Yes when asked if you would like to rebuild the CLW file.

Microsoft Visual C++ X

The Class\Wizard database "Fiimfcprojectimymfcl $imyemfcl 4, chw® does not exisk, would vou like to build it From wour
L3 source Files?

Figure 8: Rebuilding the CLW file dialog prompt.

The Select Source Files dialog box will appear. Make sure all of the header and source files are listed in the Files In
Project box, as shown in the following illustration.

Select Source Files - mymfc14.chw

File name: Directaries: k.
|| f:\mfocprojectimpmfcl 4 _
Cancel
MairFrm. cpp - (= FN
Ma”"fFH"'lh (= rifcproject
ity B mymic14
myrfc140oc. cpp 1 Debug
raymfec] 4000 h £ res
mymic] Yiew. cpp
T_I,Imfd Piew.h w
Lizt files of type: Drrives:
Source Files [* ;" cppl ﬂ | = £ hdlc j
Eilez in project:
FWFCPROJECT \MYRFCT 4% ainFrm.cpp .
F\FCPROJECT SR FCT 450 ainF . h
F\HFCPROJECT \MYRMFCT 45mymfcl 4.cpp Add Al
FMFCPROJECT MY RFCT 4 mypmfcT 4.h -
F:5MFCPROJECT WY MFCT 4hmymic] 40 oc. cpp
F\FCPROJECT \MYRFCT 45mpmfc] 40oc b o’

Figure 9: Rebuilding the CLW file to integrate newly created class.

Then click OK to regenerate the CLW file. Notice that CPersistentFrame is now integrated into ClassWizard.
You'll now be able to map messages and override virtual functions in the CPersistentFrame class.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation Activer Events Clazz Info |

Project; Clazz name: AddClazs. -

mymfc4 j] entFrame

Fh smprnfcl dWPersist b, B mymfcT 45Persist. cpp g
Object |0 Mezzages:

CPerzsistentFrame e ActivateFrame Y :
ID_4PP_ABOUT = |calcwindowRect = Edit Cods
ID_APP_EXIT Create
ID_EDIT_COPY B DefwfindowProc
ID_ECIT_CUT Destroyafindoe
ID_EDIT_PASTE Dal atak wchange
ID_EDIT_UNDO bt GetdctiveDocument bl
kember functians:
Yoo ActivateFrame
W OnDestrop M _wW_DESTROY

Description:

ak. | Cancel

Figure 10: The CPersistentFrame is now integrated into ClassWizard after the CLW rebuilding.

Build and test the MYMFC14 application. Resize and move the application's frame window, and then close the
application.

< Untitled - mymfc14 M =3
File Edit Yiew Help

O = E ®

Ready

Figure 11: MYMFC14 program output with persistent property.

When you restart the application, does its window open at the same location at which it was closed? Experiment with
maximizing and minimizing, and then change the status and position of the control bars. Does the persistent frame
remember its settings?

Save the CPersistentFrame class as a Gallery component for future use. In the ClassView window, right-click on
CPersistentFrame and select Add To Gallery.

- M VPP ISP
+--[_7] Glol G0 ko Definition
add Member Function, ..
add Member Yariable. ..
add virtual Eunction, ..
add Windows Message Handler. ..
E References. ..
i.] Derjived Classes, .,
!.F Base Classes, ..

fdd to Gallery
[Mew Folder, .,

aroup by Access

v Docking Wisw
Hide

Properties

Figure 12: Saving our new created CPersistentFrame class for future use, class reusability.

Bring up the Components And Controls Gallery by choosing Add To Project from the Project menu and then
choosing Components And Controls.

Project Buld Tools “Window Help

Set fActive Praject ’ |Eﬂt |OnCreate

[fdd To Project » New,..

L]

- Source Control p o Mew Folder...

¢ Dependencies... ¥-| Files...
Settings. .. Alt+F7

Export Makefile, ..

@ Companents and Contrals., .
Insert Praject into Warkspace. .. ED_CODE THIS FILE[] = _

Figure 13: Component and Controls menu used to save newly created class.

Notice that Visual C++ created the file Persistent Frame.ogx in a folder named \mymfc14.

Components and Controls Gallery

Chooze a companent o inzert into pour project:
Laok jre | (2 mymfc14 ~| & =k E-

EPersistent Frame.ugx?

File narme; |nzert

Cloze

i

Path ta contral:

Figure 14: Persistent Frame.ogx file, the newly created class library.

Change this folder's name to Persistent Frame. Now you can add the CPersistentFrame class to any project by
simply adding Persistent Frame.ogx. We will add CPersistentFrame to mymfc22A project later.

Components and Controls Gallery

Choose a component to ingert into your project;
Loak in: | I Gallery ﬂ & =k B

[ﬁ Persistent Frame |

|y Registerad ActiveX Contrals
|==) visual C++ Components

=] MSCREATE.DIR.

File name: Inzert

Cloze

ddd

Path ta contral:

Figure 15: Persistent frame directory that contain .0gx file, our newly created class.

Examine the Windows Registry. Run the Windows regedit.exe (or regedt32) program. Navigate to the
HKEY_CURRENT_USER\Software\Programming Visual C++ and MFC\mymfcl4 key.

- Type the name of a program, Folder, document, or
Internet resource, and Windows will open it For wou,

Open! | v|

[Ik H Cancel H Browse, ..]

Figure 16: Launching the registry editor at command line.
You should see data values similar to those shown in the following illustration.

(L Policies
= 'a Prograrming wsing Yisual C++ and MFPC
=] mymfcld
3 mymfcl4-Summary
I:l Settings
[window size
(3 scansoft
(£ simonTatham
[C3 The Silicon Realms Toolwarks

w1 S5 WE ard WEA Draar sm Sakkinae
= e

My ComputeriHEEY _CURREMNT _USER!Software!Programming using Visual C++ and MFC

v | &

Figure 17: MYMFC14 project information in Registry.

Notice the relationship between the Registry key and the SetRegistryKey() function parameter, "Programming
using Visual C++ and MFC". If you supply an empty string as the SetRegistryKey() parameter, the
program name (mymfcl4, in this case) is positioned directly below the Software key.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

L

Nk w

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

