Module 7: Menus, Keyboard Accelerators, the Rich Edit Control, and
Property Sheets — Part 1

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

The Document View Architecture

Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets
The Main Frame Window and Document Classes
Windows Menus

Keyboard Accelerators

Command Processing

Command Message Handling in Derived Classes
Update Command User Interface Handlers
Commands That Originate in Dialogs

The Application Framework's Built-In Menu Items
Enabling/Disabling Menu Items

MFC Text Editing Options

The CEditView Class

The CRichEditView Class

The CRichEditCtrl Class

The MYMFCPRO Program Example

The Document View Architecture
Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets

In all the book's examples to this point, mouse clicks have triggered most program activity. Even though menu
selections might have been more appropriate, you've used mouse clicks because mouse-click messages are handled
simply and directly within the MFC Library version 6.0 view window. If you want program activity to be triggered
when the user chooses a command from a menu, you must first become familiar with the other application framework
elements.

This module concentrates on menus and the command routing architecture. Along the way, we introduce frames and
documents, explaining the relationships between these new application framework elements and the already familiar
view element. You'll use the menu editor to lay out a menu visually, and you'll use ClassWizard to link document and
view member functions to menu items. You'll learn how to use special update command user interface (Ul) member
functions to check and disable menu items, and you'll see how to use keyboard accelerators as menu shortcut keys.
Because you're probably tired of circles and dialogs, next you'll examine two new MFC building blocks. The rich edit
common control can add powerful text editing features to your application. Property sheets are ideal for setting edit
options.

The Main Frame Window and Document Classes

Up to now, you've been using a view window as if it were the application’s only window. In an SDI application, the view
window sits inside another window: the application's main frame window. The main frame window has the title bar and
the menu bar. Various child windows, including the toolbar window, the view window, and the status bar window,
occupy the main frame window's client area, as shown in Figure 2 and Figure 1 is a WordPad, provided as a
comparison. The application framework controls the interaction between the frame and the view by routing messages
from the frame to the view.

File Edit Yiew Insert Format Help

EzEH &G 4

Thiz i=z text editor. Word Paﬂ

IF:::r Help, press F1

Figure 1: WordPad as a real application.

Toolbar window

SDI main frame

windows

View window

Status bar window

Figure 2: The child windows within an SDI main frame window.

Look again at any project files generated by AppWizard. The MainFrm.h and MainFrm.cpp files contain the code for
the application's main frame window class, derived from the class CFrameWnd. Other files, with names such as
MymfcproDoc.h and MymfcproDoc.cpp, contain code for the application's document class, which is derived from
CDocument. In this module you'll begin working with the MFC document class. You'll start by learning that each view
object has exactly one document object attached and that the view's inherited GetDocument() member function
returns a pointer to that object.

Windows Menus

A Microsoft Windows menu is a familiar application element that consists of a top-level horizontal list of items with
associated pop-up menus that appear when the user selects a top-level item. Most of the time, you define for a frame
window a default menu resource that loads when the window is created. You can also define a menu resource
independent of a frame window. In that case, your program must call the functions necessary to load and activate the
menu.

A menu resource completely defines the initial appearance of a menu. Menu items can be grayed or have check marks,
and bars can separate groups of menu items. Multiple levels of pop-up menus are possible. If a first-level menu item is
associated with a subsidiary pop-up menu, the menu item carries a right-pointing arrow symbol, as shown next to the
Start Debug menu item in Figure 3.

Yo mymfcpro - Microsoft Visual C++

File Edit “ew Insert Project | Build Tools ‘Window Help

= | = i Dialog

Build mwrfcpro. exe F7

| AT 555 pobuild al

akch Build. ..
~| Batch Build
= ’ mymfcpro classes ! Clean

+-- = CéaboutDlg - _
+- ™15 ChainFrame Start Debug | o
+-- ™18 CMumfcprodpp Debugger Remote Copnection. . Tl} Step Into F11
+-- ™% ChymfcproDioc
+- ™% CMymicproview ! Execute mymfcpro.exe Chr+FS
+--[7 Globals Attach ko Process. ..

Set fctive Configuration, ..

Configurations. ..

Prafile. ..

Figure 3: Multilevel pop-up menus example (from Microsoft Visual C++).

Visual C++ includes an easy-to-use menu-resource editing tool. This tool lets you edit menus in a wysiwyg
environment. Each menu item has a properties dialog that defines all the characteristics of that item. The resulting
resource definition is stored in the application's resource script (RC) file. Each menu item is associated with an ID, such
as ID_FILE_OPEN, that is defined in the resource.h file.

The MFC library extends the functionality of the standard menus for Windows. Each menu item can have a prompt
string that appears in the frame's status bar when the item is highlighted. These prompts are really Windows string
resource elements linked to the menu item by a common ID. From the point of view of the menu editor and your
program, the prompts appear to be part of the menu item definition.

Keyboard Accelerators

You've probably noticed that most menu items contain an underlined letter. In Visual C++ (and most other applications),
pressing Alt-F followed by S activates the File Save menu item. This shortcut system is the standard Windows method
of using the keyboard to choose commands from menus. If you look at an application's menu resource script (or the
menu editor's properties dialog), you will see an ampersand (&) preceding the character that is underlined in each of the
application's menu items.

Windows offers an alternative way of linking keystrokes to menu items. The keyboard accelerator resource consists of a
table of key combinations with associated command IDs. The Edit Copy menu item (with command ID
ID_EDIT_COPY), for example, might be linked to the Ctrl-C key combination through a keyboard accelerator entry. A
keyboard accelerator entry does not have to be associated with a menu item. If no Edit Copy menu item were present,
the Ctrl-C key combination would nevertheless activate the ID_EDIT_COPY command.

Command Processing

The MFC application framework provides a sophisticated routing system for command messages. These messages
originate from menu selections, keyboard accelerators, and toolbar and dialog button clicks. Command messages can
also be sent by calls to the CWnd : : SendMessage or PostMessage () function. Each message is identified by a
#define constant that is often assigned by a resource editor. The application framework has its own set of internal
command message 1Ds, such as ID_FILE_PRINT and ID_FILE_OPEN. Your project's resource.h file contains IDs
that are unique to your application.

Most command messages originate in the application's frame window, and without the application framework in the
picture, that's where you would put the message handlers. With command routing, however, you can handle a message
almost anywhere. When the application framework sees a frame window command message, it starts looking for
message handlers in one of the sequences listed here.

SDI Application MDI Application

View View

Document Document

SI.DI main frame MDI child frame window
window

MDI main frame window
Application

Application

Table 1: SDI vs MDI.

Most applications have a particular command handler in only one class, but suppose your one-view application has an
identical handler in both the view class and the document class. Because the view is higher in the command route, only
the view's command handler function will be called.

What is needed to install a command handler function? The installation requirements are similar to those of the window
message handlers you've already seen. You need the function itself, a corresponding message map entry, and the
function prototype. Suppose you have a menu item named Zoom (with IDM_ZOOM as the associated 1D) that you want
your view class to handle. First you add the following code to your view implementation file:

BEGIN_MESSAGE_MAP(CMyView, CView)
ON_COMMAND(IDM_ZOOM, OnZoom)
END_MESSAGE_MAP()

void CMyView: :0OnZoom()

// command message processing code

}

Now add the following function prototype to the CMyView class header file (before the DECLARE_MESSAGE_MAP
macro):

afx_msg void Onzoom();

Of course, ClassWizard automates the process of inserting command message handlers the same way it facilitates the
insertion of window message handlers. You'll learn how this works in the next example, MYMFCPRO.

Command Message Handling in Derived Classes

The command routing system is one dimension of command message handling. The class hierarchy is a second
dimension. If you look at the source code for the MFC library classes, you'll see lots of ON_COMMAND message map
entries. When you derive a class from one of these base classes, for example, CView, the derived class inherits all the
CView message map functions, including the command message functions. To override one of the base class message
map functions, you must add both a function and a message map entry to your derived class.

Update Command User Interface Handlers

You often need to change the appearance of a menu item to match the internal state of your application. If your
application’'s Edit menu includes a Clear All item, for example, you might want to disable that item if there's nothing to
clear. You've undoubtedly seen such grayed menu items in Windows-based applications, and you've probably also seen
check marks next to menu items.

The MFC library takes a different approach by calling a special update command user interface (Ul) handler function
whenever a pop-up menu is first displayed. The handler function's argument is a CCmdU1 object, which contains a
pointer to the corresponding menu item. The handler function can then use this pointer to modify the menu item's
appearance. Update command Ul handlers apply only to items on pop-up menus, not to top-level menu items that are
permanently displayed. You can't use an update command Ul handler to disable a File menu item, for example.

The update command Ul coding requirements are similar to those for commands. You need the function itself, a special
message map entry, and of course the prototype. The associated ID, in this case, IDM_ZOOM, is the same constant used
for the command. Here is an example of the necessary additions to the view class code file:

BEGIN_MESSAGE_MAP(CMyView, CView)
ON_UPDATE_COMMAND_UI(IDM_ZOOM, OnUpdateZoom)
END_MESSAGE_MAP()

void CMyView: :OnUpdateZoom(CCmdUl* pCmdUl)

pCmdUl->SetCheck(m_bZoomed); // m_bZoomed is a class data member
¥

Here is the function prototype that you must add to the class header (before the DECLARE _MESSAGE_MAP macro):
afx_msg void OnUpdatezZoom(CCmdUl* pCmduUl);

Needless to say, ClassWizard automates the process of inserting update command Ul handlers.

Commands That Originate in Dialogs

Suppose you have a pop-up dialog with buttons, and you want a particular button to send a command message.
Command IDs must be in the range 0x8000 to OXDFFF, the same ID range that the resource editor uses for your menu
items. If you assign an ID in this range to a dialog button, the button will generate a routable command. The application
framework first routes this command to the main frame window because the frame window owns all pop-up dialogs.
The command routing then proceeds normally; if your view has a handler for the button's command, that's where it will
be handled. To ensure that the ID is in the range 0x8000 to OXDFFF, you must use Visual C++'s symbol editor to enter
the ID prior to assigning the ID to a button.

The Application Framework's Built-In Menu Items

You don't have to start each frame menu from scratch; the MFC library defines some useful menu items for you, along
with all the command handler functions, as shown in Figure 4.

7+ Untitled - mymfcpro
§-8 Edit Wiew Help

Tl ChrlM % ?

Qpen. .. Chrl4+O

Save Chel4+5 I!ﬂ Wiew Help

P s | v Toclbar about mymfepro. ..
Print. .. ChHl+P ' 1 w Status Bar

Prink Pressiew
Prinkt Setup...

Ezxit

Figure 4: The standard SDI frame menus.

The menu items and command message handlers that you get depend on the options you choose in AppWizard. If you
deselect Printing and Print Preview, for example, the Print and Print Preview menu items don't appear. Because
printing is optional, the message map entries are not defined in the CView class but are generated in your derived view
class. That's why entries such as the following are defined in the CMyView class instead of in the CView class:

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

Enabling/Disabling Menu Items

The application framework can disable a menu item if it does not find a command message handler in the current
command route. This feature saves you the trouble of having to write ON_UPDATE_COMMAND_UI handlers. You can
disable the feature if you set the CFrameWnd data member m_bAutoMenuEnable to FALSE.

Suppose you have two views for one document, but only the first view class has a message handler for the 1DM_ZOOM
command. The Zoom item on the frame menu will be enabled only when the first view is active. Or consider the
application framework-supplied Edit, Cut, Copy, and Paste menu items. These will be disabled if you have not
provided message handlers in your derived view or document class.

MFC Text Editing Options

Windows itself supplies two text editing tools: edit control and Windows rich edit common control. Both can be used as
controls within dialogs, but both can also be made to look like view windows. The MFC library supports this versatility
with the CEditView and CRichEditView classes.

The CEditView Class

This class is based on the Windows edit control, so it inherits all the edit control's limitations. Text size is limited to 64
KB, and you can't mix fonts. AppWizard gives you the option of making CEditView the base class of your view class.
When the framework gives you an edit view object, it has all the functionality of both CView and CEdi t. There's no
multiple inheritance here, just some magic that involves window subclassing. The CEditView class implements and
maps the clipboard cut, copy, and paste functions, so they appear active on the Edit menu.

The CRichEditView Class

This class uses the rich edit control, so it supports mixed formats and large quantities of text. The CRichEditView
class is designed to be used with the CRichEditDoc and CRichEditCntr1tem classes to implement a complete
ActiveX container application.

The CRichEditCtrl Class

This class wraps the rich edit control, and you can use it to make a fairly decent text editor. That's exactly what we'll do
in the MYMFCPRO example. We'll use an ordinary view class derived from CView, and we'll cover the view's client
area with a big rich edit control that resizes itself when the view size changes. The CRichEditCtr1 class has dozens
of useful member functions, and it picks up other functions from its CWnd base class. The functions we'll use in this
module are as follows.

Function Description

Creates the rich edit control window (called from the parent's WM_CREATE
Create() handler) (i B
SetWindowPos() Sets the size and position of the edit window (sizes the control to cover the

view's client area)

Retrieves plain text from the control (other functions available to retrieve
the text with rich text formatting codes)

SetWindowText() Stores plain text in the control

Gets a flag that is TRUE if the text has been modified (text modified if the

GetWindowText()

GetiodiTy () user types in the control or if the program calls SetMod i fy (TRUE))
SetModify() Sets the modify flag to TRUE or FALSE

GetSel) Gets a flag that indicates whether the user has selected text
SetDefaultCharFormat() Sets the control's default format characteristics

SetSelectionCharFormat() | Sets the format characteristics of the selected text

Table 1: Functions used in MYMFCPRO project.

If you use the dialog editor to add a rich edit control to a dialog resource, your application class InitInstance()
member function must call the function AFxInitRichEdit().

Program Example

This example illustrates the routing of menu and keyboard accelerator commands to both documents and views. The
application’s view class is derived from CView and contains a rich edit control. View-directed menu commands,
originating from a new pop-up menu named Transfer, move data between the view object and the document object, and
a Clear Document menu item erases the document's contents. On the Transfer menu, the Store Data In Document
item is grayed when the view hasn't been modified since the last time the data was transferred. The Clear Document
item, located on the Edit menu, is grayed when the document is empty. Figure 5 shows the first version of the
MYMFCPRO program in use.

7+ Untitled - mymfcpro
File Edit

Wiew Help

[1 = | et DataFrom Document FZ2
ey Skore Data In Document F3 .
Some te: Lur and rich

edit control pruaram examples...

Figure 5: The MYMFCPRO program in use.

If we exploited the document-view architecture fully, we would tell the rich edit control to keep its text inside the
document, but that's rather difficult to do. Instead, we'll define a document CString data member named
m_strText, the contents of which the user can transfer to and from the control. The initial value of m_strText is a
He l 1o message; choosing Clear Document from the Edit menu sets it to empty. By running this example, you'll start to
understand the separation of the document and the view.

The first part of the MYMFCPRO example exercises Visual C++'s wysiwyg menu editor and keyboard accelerator
editor together with ClassWizard. You'll need to do very little C++ coding. Simply follow these steps:

Run AppWizard as in the following steps.

Filez Projects] “Workzpaces] Dther Documents]

A1 ATL COM Appwizard % | 'win32 Static Library Project name:

¢ | Cluster Bezource Type 'Wizard]l'l'l.'r'l'l'lfCF'f':'

g<| Custom Appiaizard :

Databaze Project Logation:

B DevStudio Add-in Wizard FAMFCPROJECT\mpmicpra |
' Extended Stored Proc wizard

r | SAF Estengion \Wizard

M ak efile {* Create new workspace

= MFC Actives! Controlafizard LA

8] MFC Appiwizard (dI] o

T MFC A ppttfizard [exe]

@“ﬂ MNew D atabaze \Wizard I —J
T Utiliy Project

] 'win32 Application

jWinEE Conzole Application Elatfu.rms:

(] Win32 Dynamic-Link Library]W'”32

£ »

(] | Cancel ‘

Figure 6: AppWizard new MYMFCPRO project creation dialog.

MFC AppWizard - Step 1

E T R T e T R By ‘bt tupe of application waould you like to create?
File Edit ¥iew Window Help
LTI
" Multiple docurents
" Dialog bazed
[v DocumentAiew architecture suppart?
Ready

Ywhat language would you like your rezources in?

|English [United States] [SPPWZENU DLL « |

¢ Back | MHewt > | Einizh Cancel

Figure 7: AppWizard step 1 of 6 dialog, selecting SDI application with Document/View architecture support.

MFC AppWizard - 5tep 2 of &

" Header files only

Exit " Database view without file suppart

(" Databasze view with file support

[f you include a databaze wisw, you muzst zelect a
data source.

[

Mo data source iz selected.

¢ Back | MHewt > | Einizh | Cancel |

Figure 8: AppWizard step 2 of 6 dialog.

MFC AppWizard - Step 3 of &

YWhat compound document support would you like to
include?

|- Application
File Edit ¥iew Window Help

] L] C1

i+ Mone

" Container

" Mini-zerver
" Full-zerver

(" Both container and server

Ready

YWhat ather support would vou ke to include?

[Automation

..

¢ Back | MHewt > | Einizh Cancel

Figure 9: AppWizard step 3 of 6 dialog.

MFC AppWizard - 5tep 4 of &

YWhat features would you like to include?

|- Application
File Edit Yiew Window Help

[v Docking toolbar
[v Initial gtatus bar

[Printing and print presviess

[Context-zensitive Help
[v 30 controls
[MAFI [Messaging AP
[windows Sockets
Haw do pau want waur taalbars ta loak?
i+ Mormal

" Intemet Explorer BeBars

Editing Control: Ithord

If Check Box @ Radic Button
O Radic Button

Haw rmany files waould pou like on your recent file list?

_:I Advanced...
¢ Back | MHewt > | Einizh | Cancel |

Figure 10: AppWizard step 4 of 6 dialog, deselecting Printing and print preview option.

MFC AppWizard - Step 5 of &

. e
s Microsoft Developer Studio YWhat style of project would pou like

File Edit ¥iew Insert Build Help

" windows Explarer

Ww'ould you like to generate zource file comments?

*+ “Yez, please
" Mo, thank pou
How would vou like to uze the MFC libran?

* As g shared DLL
" Az a statically linked lirary

¢ Back | MHewt > | Einizh Cancel

Figure 11: AppWizard step 5 of 6 dialog.

MFC AppWizard - 5tep 6 of &

Appwizard creates the following classes for pou;
B i

Chymfcprodpp

ChainFrame

Chdprmfeprolioc

Clazs name: Header file:
||:M_|,-'I'I'I|:l3|:lrl:l"-.-"iEW |m_l,lmfn:|:uru:u"»-"iew.h

Basze class: Implementation file:
|E"-.rfiew j |m_l,lmfn:pru:u‘-’iew.u:pp

¢ Back | | Einizh | Cancel |

Figure 12: AppWizard step 6 of 6 dialog.

New Project Information E|

Appiafizard will create a new skeleton project with the following specifications:

Application twpe of myrfepra:
Single Document Interface Application targeting:
Wind2

Clazzes to be created:
Application: CMymfcprodpp in mymfcpro.h and mymfcpro.cpp
Frame: ChMainFrame in bainFrm.h and MainFrm.cpp
Document; Chymbcproloc in mymfcprolloc.h and mymfcproDoc.cpp
Wiew: Chymfcproifiew in mumfepratfiew. b and momfcprotfiew. cpp

Features:
+ |nitial taalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ |zez shared DLL implementation [MFCAZ2.DLL]
+ Localizable text in;
Englizh [United States]

Project Directary:
F:AMFCPROJECT \mymfcpro

Cancel

Figure 13: MYMFCPRO project summary.

*o mymfcpro - Microsoft Yisual C++ |Z||E|

||Eile Edit iew Insert Project Buld Tools Window Help

|8 (@ E @[5 @[D[S | Gfwine =|
CaboutDlg = iad class members] || & CAboutDIg R

E 2l

El--- mymfcpro classzes
™18 CAboutDlg
™18 CHainFrame
'E= Chymfcprodpp
'E= Chymfcprolioc
'E= Chymfcprobiem
=+] Globals

" ®3 Clas.. [88 Res... | |2] FileV. |
El
o

| v

-
[Build { Debug % FindinFiles1 % FindinFiles2 % Resuts % SGL Debugging 7 | +|] »]
Feady ﬁ

Figure 14: MYMFCPRO project IDE launched.

Use the resource editor to edit the application's main menu. Click on the ResourceView tab in the Workspace window.

Edit the IDR_MAINFRAME menu resource to add a separator and a Clear Document item to the Edit menu, as shown
here.

Menu Caption Command ID
Edit Clear &Document | 1D_EDIT_CLEAR_ALL

Table 1

Aol Wow HHe B0

Undo Cerl+2 |

Cuk Chrl+s
Copyw Chrl+C

Menu Item Properties IE]
44 ? Genesl | Extended Styles |
| J Caption: |
; - - li
B [~
Figure 15: Using the resource editor to add a separator.
Eile Edit Vew Help { @ @ .
LInda Chrl+Z
Zuk Chrl+3
Copy Chrl4+C
Paste Chrl+Y
........ Clear Document
Menu Item Properties IE

= ? General | Estended Stules |

ID: |ID_EDIT_CLEAR_ALL | Caption: |Clear &Document

[Separator [Pop-up [Ipactive Break: |N|:une -

[Checked | Grayed [Help
Frompt: |Erase everythingshEraze Al

Figure 16: Using the resource editor to add Clear Document menu.

Now add a Transfer menu, and then define the underlying items. Using the mouse, drag the blank item to the insertion
position to define a new item. A new blank item will appear at the bottom when you're finished.

File Editliiew Help |

Figure 17: Using the resource editor to add a Transfer main menu.

Use the following command IDs for your new menu items.

Menu Caption Command ID
Transfer | &CeLDa@FIOM | yn TpANSFER GETDATA
Document\tF2 — —
Transfer | &StoreDataln 1 yn +pANSFER STOREDATA
Document\tF3 — —
Table 1
Menu Item Properties IEI
= ? General | Eutended Styles |
| J Captior; |REREE)
[Iv Pop-up [Ipactive Break: [Mone -
[Checked [Grayed [Help
Figure 18: Adding and modifying the Transfer menu properties.
File Edit Transfer Yiew Help ¢
: Get Data From Document F2
[

Menu Item Properties

44 ? Genesl | Extended Styles |

ID: ID_TRAMSFER_GETDAT | Captior: |%Get Data From Docum

[~ Separator [Pop-up [lnactive Break: |Mone -

[Checked | Grayed [Help

Prompk: |

Figure 19: Adding and modifying the Get Data From Document menu properties.

File Edit Transfer ‘iew uelpg'

...... e b e

Menu Item Properties @

4 R Gereral | Extended Styles |

ID: |ID_TRANSFER_STORED | Caption: |4Store Data In Docume

[Separator | Pop-up I lnactive Break: |Mone -

[Checked | Grayed [Help
Prompt: | Store some datd

Figure 20: Adding and modifying the Store Data In Document menu properties.

The MFC library has defined the first item, 1ID_EDIT_CLEAR_ALL. Note that the \t is a tab character, but type \t
manually; don't just press the Tab key.

When you add the menu items, type appropriate prompt strings in the Menu Item Properties dialog for the Prompt.
These prompts will appear in the application's status bar window when the menu item is highlighted.

Use the resource editor to add keyboard accelerators. Open the IDR_MAINFRAME accelerator table, and then use the
insert key to add the following items.

Accelerator ID Key
I1D_TRANSFER_GETDATA VK_F2
ID_TRANSFER_STOREDATA | VK_F3

Table 1

Be sure to turn off the Ctrl, Alt, and Shift modifiers. The Accelerator edit screen and Accel Properties dialog are
shown in the illustration below.

1D | Key | Type

ID_EDIT_COPY Cil+C YIRTEEY
ID_FILE_ME'w Crl + M YIRTEEY
ID_FILE_OPEMN Cil+ 0 YIRTEEY
ID_FILE_SAYE Ctrl+5 YIRTEEY
ID_EDIT_PASTE Ctrl + YIRTEEY
ID_EDIT_UNDO Al +WE_BACK YIRTEEY
ID_EDIT_CUT Shift +VE_DELETE YIRTEEY
ID_TRAWSFER_GETDATA WE_F2 YIRTEEY
ID_MEXT_PAME VE_FE YIRTEEY
ID_PREY_PAME Shift + YK _F& YIRTEEY
ID_EDIT_CORY Ctrl +E_INSERT YIRTEEY
ID_EDIT_PASTE Shift +YE_IMNSERT YIRTEEY
ID_EDIT_CUT Crl + 3 YIRTEEY
ID_EDIT_UNDO Chl+ 2 YIRTEEY

Accel Propertie

= ? General |

b adifiers

ID: |ID_TRANSFER_STORED «| = ol At Shit
Lir d anl

Key: |wK_F3 | -
vpe

Hext Key Typed | ASCH % VitKey

Figure 21: The Accelerator resource edit editor and properties dialog.

Use ClassWizard to add the view class command and update command Ul message handlers. Select the
CMymTFcproView class, and then add the following member functions.

Object ID Message Member Function
ID_TRANSFER_GETDATA COMMAND OnTransferGetData()
ID_TRANSFER_STOREDATA | COMMAND OnTransferStoreData()
ID_TRANSFER_STOREDATA | UPDATE_COMMAND_UI | OnUpdateTransferStoreData()

Table 1

Yiew Insert Project Build Toaol

Zkr] | -y

©IB= pesource Symbols,.,

Resource Inclides. .. =

; Full Screen

¢ -

; Wiorkspace alk+0 B
Cukput alk+z -
Debug Windows L

I Propetties Alt+Enker
,
|

Figure 22: Invoking ClassWizard to add the view class command and update command Ul message handlers.

bMeszzage Maps b ember Y anables] Automation] Activel Events] Clazz Info]

Eroject: Clazs name: AddClazs. = |

myrfcpro _:_j]EMymfcprDUiew _:J e
tioh. .
F:b. smwmfcprobmymbcprotfies. b, F:h smemfcprotiew. cpp m

Ohject 1D hMezzages; Delete Funchon
ID_FILE_SAVE AS ~ [COMMAND .

D MEXT PANE Sl (FDATE COMMAEND Ll Edit Code |
ID_PREY FANE

ID_TRAMSFER GETDATA

ID TRAMSFER, STOREDATA S Member. Function @@

ID_WIEwW _STATUS_BAR
tember function name; ok |

ID_WIEw_TOOLBAR
|EInL| pdateT ranzferStoredatd
OrDiraw Cancel |

[l

tember functions:

i

W OnTransferGetdata OM_ID_TRAMSH Message: UPDATE_COMMAND U

"W OnTransferStoredata OM_ID_TRAMSH Object ID: ID_TRANSFER_STOREDATA
Y PreCreatewindow

Dezcrption: Calback for menu and button enablinggraying

k. Cancel

Figure 23: Adding the view class command and update command Ul message handlers.

Use ClassWizard to add the document class command and update command Ul message handlers. Select the
CMymFcproDoc class, and then add the following member functions.

Object ID Message Member Function
ID_EDIT_CLEAR_ALL { COMMAND OnEditClearDocument()
ID_EDIT_CLEAR_ALL [UPDATE_COMMAND_UI | OnUpdateEditClearDocument()

Table 1

MFC ClassWizard

tezzage Maps tember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazs name: Add Clazs..
myrmfcpro j | Chdymfcproloc j -

F:h AmymfoprosmymbcproDoc. b, F:hsmvnfoproDoc.cpp g

Object [Ds: M ezzages: Delete Function

Chyrfoprolios Y COMMAND
ID_aPP_ABOUT = UPDATE COMMAND UI

ID_APP_ExIT =

ID_EDIT_COPY
ID_EDIT_CUT
ID_EDIT_PASTE v

kember functions:
W OnEditClearDocument OMN_ID_EDIT_CLEAR_ALL:CORMMAND

YW OnMewDocument

OnlpdateE ditClearD ocumOM_ID_EDIT_CLEAR_ALL:UPDATE_CORMMAMD_LI
YW Serialize

Description: Callback far menu and button enabling/graving

k. Cancel

Figure 24: Using ClassWizard to add the document class command and update command Ul message handlers.
Add a CString data member to the CMymFfcproDoc class. Edit the file MymfcproDoc.h or use ClassView.

public:
CString m_strText;

- mymfcpro classes CHymf cpral
B® CaboutDlg !
B8 CainFrame ASSER

B CMymfcprodpp retur

+

][] [

290 a0 ko Definition
add Member Function. ..

add Member Variable. .,

add Wirkual Eunction. ..

Add Windows Message Handler, ..
E References. ..
i.h Detived Classes., .
'.F Base Classes. ., -
Add to Gallery
5 Mew Folder,.,

Group by Bocess

v Docking Wiew
Hide

Properties

Figure 25: Using ClassView to add new member variable to CMym¥cproDoc class.

Add Member, Variable

Wariable Type: 0k

|ES trirg
Cancel
Wariable Mame:

| rn_ztr T et

Arccess
*+ Public " Protected " Private

Figure 26: Entering the variable type and name.

Edit the document class member functions in MymfcproDoc.cpp. The OnNewDocument () function was generated by
ClassWizard. The framework calls this function after it first constructs the document and when the user chooses New
from the File menu. Your version sets some text in the string data member. Add the following code:

BOOL CMymfcproDoc: :OnNewDocument()
{
if (!CDocument: :OnNewDocument())
return FALSE;
m_strText = "Hello...from CMymfcproDoc: :OnNewDocument™;
return TRUE;

i | mymfcproll oc. cpp

¥
3 mymfcprotiew. cpp

BOOL CHymfcproloc: OnHewDocument ()
1

if [{(1CDocument : OnNewDocument ()]

3 Stdafk cpp return FALSE:

Header Files

% MainFmih S TODD: add reinitialization code here

% mymfpro.h <« (5D documents will reus=e this document)

= n_strText = "Hello. .. from CHymfcproDoc: : OnNewDocument]":
% rymfcprolioc. b

% mymfcprotdiew. h
;% Resource.h T

return TRUE:

Listing 1

The Edit Clear Document message handler sets m_strText to empty, and the update command Ul handler grays the
menu item if the string is already empty. Remember that the framework calls OnUpdateEditClearDocument()
when the Edit menu pops up. Add the following code:

void CMymfcproDoc: :OnEditClearDocument()
{

}

void CMymfcproDoc: :OnUpdateEditClearDocument(CCmdUl* pCmdul)

m_strText_Empty();

pCmdUl->Enable(Im_strText. IsEmpty());
¥

Source Filez

3 b ainFrm.cpp
3 raymfcpro.cpp
3 raymfcpro.re

TQI riymfcpralloc.cpp

3 raymfcprotisw. cpp ¥
] Stdéfx cpp woid CHymfcproDoc: : OnlUpdateEditClearDocument (CCndUI* pCndlUI)
{

wvold CHymfcproDoc: :OnEditClearDocumenti)

S TODD: Add wvour command handler code here
n_=trText Emptyi):

Header Files

Z] MainFrm.h
% raymfcproh
% raymfcpralioc. b 1
=1 rnrabenreifism b

S TODD: Add wour command update Ul handler code heres
pCmdUI—->Enablef In_strText IsEnptvy());

Listing 2.

Add a CRichEditCtrl data member to the CMymfcproView class. Edit the file MymfcproView.h or use
ClassView.

public:
CRichEditCtrl m_rich;
M aitiFrr.h .
public:
zi EEEEE[::.: X CRichEditCtrl m_rich:
@ mygrfcproiew.h ## Attributes

Listing 3.

Or using ClassView

Add Member ¥ariable

Yariable Type:
|I:F|in::hE ditChl
Cancel
Wariable Marme:
| m_ricH
Access

* Public " Protected " Prjvate

Figure 27: Adding a CRichEditCtr1 data member to the CMymfcproView class.

Use ClassWizard to map the WM_CREATE and WM_S1ZE messages in the CMymfcproView class. The OnCreate()
function creates the rich edit control.

MFC ClassWizard

M ezzage Maps tember ' ariables | Autamation | Activer Events | Clazz Info |

Project: Clagz name: Add Class.. ~
mymfcpro ﬂ

| Chdymfcprotiem j
F:h Amwmfepratsmymbcprotfiss b, Fh . Smymfcprotiew. cpp g
Object [Ds: M eszages: Delete Function

Chuyrnfepratfiet » Wih_SETCURSOR A

ID_aPP_aBOUT 3 Wih_SETFOCUS 0

ID_APP_EXIT = Wikl SHOW WIMDOWw

ID_EDIT_CLEAR_ALL WM SIFE

ID_EDIT_COPY Whi_TCa&RD

ID_EDIT_CUT Wik_TIMER -

ID_EDIT_PASTE il Wwikd_WSCROLL hd
Member functions:

W OnCreate OM_wt_CREATE ~

W OnDraw

OnSize OM_'wH_SIZE

W OnTransferGetdata OM_ID_TRAMSFER_GETDATA:COMMAMD
W OnTransferStoredata OM I TRAMSFER STOREDATA:COMMAMD b

Dezcription: |ndicates a change in window size

] Cancel

Figure 28: Using ClassWizard to map the WM_CREATE and WM_S1ZE messages in the CMymfcproView class.

The control's size is O here because the view window doesn't have a size yet. The code for the two handlers is shown
below. Click the Edit Code button and add the following codes.

int CMymfcproView: :OnCreate(LPCREATESTRUCT IpCreateStruct)

CRect rect(0, 0, 0, 0);
iT (CView: :OnCreate(lpCreateStruct) == -1)
return -1;
m_rich.Create(ES_AUTOVSCROLL | ES_MULTILINE | ES_WANTRETURN |
WS_CHILD | WS_VISIBLE | WS_VSCROLL, rect, this, 1);
return O;

Source Files

El b ainFrm.cpp

El mymfcpro.cpp

3 rymfcpro.rc

3 mymfcprolloc.cpp
TA] mymfcprotiew. cpp
EjSMﬁhﬁpp
Header Files
E]Mahﬁmh

% mymfcproch
=1 rumfrnealiae b

int CHymfcproView: OnCreate(LPCREATESTRUCT lpCreateStruct)

1

CRect rect(0,

if (CVWiew: OnCreatellpCreateStruct)

return —1;

o, o, 0y

== -1}

S TODD: Add vwour specialized creation code heres
m_rich. Create(ES_AUTOVSCROLL | ES_MULTILINE | ES_WANTRETUENH |

return 0:

WS _CHILD | WS5_VISIBLE | WS _WSCROLL. rect. thi=s.

Listing 4.

Windows sends the WM_S 1 ZE message to the view as soon as the view's initial size is determined and again each time
the user changes the frame size. This handler simply adjusts the rich edit control's size to fill the view client area. Add

the following code:

void CMymfcproView: :OnSize(UINT nType,

CRect rect;
CView: :OnSize(nType, CX, CY);
GetClientRect(rect);
m_rich.SetWindowPos(&wndTop, O, O, rect.right - rect.left, rect.bottom -
rect.top, SWP_SHOWWINDOW);

}

El b ainFrm.cpp

El myrmfcpro.cpp

El ryrfcpro.re

El mymfcprolloc.cpp
71 myrmfcprotiew. cpp
E]SM&Mcpp
Header Files

=] MainFrm.h

El myrmfcproh

1 mumfcoraDoc.h

volid CHymfcproView: :OnSize(UIHT nTvpe.

1

CRect rect:

CView: OnSizei{nTvpe., cx=.

int cx, int cy)

int cE. int cv)

=78

S TODD: Add wour messzage handler code here
GetClientRect{rect):

m_trich. SetWindowPos(éwndTop, 0. 0.

rect . right — rect.left.
rect bottom — rect. top, SWE_SHOWWIHDOW :

Listing 5.

Edit the menu command handler functions in MymfcproView.cpp. ClassWizard generated these skeleton functions
when you mapped the menu commands in the previous step. The OnTransferGetData() function gets the text
from the document data member and puts it in the rich edit control. The function then clears the control’s modified flag.
There is no update command Ul handler. Add the following code:

void CMymfcproView: :OnTransferGetData()

CmymfcproDoc* pDoc = GetDocument();
m_rich.SetWindowText(pDoc->m_strText);
m_rich.SetModify(FALSE);

1y:

El mymfcprons woid CHymfcproView: :OnTransferGetdatal)
] mymfcprolioc. o 1
%IW S TODD: Add wour command handler code here
= Al -CRp CHvmfcproloc#* pDoc = GetDocumenti);
j Std.fl'-.f.:-c_cpp n_rich.SetWindowText (pDoc—:m_strText):
Header Files m_rich. SetModifv(FALSE):
% M ainFrm. b
?I mymfcproch F
Listing 6.

The OnTransferStoreData() function copies the text from the view’s rich edit control to the document string and

resets the control’s modified flag. The corresponding update command Ul handler grays the menu item if the control has
not been changed since it was last copied to or from the document. Add the following code:

void CmymfcproView: :OnTransferStoreData()

{
CmymfcproDoc* pDoc = GetDocument();
m_rich.GetWindowText(pDoc->m_strText);
m_rich.SetModify(FALSE);
ks
void CmymfcproView: :OnUpdateTransferStoreData(CcmdUl* pCmdul)
{
pCmdUl->Enable(m_rich._GetModify());
hs
ace ‘myrnfcpro’ 1 proje volid CHymfcproView: OnTransferStoredatal)
mfcpro files {
Cource Files S TODD: Add wour command handler code here
3 M ainE CHvmnfcproDoc*® ploc = GetDocunent ()
+ anrm. pp n_trich. GetWindowText (pDoc—:mn_=trText):
j myrfcpro.cpp n_rich. SetHodify(FALSE):
3 rymfcpro.rc
3 mymfcprolloc. cpp b
x 1
% ;nfdrg.ffcprwlew":pp vold CHymfcpraView: OnlpdateTran=zferStoredata{CCndlII* pCndUI)
%.Cpp {
Header Files S TODD: Add vour command update Ul handler code here
% b e b pCndUI-»Enable{n_rich. GetModify()):
E] mymfcproh }
=1 rmumfrnenlioe b

Listing 7.
Build and test the MYMFCPRO application.

Build Tools ‘Window Help

@ Compile mymfcproview.cpp Chrl+F7

Build rymfopro.exe

* B Rebuild Al 5
Batch Build. ..
Clean :
Start Debug ko
Cebugger Remote Connection, ., ;!

Execute mymfopro,exe Ckrl+FS

Set Ackive Configuration. ..
Configurakions., ..

Profile. .. .
) S | 1 0 o = W =2 | e g a4

Figure 29: Building the MYMFCPRO program.

Build Tools Window Help

@ Compile mymfcpraYiew,.cpp Chrl+F7
i Build rymfopro.exe F7
* B4 Rebuild Al
Batch Build. ..

Clean -

Start Debug k

Debugger Remote Conneckion, . .

Execute mymfcpro.exe Ckrl+FS

Set Active Configuration. ..
Configurations. ..

Praofile. .. .
T T — Fr.rfi — LI e

Figure 30: Executing the MYMFCPRO program.

The following is the program output. When the application starts, the Clear Document item on the Edit menu should be
enabled. Choose Get Data From Document from the Transfer menu. Some text should appear. Edit the text, and then
choose Store Data In Document. That menu item should now appear gray. Try choosing the Clear Document
command, and then choose Get Data From Document again.

++ Untitled - mymfcpro

File Edit MIENEES Yiew Help

[= | GetData From Document F2

Figure 31: Testing MYMFCPRO program, getting the data from the document.

Again, let see the relationship of the Document -View. Just click the Get Data From Document sub menu of the
Transfer menu.

- Untitled - mymfcpro EEX
File Edit Transfer Wiew Help

== ®

Hello [from... CMymfcproDoc::0OnNewDocument]

Ready

Figure32: The default data from the document.

The program display string from Document (the default, because we do not store any string/data yet). Next, type some
text and click the Store Data In Document menu. The data sent to and store in the Document.

BX

—
-

7+ Untitled - mymfcpro

File Edit Wiew Help

[1 = | et DataFrom Document FZ2
o F3

Store Data In Document §
Some te: . tor and rich
edit control program examples...

Figure 33: Storing some data (text) into the document, doing it through view.

Next, delete the string manually. So the View doesn’t have any displayed data. Remember that the data has been stored
in Document.

7+ Untitled - mymfcpro

File Edit Transfer YWiew Help

I =og =] 4

Ready

Figure 34: Deleting the data in view (a copy of the data is in document).

Then Click the Get Data From Document. The previous sample string will be displayed.

#» Untitled - mymfcpro ._ E|[z|
File Edit Transfer Wiew Help

= =] 4

Some test string for menus and rich edit control
program example...

Ready

Figure 35: Getting the data from the document through view.

Through the Clear Document sub menu we can delete the stored data in the document. Click the Clear Document sub
menu.

« Untitled - mymfcpro ._ E|[$__<|
File BaE[(M Transfer Yiew Help

Tes

Clear Document

Erase everything

Figure 36: Deleting data stored in the document through view.

Then when we request the previous data from Document, through the Get Data From Document, of course the View
displays nothing.

4+ Untitled - mymfcpro M=1E3
File Edit Transfer Wiew Help

0= 4

Ready

Figure 37: Viewing the data in the document after deleting it, no more data.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

>

Nookw

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

