Module 6: The Modeless Dialog and Windows Common Dialogs

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

The Modeless Dialog and Windows Common Dialogs
Modeless Dialogs

Creating Modeless Dialogs

User-Defined Messages

Dialog Ownership

A Modeless Dialog Example: MYMFC9

The CFormView Class: A Modeless Dialog Alternative
The Windows Common Dialogs

Using the CFileDialog Class Directly

Deriving from the Common Dialog Classes

Nested Dialogs

A CFileDialog Example: MYMFC10

Other Customization for CFileDialog

The Modeless Dialog and Windows Common Dialogs

Now you'll move on to the modeless dialog and to the common dialogs. Modeless dialogs allow the user to work
elsewhere in the application while the dialog is active. The common dialog classes are the C++ programming interface
to the group of Windows utility dialogs that include File Open, Page Setup, Color, and so forth and that are supported
by the dynamic link library COMDLG32.DLL. In this Module's first example, you'll build a simple modeless dialog
that is controlled from a view. In the second example, you'll derive from the COMDLG32 CFi leDialog class a class
that allows file deletion.

Modeless Dialogs

In the MFC Library version 6.0, modal and modeless dialogs share the same base class, CDial og, and they both use a
dialog resource that you can build with the dialog editor. If you're using a modeless dialog with a view, you'll need to
know some specialized programming techniques.

Creating Modeless Dialogs

For modal dialogs, you've already learned that you construct a dialog object using a CDial og constructor that takes a
resource template ID as a parameter, and then you display the modal dialog window by calling the DoModal ()
member function. The window ceases to exist as soon as DoModal () returns. Thus, you can construct a modal dialog
object on the stack, knowing that the dialog window has been destroyed by the time the C++ dialog object goes out of
scope.

Modeless dialogs are more complicated. You start by invoking the CDial og default constructor to construct the dialog
object, but then to create the dialog window you need to call the CDialog: - Create member function instead of
DoModal (). Create takes the resource ID as a parameter and returns immediately with the dialog window still on the
screen. You must worry about exactly when to construct the dialog object, when to create the dialog window, when to
destroy the dialog, and when to process user-entered data. Here's a summary of the differences between creating a modal
dialog and a modeless dialog.

Modal Dialog Modeless Dialog
Constructor with resource | Default constructor (no
Constructor used
ID param params)
FL_mctlon used to create DoModal () Create() with resource
window ID param

Table 1
User-Defined Messages

Suppose you want the modeless dialog window to be destroyed when the user clicks the dialog's OK button. This
presents a problem. How does the view know that the user has clicked the OK button? The dialog could call a view class
member function directly, but that would "marry" the dialog to a particular view class. A better solution is for the dialog
to send the view a user-defined message as the result of a call to the OK button message-handling function. When the
view gets the message, it can destroy the dialog window (but not the object). This sets the stage for the creation of a new
dialog. You have two options for sending Windows messages: the CWnd : - SendMessage function or the
PostMessage () function. The former causes an immediate call to the message-handling function, and the latter posts
a message in the Windows message queue. Because there's a slight delay with the PostMessage () option, it's
reasonable to expect that the handler function has returned by the time the view gets the message.

Dialog Ownership

Now suppose you've accepted the dialog default pop-up style, which means that the dialog isn't confined to the view's
client area. As far as Windows is concerned, the dialog's "owner" is the application's main frame window, not the view.
You need to know the dialog's view to send the view a message. Therefore, your dialog class must track its own view
through a data member that the constructor sets. The CDialog constructor's pParent parameter doesn't have any
effect here, so don't bother using it.

A Modeless Dialog Example: MYMFC9

We could convert the previous Module monster dialog to a modeless dialog, but starting from scratch with a simpler
dialog is easier. Example MYMFC9 uses a dialog with one edit control, an OK button, and a Cancel button. As in the
previous Module example, pressing the left mouse button while the mouse cursor is inside the view window brings up
the dialog, but now we have the option of destroying it in response to another event, pressing the right mouse button
when the mouse cursor is inside the view window. We'll allow only one open dialog at a time, so we must be sure that a
second left button press doesn't bring up a duplicate dialog.

To summarize the upcoming steps, the MYMFC9 view class has a single associated dialog object that is constructed on
the heap when the view is constructed. The dialog window is created and destroyed in response to user actions, but the
dialog object is not destroyed until the application terminates. Here are the steps to create the MYMFC9 example:

Run AppWizard to produce \mfcproject\mymfc9 (or whatever directory you have designated for the project). Accept all
the defaults but two: select Single Document and deselect Printing And Print Preview and ActiveX Controls. The
options and the default class names are shown here.

Filez Projects Whorkzpaces] Other Documents

& ATL COM Appiwizard % | 'win32 Static Library Project name:

| Cuztom Appitfizard

¢| Cluzster Resource Type Wizard Im}'mfﬂa

i D atabaze Project Location:

' Estended Stared Proc Wizard
e [SAP| Extenzion Wizard
Makefile

= MFC ActiveX Controhwfizard i
8] MFC Appiwizard (dl]

JeMFC A pptfizard [exe]

=

B2 (1S tudio Add-n wizard |F Amfcprojectimymfcd

(+ Create new workspace

.

@T{: MNew Database Wizard I
T Wtility Project
"B]win32 &pplication

j YWin32 Conzole Application Elath:u.rms:
%] win32 Dynamic-Link Library ‘wmz
£ >

o]

Cancel

Figure 1: MFC AppWizard new project creation dialog.

Mew Project Information

Apptafizard will create a new skeleton praject with the fallowing specifications:

X]

Application tepe of mymfc3:

Single Document Interface Application targeting:
Win32

Clazses to be created:

Application: Ckymfc34pp in memfc3.h and mymfc3.cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp

Wies: ChymfcSiew in memfcTiew.h and mymfcPiew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Localizable text in:
Englizh [United States)

Project Directany:
F:\mfcprojecthmymicd

Document: ChpmfcI0oc in mymfcA0oc. b and mymfc30 oc. cpp

Cancel

Figure 2: MYMFC9 project summary.

Use the dialog editor to create a dialog resource. Choose Resource from Visual C++'s Insert menu, and then select
Dialog. The dialog editor assigns the ID 1DD_DIALOG1 (the default ID) to the new dialog. Change the dialog caption
to Modeless Dialog. Accept the default OK and Cancel buttons with IDs 1DOK and IDCANCEL, and then add a static
text control and an edit control with the default ID IDC_EDIT1. Change the static text control's caption to Edit 1. Here
is the completed dialog. Be sure to select the dialog's Visible property.

Dialog Properties [

A ? General | Styles | kare Styles | Extended Styles | j EE

ID: [IDD_DIALOGT = | Caption: |Modeless Dialog

Font name: 5 Sanz Serif Menu | j

Font zize: 8

Fort.. | ®Poz |0 ¥ Pos II:I_ |

Figure 3: Modifying the dialog properties.

Dialog Propetties X

4 B Generl | Stles More Styles | Extended Styles | k EE

[Spstem modal | Set foreground [Control
[3D-look [Center
Misible: [Mo fail create [Center mouse
Dizabled [Moide message [Local edit

[Context Help

Figure 4: More dialog properties modification.

| ok

| KRR | CEROpee n

mE dit | m

L —— —
TewtProperties __[®
H® | General | Sules | Ewtended Stjes |

_____ ID: [IDC_STATIC v| Caption: |Edit1

[v izible [v Group [HelplD

| Dizabled [Tab stop

Figure 5: Modifying the static text control properties.

B Modeless Dialog

Cancel

I |IDC_EDITY R

""" v Wisible [Group [~ HelpID
[~ Disabled v Tab stop

Figure 6: Modifying the Edit control properties.

B Modeless Dialog

]9

Edit 1 I Edit
Cancel

Figure 7: Modeless dialog with its controls.

Use ClassWizard to create the CMymfc9Dialog class. Choose ClassWizard from Microsoft Visual C++'s View menu.
Fill in the New Class dialog as shown here, and then click the OK button.

Adding a Class

IDD_DIALOGY iz a new resource. Since it is a
dialog resource you probably want to create a

new clazs far it You can alzo select an exiztin
class 9 Cancel

& iCreate a new class

L

" Select an existing class

Figure 8: Creating a new CMymfc9Dialog class dialog prompt.

Clazz information 0k,
Mame; Chymic90ialog
Cancel

File name: tyrnfcADialog. cpp

LChange. ..
Baze clazs: |EDiaIu:ug j
Dialog ID: |IDD_DIALOGT |
Autamation
i+ MNone

" Automation
~

Figure 9: The CMymFfc9Dialog class information.

Change Files

Header file:

b umnfc3Dialog. h

Browse...

Implementation file:

|I'-1_umfu:9D ialog.cpp Browse. ..
| k. | Cancel |

Figure 10: Changing the default class header and implementation file names if required, not for this example.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation Activer Events Clazz Info |

Project; Clazz name: Add Class..
myrfcd B3 B (CHtyroicSDialog

F:h AmymfeShMomicIDialog b, Fh . smymfcShkomfc30ialog. cpp g

Object |0 Mezzages:

Chymfc30ialog CalcwindowB ect S :

ID_4PP_ABOUT = |create = Edit Cods

ID_APP_EXIT = DefwfindowProc

ID_EDIT_COPY Destrogwfindow

ID_ECIT_CUT DoDataExchange

ID_EDIT_PASTE Dokadal

ID_EDIT_UNDO bt GetScrollBarCtl bl

kember functians:
Y DaoDataExchange

Description:

ak. | Cancel

Figure 11: New class included in MYMFC9 project, ready to be used.

Add the message-handling functions shown below.

. Member
Object ID Message Function
IDCANCEL | BN_CLICKED OnCancel
1DOK BN_CLICKED OnOK

Table 2

To add a message-handling function, click on an object ID, click on a message, and then click the Add Function button.
The Add Member Function dialog box appears. Edit the function name if necessary, and click the OK button.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfcd j | Chymfc9alog j -

F:h AmymfeShMomicIDialog b, Fh . smymfcShkomfc30ialog. cpp g
Object |0 Mezzages: Delete Function

ID_MEXT_PAME

(>

ID_PREY_FPAME BM_DOUBLECLICKED
ID_VIEW _STATUS_BAR

ID_VIEW _TOOLBAR

IDC_EDITY

IDCAMCEL

=

kember functians:

Y DaoDataExchange
W OnCancel OM_IDCAMCEL:BEM_CLICKED

OndE Ok_IDOE:BM_CLICEED

Description: |ndicates the uzer clicked a buttan

0k, Cancel

Figure 12: Add a message-handling function for 1DOK object.

Add a variable to the CMym¥c9Di1al og class. While in ClassWizard, click on the Member Variables tab, choose the
IDC_EDIT1 control, and then click the Add Variable button to add the CString variable m_strEditl.

MFEC ClassWizard

tMezzage Maps: Member Yanables | Autamation | Activer Events | Clazz Info |

Contral |De: Type bl ember

DOk

Description:

Project: Clazs name: Add Clazs. =

|m_l,lmf|:E| j ||:h-'|_l,lmf|:EIDialcug j T
F:h AmymfeShMomicIDialog b, Fh . smymfcShkomfc30ialog. cpp w

J

IDC EDNT
IDCAMCEL

o]

Cancel

Figure 13: Adding a member variable to the CMymfc9Dial og class.

Add Member Variable

kember variable name:

Cancel

ok,
|m_strE dit1 I

Vanable ype:

CString j

Dezcrption:

CString with length alidation

Figure 14: Entering the member variable name and type.

Edit mymfc9Dialog.h to add a view pointer and function prototypes. Type in the following code in the

CMymfcODialog class declaration:

private:
CView* m_pView;

Add Member Yariable

Yariable Type:
|EVEW“
Cance
Yariable Marme:
|anVEw
Access

" Public " Protected

Figure 15: Adding a view pointer’s type and name.
Also, add the function prototypes as follows:

public:
CMymfcODialog(CView* pView);
BOOL Create();

<SP VARHE MSG
DECLARE_MESSAGE HMAP()
private:
CView* m_pView:
public:
CHynfc9D1ialog{CView* pView)
BOOL Createl):

Listing 1.

Using the CView class rather than the CMymFfc9View class allows the dialog class to be used with any view class. Edit
mymfc9Dialog.h to define the WM_GOODBYE message ID. Add the following line of code:

#define WM_GOODBYE WM_USER + 5

#if _MSC WEE > 1000

#pragma once

fendif - _HSC VER » 1000
#define WH_GOODEYE WH_TUSER + 5

S Mymfc9Dialog . h 0 header file
Listing 2.

The Windows constant WM_USER is the first message ID available for user-defined messages. The application
framework uses a few of these messages, so we'll skip over the first five messages.

Yiew Insert Project Build Too

X ClassWizard... Chrl+w

L Resource Symbols, ..

Resource Inchides. ..

Full Screen

WWarkspace alk+0
Cukpuk alk+z
Debug Windows »

Propetties Alt+Enker

Figure 16: Viewing the resource symbols in the project.

Resource Symbols

Change...

Wiew ze

Mame Yalue In ze
DC_EDIT1 1000 Vo
IDD_ABOUTBOX 100 W Mew...
IDD_DIALDGT 130 W
IDR_MAINFRAME 128 v 4
IDR_MYMFCATYPE 129 v

[Show read-only symbals
zed by:

Dialog IDD DIALOGT

Figure 17: Inserting and deleting resource symbol through the Resource Symbol dialog.

Visual C++ maintains a list of symbol definitions in your project's resource.h file, but the resource editor does not
understand constants based on other constants. Don't manually add WM_GOODBYE to resource.h because Visual C++
might delete it.

Add the modeless constructor in the file mymfc9Dialog.cpp. You could modify the existing CMymfc9Dialog
constructor, but if you add a separate one, the dialog class can serve for both modal and modeless dialogs. Add the lines
shown below.

// modeless constructor
CMymfc9Dialog: :CMymfcODialog(CView* pView)
{

}

m_pView = pView;

CHymfc9Dialog: (. CHymic9Dialog(Clnd* pParent -~ #=HILL*.)
CDialog(CHymfc9Dialog: : IDD, pParent)

/o {{AFE_DATA_INIT{CHymfc9Dialog)
n_strEditl = _T(""):
/7}}AFE_DATA INIT

< modeless constructor
CHynfc9D1ialog: (CHynfc9D1alog(CView* pView)
{

¢

n_pWiew = pWiew;

Listing 3.
You should also add the following line to the AppWizard-generated modal constructor:

m_pView = NULL;

CHymfc9Dialog: :CHymfc9Dialog(Cnd* pParent -~ ==HIILL*.")
CDialogi{CHymic9D1alog: . IDD, pParent)

SN LAFE DATA TIHIT(CHymic9Dialog)
n_strEditl = _T(""):

Sy YAFE_DATA IHIT

m_pWiew = HULL;

Listing 4.

The C++ compiler is clever enough to distinguish between the modeless constructor CMym¥fc9Dialog(CView™) and
the modal constructor CMymFcODialog(CWnd*). If the compiler sees an argument of class CView or a derived
CView class, it generates a call to the modeless constructor. If it sees an argument of class CWnd or another derived
CWnd class, it generates a call to the modal constructor.

Add the Create() function in mymfc9Dialog.cpp. This derived dialog class Create () function calls the base class
function with the dialog resource ID as a parameter. Add the following lines:

BOOL CMymfc9Dialog: :Create()
{

}

return CDialog: :Create(CMymfc9Dialog::1DD);

A CHymfco9D1alog message handlers

BOOL CHymifc9Dialog: Createl)
1

h
vold CHymic9Dialog: OnCancel()

returtn CDialog: Create(CHymfcz9Dialog: : IDDY

S TODD: Add extra cleanup here

Listing 5.

Create() is not a virtual function. You could have chosen a different name if you had wanted to. Edit the OnOK ()
and OnCancel () functions in mymfc9Dialog.cpp. These virtual functions generated by ClassWizard are called in
response to dialog button clicks. Add the following code:

// not really a message handler

void CMymfc9Dialog: :OnCancel ()
if (n_pView != NULL)

// modeless case - do not call base class OnCancel
m_pView->PostMessage (WM_GOODBYE, IDCANCEL);
}

else
CDialog: :OnCancel (); // modal case
ks

wold CHymic9Dialog: OnCancel()

{
S TODD: Add extra cleanup here
if (m_p¥iew |= HULL)
{

A4 modeless case — do not call base class OnCancel
n_pView—rPostHessage(WH_GOODBYE, IDCAHCEL):
I

el==

Chialog: OnCancel(). - nodal case

Listing 6.

// not really a message handler
void CMymfc9Dialog: :OnOK()

{
if (n_pView I= NULL)

// modeless case -- do not call base class OnOK
UpdateData(TRUE);
m_pView->PostMessage (WM_GOODBYE, 1DOK);

bs

else
CDialog::0nOK(); 7/ modal case

}

wvold CHymic9Dialog: :OnOE()

i
S TODD: Add extra walidation here
if (m_p¥iew = HULL)
i

A4 modeless case — do not call base class OnOE
Tpdatelata(TRUE) ;
n_pView—:PostHessage(WH_GOODEYE, IDOK):

h

al=s

CDialog: OnQE(): . modal case

Listing 7.

If the dialog is being used as a modeless dialog, it sends the user-defined message WM_GOODBYE to the view. We'll
worry about handling the message later.

For a modeless dialog, be sure you do not call the CDialog: :OnOK or CDialog: :OnCancel function. This means
you must override these virtual functions in your derived class; otherwise, using the Esc key, the Enter key, or a button
click would result in a call to the base class functions, which call the Windows EndDialog() function.
EndDialog() is appropriate only for modal dialogs. In a modeless dialog, you must call DestroyWindow()
instead, and if necessary, you must call UpdateData() to transfer data from the dialog controls to the class data
members. Edit the mymfc9View.h header file. You need a data member to hold the dialog pointer:

private:
CMymfc9Dialog* m_pDIlg;

Add Member Variable

“ariable Type:
|I:M_I,Imf|:EIDialu:ug“

Cance
Warable Name:

|wLpo

Access
" Public " Proteched o

Figure 18: Adding a data member/member variable to hold the dialog pointer.

SSYRAFE MSG

DECLARE MESSAGE MAP()
private:

CHymfc9D1alog*® m_pDlg:
b

Listing 8.
If you add the forward declaration:

class CMymfc9Dialog;

Ela== CHymfc9Dialog:
S mymfc9View h interface
A

E S

Listing 9.

At the beginning of mymfc9View.h, you won't have to include mymfc9Dialog.h in every module that includes
mymfc9View.h.

Modify the CMymFcOView constructor and destructor in the file mymfc9View.cpp. The CMymFcOView class has a
data member m_pD1 g that points to the view's CMymFc9Dial og object. The view constructor constructs the dialog
object on the heap, and the view destructor deletes it. Add the following code:

CMymfcOView: :CMymFcOView()

m_pDlg = new CMymfcODialog(this);

CMymfcOView: : ~CMymfcOView()

// destroys window if not already destroyed
delete m_pDlg;

}

S CHymfoc9Wiew constructionsdestruction
CHymfc9View: CHymfc9View ()
S TODD: add construction code here
m_pDlg = new CHymfc9Dialog(thi=);
I

CHynfc9WView: ~CHynfc9Wiew()

|-+ destroys window if not already destroyed
delete m_pDlg;

Listing 10.

Add code to the virtual OnDraw() function in the mymfc9View.cpp file. The CMym¥c9View OnDraw() function

which skeleton was generated by AppWizard should be coded as follows in order to prompt the user to press the mouse
button:

void CMymfcOView: :OnDraw(CDC* pDC)

pDC->TextOut(30, 30, "Press the left mouse button here.™);
}

A CHymic9View drawing
vold CHymic9View: OnDraw(CDC* pDC)
{

S TODD: add draw code for native data here
pDC—3TextOut (30, J0. "Press the left mouse button here. "3

Listing 11.

Use ClassWizard to add CMymfc9OView mouse message handlers. Add handlers for the WM_LBUTTONDOWN and
WM_RBUTTONDOWN messages.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfcd j | ChdymfcTview j -

F:h . AmymfeShmymfciew b, B SmymfcShmomfc3iew. cpp g

Object |0 Mezzages: Delete Function

ChurnfcShiew A Wit _tMOYE ~
ID_APF_ABOUT E whd_PAINT T
ID_&PP_ExIT "Wid_RBUTTOMDELCLE,

ID_EDIT_COPRY W REUTTONDDWHM
ID_EDIT_CUT Whd_REUTTOMUP

ID_EDIT_PASTE Whi_SETCURSOR —
ID_EDIT_UMDO b Wikd_SETFOCLS e
kember functians:

Yo OnDraw

W OnLButtonDown OMN_wikd_LBUTTONDOWM

OnREuttonDiown OM_wikd_REUTTOMDOWH

YW PreCreate\findow
Description: |ndizates when the right mouse button iz pressed

0k, Cancel

Figure 19: Adding handlers for the WM_LBUTTONDOWN and WM_RBUTTONDOWN messages.

Now edit the code in file mymfc9View.cpp as follows:

void CMymfcOView: :OnLButtonDown(UINT nFlags, CPoint point)

{ // creates the dialog if not created already
if (m_pDlg->GetSafeHwnd() == 0)
m_pDlg->Create(); // displays the dialog window
}
\{/oid CMymfc9View: :OnRButtonDown(UINT nFlags, CPoint point)

m_pDlg->DestroyWindow() ;
// no problem iIf window was already destroyed

A CHymic9View message handlers

wvold CHymic9View: OnlButtonDown(UINT nFlag=s., CPoint point)

1
S TODD: Add wour messzage handler code here and<or call default
<« createsz the dialog i1f not created already
if (m_pDlg-:GetSafeHwnd() == 03
m_pDlg—:>Createl): -~ displays the dialog window
b
I

vold CHymfc9View: OnEFButtonDown (UINT nFlag=, CPoint point)

S TODD: Add wour messzage handler code here and<or call default
n_pDlg—:DestrovyWindow()
<« no problem 1f window was already destroyed

Listing 12.

For most window types except main frame windows, the DestroyWindow() function does not destroy the C++
object. We want this behavior because we'll take care of the dialog object's destruction in the view destructor.

Add the dialog header include statement to file mymfc9View.cpp. While you're in mymfc9View.cpp, add the following
dialog header include statement after the view header include statement:

#include "mymfc9Dialog.h"

#include "stdafz. h"
#include "mymfc? . h"

#include "mymfc9Doc b
tinclude "mymic9¥iew k"
#include "mymfc9Dialog k"

#ifdef _DEBUG
Listing 13.

Add your own message code for the WM_GOODBYE message. Because ClassWizard does not support user-defined

messages, you must write the code yourself. This task makes you appreciate the work ClassWizard does for the other
messages.

In mymfc9View.cpp, add the following line after the BEGIN_MESSAGE_MAP statement but outside the
AFX_MSG_MAP brackets:

ON_MESSAGE(WM_GOODBYE, OnGoodbye)

S CHymfc9Wiew
IMPLEHEHT DYHNCEEATE({CHymfc9View, CView)

BEGIN_MESSAGE MAP({CHymicIView, CView)
A7 {{AFY_MSG_MAP(CHymfciView)
ON_WM_LEUTTONDOWN(
ON_WM_REUTTONDOWN{)

#/VYAFE MSG_MAP
ON_NESSAGE (WM_GOODEYE, OnGoodbye)|
END_MESSAGE MAP()

Listing 14.

Also in mymfc9View.cpp, add the message handler function itself:

LRESULT CMymfc9View: :OnGoodbye (WPARAM wParam, LPARAM IParam)

{
// message received in response to modeless dialog OK
// and Cancel buttons
TRACE(*"CMymfc9View: :OnGoodbye %x, %Ix\n", wParam, IParam);
TRACE("'Dialog editl contents = %s\n', (const char*) m_pDlg->m_strEditl);
m_pDIlg->DestroyWindow() ;
return OL;
}

LRESULT CHymic9View: : OnGoodbye(WPARAM wParam. LPARAM 1Param)
{
S meszage recelved in response to nodeless dialog OF
<« and Cancel buttons
TRACE("CHynfc9WView: :OnGoodbye *m. ¥lx~n". wFParam. l1Param):
TRACE{ "Dialog editl contents = %s~n", |{const char=*) m_pDlg-:>m_strEditl’;
n_pDlg—:DestroyWindow()
return 0L

Listing 15.

In mymfc9View.h, add the following function prototype before the DECLARE_MESSAGE_MAP () statement but
outside the AFX__ MSG brackets:

afx_msg LRESULT OnGoodbye(WPARAM wParam, LPARAM IParam);

< Generated message map functions

protected:
SOLTAFE MSGICHymfc9View)
afx_m=g woid OnlButtonDown(UINT nFlag=. CFoint point):
afx _m=g void OnEButtonDown(TINT nFlags. CFoint point);
SOV RAFE HMSG
af=_m=g LEESULT OnGoodbye{WPARAM wParam, LFARAM 1Param) |
LDECLARE_MESSAGE MAF()

private:
CHymfz9Dialog*® m_pDlg:

¥

Listing 16.

With Win32, the wParam and IParam parameters are the usual means of passing message data. In a mouse button
down message, for example, the mouse x and y coordinates are packed into the IParam value. With the MFC library,
message data is passed in more meaningful parameters. The mouse position is passed as a CPo i nt object. User-defined
messages must use wParam and IParam, so you can use these two variables however you want. In this example, we've
put the button ID in wParam.

Build and test the application. Build and run MYMFC9. Press the left mouse button and then press the right button.
Be sure the mouse cursor is outside the dialog window when you press the right mouse button. Press the left mouse
button again and enter some data, and then click the dialog's OK button. Does the view's TRACE statement correctly list
the edit control's contents?

http://www.tenouk.com/cnwin32tutorials.html

4. Untitled - mymfc9 M=

File Edit Mjew Help

W= =] ?

Press the left mouse button here.

Ready

Figure 20: MYMFC9 program output.
%]

Cance

Modeless Dialog

Edit1 |test

Figure 21: MYMFC9 program output, modeless dialog launched when the left mouse button clicked.

CHymfc9Wiew: (OnGoodbye 1, O

Dialog =ditl contents = test

The thread 0=EBC ha=s emxited with code 0 {(0=0).

The program 'F:micproject ~mnymnfc9~Debug mymfcd exe' has exited with code 0 (0=x0)

Debug ¢ FindinFiles1 5 FindinFiles 2 5 Resuts 3 SGLDebugging / [4] |

Figure 22.

If you use the MYMFC9 view and dialog classes in an MDI application, each MDI child window can have one modeless
dialog. When the user closes an MDI child window, the child's modeless dialog is destroyed because the view's
destructor calls the dialog destructor, which, in turn, destroys the dialog window.

The CFormView Class: A Modeless Dialog Alternative

If you need an application based on a single modeless dialog, the CFormView class will save you a lot of work and will
be discussed in another Module together with the CDocument class, because the CFormView class is most useful
when coupled with it.

The Windows Common Dialogs

Windows provides a group of standard user interface dialogs, and these are supported by the MFC library classes. You
are probably familiar with all or most of these dialogs because so many Windows-based applications, including Visual
C++, already use them. All the common dialog classes are derived from a common base class, CCommonDiallog. A list
some of the COMDLG32 classes is shown in the following table.

Class Purpose

CColorDialog Allows the user to select or create a color.

CFileDialog Allows the user to open or save a file.

CFindReplaceDialog Allows the user to substitute one string for
another.

CPageSetupDialog Allows the user to input page measurement
parameters.

CFontDialog AIIow_s the user to select a font from a list
of available fonts.

CPrintDialog AI_Iows the user to set up the printer and
print a document.

Table 3: Some of the COMDLG32 classes.

Here's one characteristic that all common dialogs share: they gather information from the user, but they don't do
anything with it. The file dialog can help the user select a file to open, but it really just provides your program with the
pathname, your program must make the call that opens the file. Similarly, a font dialog fills in a structure that describes
a font, but it doesn't create the font.

Using the CFileDialog Class Directly

Using the CFi leDialog class to open a file is easy. The following code opens a file that the user has selected through
the dialog:

CFileDialog dIg(TRUE, "bmp"™, "*.bmp');
if (dlg.DoModal () == I1DOK)

CFile Tile;
VERIFY(File.Open(dlg.GetPathName(), CFile::modeRead));
}

The first constructor parameter (TRUE) specifies that this object is a "File Open" dialog instead of a "File Save" dialog.
The default file extension is bmp, and * . bmp appears first in the filename edit box. The

CFileDialog: :GetPathName function returns a CString object that contains the full pathname of the selected
file.

Deriving from the Common Dialog Classes

Most of the time, you can use the common dialog classes directly. If you derive your own classes, you can add
functionality without duplicating code. Each COMDLG32 dialog works a little differently, however. The next example is
specific to the file dialog, but it should give you some ideas for customizing the other common dialogs. In the early
editions of this book, the MYMFC10 example dynamically created controls inside the standard file dialog. That
technique doesn't work in Win32, but the nested dialog method described here has the same effect.

Nested Dialogs

Win32 provides a way to "nest" one dialog inside another so that multiple dialogs appear as one seamless whole. You
must first create a dialog resource template with a "hole" in it, typically a group box control, with the specific child
window ID stc32 (= 0x045T). Your program sets some parameters that tell COMDLG32 to use your template. In
addition, your program must hook into the COMDLG32 message loop so that it gets first crack at selected notifications.
When you're done with all of this, you'll notice that you have created a dialog window that is a child of the COMDLG32
dialog window, even though your template wraps COMDLG32's template.

This sounds difficult, and it is unless you use MFC. With MFC, you build the dialog resource template as described
above, derive a class from one of the common dialog base classes, add the class-specific connection code in
OnInitDialog(), and then happily use ClassWizard to map the messages that originate from your template's new
controls.

Windows NT 3.51 uses an earlier version of the common dialogs DLL that does not support the new Windows
namespace feature. The nested dialog technique illustrated in the MYMFC10 example won't work with the Windows NT

3.51 version of the file dialog.
A CFileDialog Example: MYMFC10

In this example, you will derive a class CMymfc10Dialog that adds a working Delete All Matching Files button to
the standard file dialog. It also changes the dialog's title and changes the Open button's caption to Delete (to delete a
single file). The example illustrates how you can use nested dialogs to add new controls to standard common dialogs.
The new file dialog is activated as in the previous examples, by pressing the left mouse button when the mouse cursor is
in the view window. Because you should be gaining skill with Visual C++, the following steps won't be as detailed as
those for the earlier examples. Figure 23 shows what the dialog will look like.

Delete File ?)X]

Look in: |_,'|l Debug ﬂ & £ B~

i

.................

B mymfc10.obj
I3 mymfcl0Doc. obi
B mymfclOview, obj
[SpecFileDlg. obi
T Stdafx.obj

Filez aof type: | j Cancel

Delete All Matching Files

Figure 23: The MYMFC10’s Delete File dialog in action.

Follow these steps to build the MYMFC10 application:

Run AppWizard to produce \mfcprojectimymfc10 project (change accordingly to directory that you have designated for
your project). Accept all the defaults but two: select Single Document and deselect Printing And Print Preview and
ActiveX Controls. The options and the default class names are shown in the next graphic.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application bwpe of mymfc] O;
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc] DApp in mymfc] 0.k and mymfc10.cpp
Frame: CMainFrame in MainFrm b and kainFrm.cpp
Document: Chpmfct0Doc in mymfc100oc.h and mymfc100Doc. cpp
Wiew: Chlymfcl Miew in myemfc] Diew. b and mymfc MYiew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL)
+ Localizable text in:
Englizh [United States]

Froject Directory:
F:\mfcprojectsmymfc]i

Cancel

Figure 24: MYMFC10 project summary.

Use the dialog editor to create a dialog resource. Make the dialog box about 3-by-5 inches, and use the ID
IDD_FILESPECIAL. Set the dialog's Style property to Child, its Border property to None and select its Clip Siblings
and Visible properties. Delete the OK and Cancel button.

Dialog Propetties X

44 B General Styles | bore Styles | Extended Styles | k EE

Syl [Title bar [+ Clip siblings
|Chid v r [Clip children
Border: [~ [Horizontal scroll
None hd [[Yertical scral

Figure 25: Modifying the dialog properties.

Create a button with ID IDC_DELETE and a group box with ID stc32 (=0x045f in hexadecimal), as shown here.

~ Static

E3)

Push Button Properties

i ? General | Styles | Estended Stulez |

ID: |IDC_DELETE _v| Captior: |Delete 4l Matching Files

v “izgible [Group [HelplID
[Dizabled [v Tab stop

ey W C
m Delete All Matching Files F
v e W

Figure 26: Modifying push button’s properties.

. 10 |st|:32 j Caption; | .
; W Visible ™ Group ™ HelpID ;
| Dizabled [Tab stop

e —— .
: Delete All Matching Files ;

Figure 27: Modifying group box’s properties.

Check your work by choosing Resource Symbols from the Visual C++ View menu. You should see a symbol list like
the one shown in the graphic below.

View Insert Project Build Lay

5&\ Classtizard... Crrl+W

Ll R esource Symbols, .

Resource Includes. ..

Full Screen
Workspace AlE+0
Ckpuk alk+2
Cebug Windows k

Properties Alt+Enter

Figure 28: Viewing and adding project’s resource symbols.

Resource Symbols

Mame " alue InUsze

Wiew ze

IDC_DELETE 1000 v
IDD_ABOUTBOX 100 W Mew. ..
IDD_FILESPECIAL 130 v
IDR_MAINFRAME 128 v 4
IDR_MYMFCI1TYPE 129 v Change...
tzbe 32 Ox045f W

[Show read-only symbols
Uszed by:

Dialog IDD FILESPECIAL

Figure 29: MYMFC10 resource symbols.

Use ClassWizard to create the CSpecialFileDialog class.

MFC ClassWizard

Mezzage Maps] tember VY ariables] Altarnation 1 Activer Events] Clazz Infa]

Eroject; Clazs name: Add Clags.. ™

ryrfc 0 i CaboutDlg _Lj
F:h smprnfe Ohm
Object 10

CaboutDilg IDD_FILESPECIAL i= a new rezource. Since it iz QK]
ID_APP_ABOUT | a dialog rezource vou probably want to create a

ID_AFP_ExIT new clazs for it Y'ou can alzo select an exizting Caiil]
ID_EDIT_COPY class.

ID_EDIT_CUT
ID_EDIT_PASTE
ID_EDIT_UNDO

kember funchions: o ﬂ;reate a new clazs

Adding a Class

Edit Code ‘

YW DoDataExchl Select an existing class

Description;

(] | Cancel

Figure 30: Creating the CSpecialFileDialog class.

Fill in the New Class dialog, as shown here, and then click the Change button.

Clazz infarmatian

Cancel

Harne: CSpecialFileDialog
File name: SpecialFilelialog.cpp

LChange. ..
Baze clasz: |EDiaI|:|g j
Dialog [D: |IDD_FILESPECIAL ~|
Automation
* MNone

" Automation
~

Figure 31: CSpecialFileDialog class information.

Change the names to SpecFileDlg.h and SpecFileDlIg.cpp. Unfortunately, we cannot use the Base Class drop-down list
to change the base class to CFi leDialog, as that would decouple our class from the 1DD_FILESPECIAL template.
We have to change the base class by hand.

Change Files

Header file:
|SpecFileDig.h

Browse...

Implementation file:

Browse. ..

|5pecFiIeDIg.cpp

o]

Figure 32: Changing CSpecialFileDialog class’s header and implementation file names.

Cancel |

Edit the file SpecFileDlg.h. Change the line:

class CSpecialFileDialog :
To

class CSpecialFileDialog :

public CDialog

public CFileDialog

S ChpecialFilelialog dialog
claszs CSpecialFilelialog ; public CFileDialog

< Construction
pablic:

Listing 17.
Add the following two public data members:

CString m_strFilename;
BOOL m_bDeleteAll;

clas=s CSpecialFilelialog @ public CFileDialog
1
< Construction
public:
CString m_=trFilenams;
[BOOL m_bDeleteill;

CSpecialFilelialog(CWnd* pParent = HUOLL):
Listing 18.

Finally, edit the constructor declaration:

CSpecialFileDialog(BOOL bOpenFileDialog,
LPCTSTR lIpszDefExt = NULL,
LPCTSTR IpszFileName = NULL,
DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
LPCTSTR lIpszFilter = NULL,
CWnd* pParentWnd = NULL);

class CSpecialFilelialog @ public CFileDialog
1
< Construction
public:
CS5tring m_strFilename:;
BOOL m_bDeletedll:

CSpecialFilelialog(BOOL bopenFileDialog.
LPCTSTR lp==zDefExt = HULL.
LPCTSTE lps=FileHame = HULL.
DWORD dwFlag= = OFH_HIDEREADONLY | CFH_OVERWRITEPREOMET.
LPCTSTE lp==Filter = HULL,
Clind* pParentWnd = HUOLL):

Listing 19.

Replace CDialog with CFileDialog in SpecFileDIg.h. Choose Replace from Visual C++'s Edit menu, and replace
this name globally.

Replace

Find what: CLialo j ﬂ Eind Mext
=

aig-

Replacs with: [CFieDislog M Replace
[Match whaole word orly FReplace in Feplace Al
[Match casze £

[Reqgular expression * Wwihle file Cancel

Figure 33: Replacing CDialog with CFi leDialog in SpecFileDlg.h.

Edit the CSpecialFileDialog constructor in SpecFileDlg.cpp. The derived class destructor must invoke the base
class constructor and initialize the m_bDe leteAl I data member. In addition, it must set some members of the
CFileDialog base class data member m_ofn, which is an instance of the Win32 OPENF I LENAME structure. The
Flags and IpTemplateName members control the coupling to your IDD_FILESPECIAL template, and the
IpstrTitle member changes the main dialog box title. Edit the constructor as follows:

CSpecialFileDialog: :CSpecialFileDialog(BOOL bOpenFileDialog, LPCTSTR lIpszDefExt,
LPCTSTR IpszFileName, DWORD dwFlags,
LPCTSTR IpszFilter, CWnd* pParentWnd) : CFileDialog(bOpenFileDialog,
IpszDefExt, lIpszFileName, dwFlags, lIpszFilter, pParentWnd)
{
//7{{AFX_DATA_INIT(CSpecialFileDialog)
// NOTE: the ClassWizard will add member initialization here
//3}}ARX_DATA_INIT
m_ofn.Flags |= OFN_ENABLETEMPLATE;
m_ofn_IpTemplateName = MAKEINTRESOURCE(IDD_FILESPECIAL);
m_ofn.lIpstrTitle = "Delete File";
m_bDeleteAll = FALSE;

}

s ChpecialFilelialog dialog

CSpecialFilelialog: CSpecialFilelialog(BOOL blpenFilelialog,
LPCTSTE lps=zDefExt. LPCTSTR lpszFilelame. DWORD dwFlags.
LPCTSTE lpszFilter. CWnd* pParentWnd)
CFileDialog{blpenFilelialog. lps=zDefExt.
lp=zFi|lleNamne. dwFlags., lps=zFilter, pParentWnd)

oL LAFE DATA THIT(CSpecialFileDialog)

¢ HOTE: the Cla==sWizard will add member initialization here
SV VAFE DATA IHIT
n_ofn.Flags |= OFN_ENAELETEMFILATE;
n_ofn.lpTemplateNamnse = MAKEINTREESOURCE({IDD FILESPECIAL);
m_ofn.lpstrTitle = "Delete File":
m_bDeleteall = FALSE:

Listing 20.

Map the WM_INITDIALOG message in the CSpecialFileDialog class. The OnInitDialog() member
function needs to change the common dialog's Open button caption to Delete. The child window ID is 1DOK.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
myrnf] 0 | |CSpeciafFileDialog | -

F:h . Amymfc 08NS pecFileDg.h, F:i . mywmfe1 08NS pecFileDlo.cpp g

Object |0 Mezzages: Delete Function

CSpecialFileDialog Wit _DIRAMWATE M Y
ID_AFPFP_ABOUT Wid_HELPIMFO 0
ID_AFF_EXIT =3 Wi HSCROLL

ID_EDIT_COPY
ID_EDIT_CUT Wid_FEYD WM W
ID_EDIT_PASTE W_KEYUP

ID_EDIT_UMDO b Wihd_KILLFOCUS e

kember functians:
Y DaoDataExchange

OrnlritDialog OM_wh_INITDIALOG

Description: Sent to a dialog box befare the dialog box iz dizplayed

0k, Cancel

Figure 34: Mapping the WM_INITDIALOG message in the CSpecialFileDialog class.

BOOL CSpecialFileDialog: :OnlnitDialog()

{

BOOL bRet = CFileDialog::OnlnitDialog();

if (bRet == TRUE)

{ GetParent()->GetDIgltem(1DOK)->SetWindowText(*'Delete™);
Y return bRet;

S CEpecialFilellialog message handlers

BOOL CSpecialFilelialog: OnlnitDialogi)

{

BOOL BRet = CFileDialog: :OnlnitDialog():

if (bEet == TRUE)

¢ GetParent(1—:GetDlglten(IDOK) —:SetWindowText ("Delete") ;
| return bRet

bk DA
Listing 21.

Map the new IDC_DELETE button (Delete All Matching Files) in the CSpecialFileDialog class.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
myrnf] 0 | |CSpeciafFileDialog | -

F:h . Amymfc 08NS pecFileDg.h, F:i . mywmfe1 08NS pecFileDlo.cpp g

Object |0 Mezzages: Delete Function

ID_FILE_SAVE_aAS

[

[D_MEST_PANE BM_DOUBLECLICKED
ID_PREY_PAME

ID_WIEW_STATUS_BAR

D WIEW TOOLBAR

[

gh32
kember functians:

Y DaoDataExchange

OnDelete OM_IDC_DELETE:BM_CLICKED
W OnlnitDialog OMN_wikd_IMITDIALOG
Description: |ndicates the uzer clicked a buttan

0k, Cancel

Figure 35: Mapping the new IDC_DELETE button in the CSpecialFileDialog class.

The OnDelete () member function sets the m_bDe leteAl l flag and then forces the main dialog to exit as if the
Cancel button had been clicked. The client program (in this case, the view) gets the IDCANCEL return from
DoModal () and reads the flag to see whether it should delete all files. Here is the function:

void CSpecialFileDialog::OnDelete()

{
m_bDeleteAll = TRUE;
// 0x480 is the child window ID of the File Name edit control
// (as determined by SPY++)
GetParent()->GetDIgltem(0x480)->GetWindowText(m_strFilename);
GetParent()->SendMessage (WM_COMMAND, IDCANCEL);

}

vold CSpecialFilelialog: OnDeletel)
{

S TODD: Add wour control notification handler code here
m_bDeletedll = TRUE:

<+ 02480 1= the child window ID of the File Hame edit control
< (az determined by SPYII)

GetParent(i—:GetD]lglten(0x480)—:GetWindowText (n_=trFilenans) ;
GetParent {) —:SendMessage (TH_COMMAND ., IDCAHCEL)

Listing 22.

Add code to the virtual OnDraw() function in file mymfc10View.cpp. The CMymfc10View OnDraw() function
which skeleton was generated by AppWizard should be coded as follows to prompt the user to press the mouse button:

void CmymfclOView: :OnDraw(CDC* pDC)

pDC->TextOut(30, 30, "Press the left mouse button lol! ');

}

A CHymfcl0View drawing
vold CHMymfclOView: :OnDraw{CDC* plC)

S« TODD: add draw code for native data here
pDC—:TextOut (30, 30, "Press the left mouse button lall ™)

Listing 23.

Add the OnLButtonDown () message handler to the Cmymfc10View class. Use ClassWizard to create the message
handler for W_LBUTTONDOWN.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
rymfc10 j | ChdymfcT i j
F:h . Smymfe Dhmymfc Miew b, Fo momifc] Ohmymfc 0iew. cpp g

Object |0z Mezsages: Delete Function

Chdymnfc Ot iew e Wikd_EILLFOCUS rY
ID_APP_ABOUT E "Wk LBITTOMDBLCLE. b
ID_AFFP_EXIT WH |BEUTTONDODWHN
ID_EDIT_COFY B Wik _LBUTTOMUIP
ID_ECIT_CUT Witd_bOUSEMOWE -
ID_EDIT_PASTE Wid_MOUSEWHEEL
ID_EDIT_UMDO hd Whd_b0WE hd
b ember functions:

Yo OnDraw

OnLButtanDown OM b _LBUTTOMDOWwMN
YW PreCreatebfindow

Description: |ndizates when left mouge button is prezsed

0k, Cancel

Figure 36: Adding the OnLButtonDown() message handler to the CmymfclOView class.
And then edit the code as follows:

void CmymfclOView: :OnLButtonDown(UINT nFlags, Cpoint point)
{
CspecialFileDialog dlgFile(TRUE, NULL, **_.obj™);
Cstring strMessage;
int nModal = dlgFile.DoModal();
if ((nModal == IDCANCEL) && (dlgFile.m_bDeleteAll))

{
strMessage.Format("'Are you very sure you want to delete all %s files? ",
digFile.m_strFilename);
if (AfxMessageBox(strMessage, MB_YESNO) == IDYES)

HANDLE h;
WIN32_FIND_DATA fData;

while((h = ::FindFirstFile(dlgFile.m_strFilename, &fData)) !=
(HANDLE) OXFFFFFFFF)

{ // no MFC equivalent
if (::DeleteFile(fData.cFileName) == FALSE)

{
strMessage.Format(*'Unable to delete file %s\n", fData.cFileName);
AfxMessageBox(strMessage) ;
break;
}
}
}
else if (nModal == IDOK)
{
Cstring strSingleFilename = dlIgFile.GetPathName();
strMessage.Format(*'Are you very sure you want to delete %s?", strSingleFilename);
if (AfxMessageBox(strMessage, MB_YESNO) == IDYES)
{
CfFile::Remove(strSingleFilename);
}
s
}
vold CHymiclOView: OnlButtonDown(UIHT nFlag=s. CPoint point)
1
S TODD: Add wour message handler code here and-or call default
CSpecialFilelialog dlgFile(TRUE. HULL, "*. obj"i:
CString =trMeszage;
int nModal = dlgFile . DoModal():
if ({nModal == IDCANCEL) &é& (dlgFile.m_bDeleteill))
{
stries=szage Format{"Are you very =sure yvou want to delete all ¥= files?".
dlgFile. m_=strFilename):
if (AfzHessageBozi{strMessage, HMB_YESHO) == IDYES)
1
HAHDLE h:
WIH32 FIHD DATA fData;
whilei{ih = ::FindFirstFilei(dlgFile. m_=strFilename. &fDatal)
I= (HAHNDLE)O=FFFFFFFF)
{ # no HFC equiwvalent
if (::DeleteFile(fData . cFileHame) == FALSE)
{
ztrMes=zage Format("Tnable to delete file X¥=~n".
fData.cFileHamn=) ;
AfsMessagebBox{strMes=sage) ;
breal:
b
b
1
¥ .
else 1f (nModal == IDOK)
{
CString strSingleFilenamse = dlgFile.GetPathName():
ztrMes=zage Format("Are yvou wery sure you want to delete X=7".
EtrSingleFilenans) ;
if (AfxMessageBox(=trMes=sage, MBE_YESHO) == IDYES)
CFile: :Femove(strSingleFilename) ;
b
1
b

Listing 24.

Remember that common dialogs just gather data. Since the view is the client of the dialog, the view must call
DoModal () or the file dialog object and then figure out what to do with the information returned. In this case, the view

has the return value from DoModal () (either IDOK or IDCANCEL) and the value of the public m_bDeleteAll data
member, and it can call various CFi leDialog member functions such as GetPathName (). If DoModal () returns
IDCANCEL and the flag is TRUE, the function makes the Win32 file system calls necessary to delete all the matching
files. If DoModal () returns IDOK, the function can use the MFC CFfi le() functions to delete an individual file.

Using the global AfxMessageBox () function is a convenient way to pop up a simple dialog that displays some text
and then queries the user for a Yes/No answer. Finally add the include the statement:

#include "SpecFileDIlg.h"
After the line:

#include "mymfclOView.h"

L' mymfcliView. cpp : implementation

#include "stdafz. h"
#include "mymfcl0 k"

#include "mymfcliDocz . h"
tinclude "mvmiclOView hL"
#include "SpecFileDlg h'

#i1ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS _FILE[] = __FILE_ :
#endif

Listing 25.
Build and test the application. Build and run MYMFC10. Pressing the left mouse button should bring up the Delete File

dialog, and you should be able to use it to navigate through the disk directory and to delete files. Be careful not to delete
your important source files!

% Untitled - mymfc10
Fil= Edit Wiew Help

O 4

Press the left mouse button lol!

Ready

Figure 37: MYMFC10 program output.

Delete File

Loak, ir; |) My Documents ﬂ £ Eg-
|2 CyberLink My Webs

My Albums [New Falder

[)My eBiooks [C)Updater

Emy Music I wisual Studio Projects

hﬂrﬂy Pictures ey er (2]

Iy Received Files

Files af type: | j Cancel

Delete All Matching Files

File name:

Figure 38: MYMFC10 program output, when left mouse button is clicked, launching a delete file dialog.

Other Customization for CfileDialog

In the MYMFC10 example, you added a pushbutton to the dialog. It’s easy to add other controls too. Just put them in the

resource template, and if they are standard Windows controls such as edit controls or list boxes, you can use
ClassWizard to add data members and DDX/DDV code to your derived class. The client program can set the data
members before calling DoModal (), and it can retrieve the updated values after DoModal () returns. Even if you
don’t use nested dialogs, two windows are still associated with a CFi leDialog object. Suppose you have overridden
OnInitDialog() inaderived class and you want to assign an icon to the file dialog. You must call

CWnd:

:GetParent to get the top-level window, just as you did in the MYMFC10 example. Here’s the code:

HICON hlcon = AfxGetApp()->Loadlcon(ID_MYICON);
GetParent()->Setlcon(hlcon, TRUE); // Set big icon
GetParent()->Setlcon(hlcon, FALSE); // Set small icon

Further reading and digging:

>

Noohkw

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

