

ActiveX Document Servers and the Internet

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2 and
some Figure screen snapshots have been taken on Windows 2000 server. The Internet Information Services version is
IIS 4.x/5.x/6.x on Windows 2000 Server SP 4 and Windows XP Pro SP 2. The Internet Explorer is 6.x. Topics and sub
topics for this tutorial are listed below. A complete information about IIS installation, configuration and testing a Web
site is dumped HERE and how to setup FTP server also included HERE. Both Web and FTP servers were done on
Windows 2000 Server SP4. Don’t forget to read Tenouk’s small disclaimer.

Introduction
ActiveX Document Theory
ActiveX Document Servers vs. OLE Embedded Servers
Running an ActiveX Document Server from Internet Explorer
ActiveX Document Servers vs. ActiveX Controls
OLE Interfaces for ActiveX Document Servers and Containers
MFC Support for ActiveX Document Servers
COleServerDoc
CDocObjectServerItem
CDocObjectServer
COleDocIPFrameWnd
ActiveX Document Server Example MYEX35A
MYEX35A Phase 1: A Simple Server
MYEX35A From Scratch
Debugging an ActiveX Document Server
MYEX35A: Phase 2 - Adding More Functionality
The Coding Part
CMainFrame Class
CMyex35aApp Class
CMyex35aDoc Class
CMyex35aView Class
The Story of MYEX35A Phase 2: Adding WinInet Calls
Displaying Bitmaps on Buttons
ActiveX Document Server Example MYEX35B
MYEX35B From Scratch
The Coding Part
CMainFrame Class
CInPlaceFrame Class
CMyex35bDoc Class
CMyex35bView Class
The Story
Field Validation in an MFC Form View
Generating POST Requests Under Program Control
The MYEX35B View Class
Building and Testing MYEX35B
ActiveX Document Servers vs. VB Script
Going Further with ActiveX Document Servers

Introduction

An ActiveX document is a special file that you can download from a Web server. When the browser sees an ActiveX
document file, it automatically loads the corresponding ActiveX document server program from your hard disk, and that
program takes over the whole browser window to display the contents of the document. The Microsoft Internet Explorer

http://www.tenouk.com/visualcplusmfc/setupiisnweb.html
http://www.tenouk.com/visualcplusmfc/setupiisnweb.html
http://www.tenouk.com/visualcplusmfc/setupftp.html
http://www.tenouk.com/visualcplusmfc/setupftp.html
http://www.tenouk.com/disclaimer.html

browser is not the only ActiveX document container program. The Microsoft Office Binder program also runs
ActiveX document server programs, storing the several ActiveX documents in a single disk file.
In the COM world, an ActiveX document server program is called a server because it implements a COM component.
The container program (Internet Explorer or Office Binder) creates and controls that COM component. In the Internet
world, the same program looks like a client because it can request information from a remote host (Microsoft Internet
Information Server).
In this module, you'll learn about ActiveX document servers and ActiveX documents and you'll build two ActiveX
document servers that work over the Internet in conjunction with Internet Explorer.

ActiveX Document Theory

It's helpful to put ActiveX documents within the context of COM and OLE, which you already understand if you've read
the other modules in this book. You can, however, get started with ActiveX document servers without fully
understanding all the COM concepts.

ActiveX Document Servers vs. OLE Embedded Servers

As you saw in Module 27, an OLE embedded server program runs in a child window of an OLE container application
and occupies a rectangular area in a page of the container's document (see Figure 28-1). Unless an embedded server
program is classified as a mini-server, it can run stand-alone also. In embedded mode, the server program's data is held
in a storage inside the container application's file. The embedded server program takes over the container program's
menu and toolbar when the user activates it by double-clicking on its rectangle.
In contrast to an embedded server, an ActiveX document server takes over a whole frame window in its container
application, and the document is always active. An ActiveX server application, running inside a container's frame
window, runs pretty much the same way it would in stand-alone mode. You can see this for yourself if you have
Microsoft Office 97 (not available in Office 2000/2003 and newer version). Office 97 for example, includes an ActiveX
container program called Binder (accessible from the Office shortcut bar), and the Office applications (Microsoft Word,
Microsoft Excel, and so on) have ActiveX server capability. Figure 1 shows a Word document and an Excel chart inside
the same binder.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc27.html

Figure 1: A Word document and an Excel chart inside a Microsoft Office Binder window.

Like an embedded server, the ActiveX document server saves its data in a storage inside the ActiveX container's file.
When the Office user saves the Binder program from the File menu, Binder writes a single OBD file to disk; the file
contains one storage for the Word document and another for the Excel spreadsheet. You can see this file structure
yourself with the DFVIEW utility, as shown in Figure 2.

Figure 2: A file structure displayed by the DocFile Viewer.

Running an ActiveX Document Server from Internet Explorer

Running an ActiveX document server from Internet Explorer is more fun than running one from Microsoft Office
Binder (Internet Explorer refers to Internet Explorer 3.0 or greater). Rather than load a storage only from an OBD file,
the server program can load its storage from the other side of the world. You just type in a URL, such as
http://www.DaliLama.in/SecretsOfTheUniverse.doc, and a Microsoft Word document opens inside
your Browser window, taking over the browser's menu and toolbar. That's assuming, of course, that you have installed
the Microsoft Word program. If not, a Word document viewer is available, but it must be on your hard disk before you
download the file.
An ActiveX document server won't let you save your changes back to the Internet host, but it will let you save them on
your own hard disk. In other words, File Save is disabled but File Save As is enabled.
If you have Microsoft Office, try running Word or Excel in Internet Explorer now. The MYEX34A server is quite
capable of delivering documents or worksheets to your browser, assuming that they are accessible from its home
directory. Note that Internet Explorer recognizes documents and worksheets not by their file extensions but by the
CLSID inside the files. You can prove this for yourself by renaming a file prior to accessing it.

ActiveX Document Servers vs. ActiveX Controls

Both ActiveX document servers and ActiveX controls can run with and without the Internet. Both are compiled
programs that can run inside a browser. The following table lists some of the differences between the two.

 ActiveX Document Server ActiveX Control
Module type EXE Most often a DLL
Can run stand-alone Yes No
Code automatically downloaded and No Yes

registered by a WWW browser
Can be embedded in an HTML file No Yes
Occupies the entire browser window Yes Sometimes
Can be several pages Yes Not usually
Can read/write disk files Yes Not usually

Table 1.

OLE Interfaces for ActiveX Document Servers and Containers

ActiveX document servers implement the same interfaces as OLE embedded servers, including IOleObject,
IOleInPlaceObject, and IOleInPlaceActiveObject. ActiveX document containers implement
IOleClientSite, IOleInPlaceFrame, and IOleInPlaceSite. The menu negotiation works the same as it
does for Visual Editing.
Some additional interfaces are implemented, however. ActiveX document servers implement IOleDocument,
IOleDocumentView, IOleCommandTarget, and IPrint. ActiveX document containers implement
IOleDocumentSite. The architecture allows for multiple views of the same document - sort of like the MFC
document-view architecture - but most ActiveX document servers implement only one view per document.
The critical function in an OLE embedded server is IOleObject::DoVerb, which is called by the container when
the user double-clicks on an embedded object or activates it through the menu. For an ActiveX document server,
however, the critical function is IOleDocumentView::UIActivate. (Before calling this function, the container
calls IOleDocument::CreateView, but generally the server just returns an interface pointer to the single
document-view object.) UIActivate finds the container site and frame window, sets that window as the server's
parent, sets the server's window to cover the container's frame window, and then activates the server's window.
It's important to realize that the COM interaction takes place between the container program (Internet Explorer or
Binder) and the ActiveX document server (your program), which both are running on the client computer. We know of
no cases in which remote procedure calls (RPCs) are made over the Internet. That means that the remote host (the server
computer) does not use COM interfaces to communicate with clients, but it can deliver data in the form of storages.

MFC Support for ActiveX Document Servers

MFC allows you to create your own ActiveX document server programs. In addition, Visual C++ 6.0 allows you to
write ActiveX document containers. To get a server program, create a new MFC AppWizard EXE project and then
check the Active Document Server check box, as shown in Figure 3. To create a container program, just make sure the
Active Document Container check box is marked.

Figure 3: Step 3 of the MFC AppWizard.

Here's a rundown of the classes involved in MFC's ActiveX Document Server Architecture.

COleServerDoc

As it is for any COM component, your ActiveX document server's document class is derived from COleServerDoc,
which implements IPersistStorage, IOleObject, IDataObject, IOleInPlaceObject, and
IOleInPlaceActiveObject. The COM interfaces and MFC classes discussed here were named before Microsoft
introduced ActiveX technology. An ActiveX document server was formerly known as a document object server or a
doc object server, so those are the names you'll see in the source code and in some online documentation.

CDocObjectServerItem

This class is derived from the COleServerItem class used in embedded servers. Your ActiveX document server
program has a class derived from CDocObjectServerItem, but that class isn't used when the program is running in
ActiveX document mode.

CDocObjectServer

This class implements the new ActiveX server interfaces. Your application creates an object of class
CDocObjectServer and attaches it to the COleServerDoc object. If you look at
COleServerDoc::GetDocObjectServer in your derived document class, you'll see the construction code.
Thereafter, the document object and attached CDocObjectServer object work together to provide ActiveX
document server functionality. This class implements both IOleDocument and IOleDocumentView, which means
that you can have only one view per document in an MFC ActiveX document server. You generally don't derive classes
from CDocObjectServer.

COleDocIPFrameWnd

This class is derived from COleIPFrameWnd. Your application has a frame window class derived from
COleDocIPFrameWnd. The framework constructs an object of that class when the application starts in embedded
server mode or in ActiveX document server mode. In ActiveX document server mode, the server's window completely
covers the container's frame window and has its own menu resource attached, with the identifier IDR_SRVR_INPLACE
(for an SDI application).

ActiveX Document Server Example MYEX35A

You could construct the MYEX35A example in two phases. The first phase is a plain ActiveX document server that
loads a file from its container. The view base class is CRichEditView, which means the program loads, edits, and
stores text plus embedded objects. In the second phase, the application is enhanced to download a separate text file from
the Internet one line at a time, demonstrating that ActiveX document servers can make arbitrary WinInet calls.

MYEX35A Phase 1: A Simple Server

The MYEX35A example in the download page is complete with the text download feature from Phase 2. You can
exercise its Phase 1 capabilities by building it, or you can create a new application with AppWizard. If you do use
AppWizard, you should refer to Figure 3 to see the AppWizard EXE project dialog and select the appropriate options.
All other options are the default options, except those for selecting SDI (Step 1), setting the project's filename extension
to 35a using the Advanced button in Step 4, and changing the view's base class (CRichEditView - on the wizard's
last page). You don't have to write any C++ code at all.
Be sure to run the program once in stand-alone mode to register it. While the program is running in stand-alone mode,
type some text (and insert some OLE embedded objects) and then save the document as test.35a in your Internet server's
home directory (\scripts or \wwwroot directory). Try loading test.35a from Internet Explorer and from Office Binder.

MYEX35A From Scratch

Let build MYEX35A phase 1, an ActiveX document server from scratch. Follow the shown steps.

Figure 4: MYEX35A – Visual C++ new project dialog.

Figure 5: MYEX35A – AppWizard step 1 of 6, an SDI application.

Figure 6: MYEX35A – AppWizard step 2 of 6.

Figure 7: MYEX35A – AppWizard step 3 of 6, selecting the compound document, deselect the Automation and ActiveX

Controls.

Figure 8: MYEX35A – AppWizard step 4 of 6.

Click the Advanced button. Set the File Extension as shown below.

Figure 9: MYEX35A – Setting the file extension.

Figure 10: MYEX35A – AppWizard step 5 of 6.

Figure 11: MYEX35A – AppWizard step 6 of 6, selecting CRichEditView as a base class.

Figure 12: MYEX35A –project summary.

Build and run MYEX35A.

Figure 13: MYEX35A program output.

Figure 14: MYEX35A output – typing some texts.

Figure 15: MYEX35A output – inserting an object.

Figure 16: Inserting a bitmap object.

Figure 17: MYEX35A output – text and bitmap editor.

Figure 18: Inserting a bitmap to MYEX35A output.

Figure 19: MYEX35A output with bitmap and text.

Then, save MYEX35A output. Click File Save As and save as test.35a.

Figure 20: Saving MYEX35A output.

Try opening the saved file in Internet Explorer browser. You can also use http://localhost/test.35a to open
the file.

Figure 21: Opening MYEX35A output in browser.

Debugging an ActiveX Document Server

If you want to debug your program in ActiveX document server mode, click on the Debug tab in the Project Settings
dialog. Set Program Arguments to /Embedding, and then start the program. Now start the container program and use
it to "start" the server, which has in fact already started in the debugger and is waiting for the container.

Figure 22: Changing the Visual C++ project setting for debugging process.

MYEX35A: Phase 2 - Adding More Functionality

Let continue our task by adding more functionalities to MYEX35A. Add two bitmaps, with ID IDB_GREEN and
IDB_RED for the start and stop button. Select and right click the root folder in ResourceView and choose Insert context
menu. Select Bitmap and click New.

Figure 23: Inserting new bitmap.

Create two bitmaps as shown below.

Figure 24: IDB_GREEN bitmap for Start button.

Figure 25: IDB_RED bitmap for Stop button.

Add new dialog, IDD_DIALOGBAR for dialog bar. Deselect the Title bar; choose Child for Styles and None for
Border in Styles page as shown below.

Figure 26: IDD_DIALOGBAR property page.

Add Static text, Edit control and two buttons with the following properties. It is better for you to adjust the button size to
fit the bitmap size later.

Figure 27: IDC_URL Edit control property page.

Figure 28: IDC_START button property page.

Figure 29: IDC_START button, Styles property page.

Figure 30: IDC_STOP button property page.

Figure 31: IDC_STOP button, Styles property page.

Add context menu, IDR_MENUCONTEXT as shown below.

Figure 32: IDR_MENUCONTEXT, new context menu.

Then add the menu item, Clear All with ID ID_EDIT_CLEAR_ALL.

Figure 33: Adding menu item Clear All to the context menu.

The Coding Part

Add new header and source files named Urlthread.h and Urlthread.cpp respectively.

Figure 34: Adding new files to project.

Figure 35: Selecting and entering the new file name.

Copy the codes as shown in the following Listing.

URLTHREAD.H

// urlthread.h

extern CString g_strURL;
extern volatile BOOL g_bThreadStarted;
extern CEvent g_eKill;

extern UINT UrlThreadProc(LPVOID pParam);
extern void LogInternetException(LPVOID pParam, CInternetException* pe);

URLTHREAD.CPP

// urlthread.cpp

#include <stdafx.h>
#include "urlthread.h"
#define MAXBUF 100

CString g_strURL = "http://";
volatile BOOL g_bThreadStarted = FALSE;
CEvent g_eKill;

UINT UrlThreadProc(LPVOID pParam)
{
 g_bThreadStarted = TRUE;
 CString strLine;
 CInternetSession session;
 CStdioFile* pFile1 = NULL;

 Try
 {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY |
 INTERNET_FLAG_KEEP_CONNECTION); // needed for Windows NT c/r authentication
 // Keep displaying text from the URL until the Kill event is received
 while(::WaitForSingleObject(g_eKill.m_hObject, 0) != WAIT_OBJECT_0) {
 // one line at a time
 if(pFile1->ReadString(strLine) == FALSE) break;
 strLine += '\n';
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) (const char*) strLine);
 Sleep(250); // Deliberately slow down the transfer
 }
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1 != NULL) delete pFile1; // closes the file -- prints a warning
 g_bThreadStarted = FALSE;
 // Post any message to update the toolbar buttons
 ::PostMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 TRACE("Post thread exiting normally\n");
 return 0;
}

void LogInternetException(LPVOID pParam, CInternetException* pe)
{
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:% GMT");
 char text1[300], text2[100];
 wsprintf(text1, "\r\nERROR: WinInet error #%d -- %s\r\n ",
 pe->m_dwError, (const char*) strGmt);
 pe->GetErrorMessage(text2, 99);
 strcat(text1, text2);
 if(pe->m_dwError == 12152) {
 strcat(text1, " URL not found?\r\n");
 }
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0, (LPARAM) text1);
}

Listing 1.

Add the following #include in StdAfx.h.

#include <afxinet.h>
#include <afxmt.h>

Listing 1.

CMainFrame Class

Add the following public member variables.

CBitmap m_bitmapGreen;
CBitmap m_bitmapRed;

Then, change the:

CToolBar m_wndToolBar;

variable to

CDialogBar m_wndDialogBar;

And change the class access type as shown below. We need to access the public variable later.

Add the following #include directive to MainFrm.cpp.

#include "urlthread.h"

Listing 2.

Change the OnCreate() as shown below.

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 if (!m_wndDialogBar.Create(this, IDD_DIALOGBAR, CBRS_TOP, 0xE810))
 {
 TRACE0("Failed to create dialog bar\n");
 return -1; // fail to create
 }
 m_wndDialogBar.SetDlgItemText(IDC_URL, g_strURL);
 // attach the color bitmaps to the dialog bar buttons
 m_bitmapGreen.LoadBitmap(IDB_GREEN);
 HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle();
 ((CButton*) m_wndDialogBar.GetDlgItem(IDC_START))->SetBitmap(hBitmap);
 m_bitmapRed.LoadBitmap(IDB_RED);
 hBitmap = (HBITMAP) m_bitmapRed.GetSafeHandle();
 ((CButton*) m_wndDialogBar.GetDlgItem(IDC_STOP))->SetBitmap(hBitmap);

 return 0;
}

And PreCreateWindow() as shown below.

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return CFrameWnd::PreCreateWindow(cs);
}

CMyex35aApp Class

Using ClassWizard, add ExitInstance() virtual function to CMyex35aApp class.

Figure 36: Adding ExitInstance() virtual function.

Click the Edit Code button and modify the code as shown below.

int CMyex35aApp::ExitInstance()
{
 // TODO: Add your specialized code here and/or call the base class
 g_eKill.SetEvent();
 Sleep(500);
 return CWinApp::ExitInstance();
}

Listing 3.

Add the following #include directive to myex35a.cpp.

#include "urlthread.h"

Add the following code in InitInstance().

AfxEnableControlContainer();

Listing 4.

Delete the following lines of code in InitInstance().

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

Remove the following code of the OnDraw() in SrvrItem.cpp.

// Remove this if you use rSize
UNREFERENCED_PARAMETER(rSize);

Add variables, delete and change the class access type as shown below in lpFrame.h.

Listing 5.

Add the #include "urlthread.h" directive and modify the OnCreateControlBars() in lpFrame.cpp as
shown below.

BOOL CInPlaceFrame::OnCreateControlBars(CFrameWnd* pWndFrame, CFrameWnd*
pWndDoc)
{
 m_wndDialogBar.SetOwner(this); // for commands
 if (!m_wndDialogBar.Create(pWndFrame, IDD_DIALOGBAR, CBRS_TOP, 0xE810))
 {
 TRACE0("Failed to create dialog bar\n");

 return -1; // fail to create
 }
 m_wndDialogBar.SetDlgItemText(IDC_URL, g_strURL);
 // attach the color bitmaps to the dialog bar buttons
 m_bitmapGreen.LoadBitmap(IDB_GREEN);
 HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle();
 ((CButton*) m_wndDialogBar.GetDlgItem(IDC_START))->SetBitmap(hBitmap);
 m_bitmapRed.LoadBitmap(IDB_RED);
 hBitmap = (HBITMAP) m_bitmapRed.GetSafeHandle();
 ((CButton*) m_wndDialogBar.GetDlgItem(IDC_STOP))->SetBitmap(hBitmap);

 return TRUE;
}

Listing 6.

CMyex35aDoc Class

Change the GetDocObjectServer() virtual function to public in myex35aDoc.h.

Listing 7.

CMyex35aView Class

Using ClassWizard delete OnDestroy(). Go to ResourceView, select the IDD_DIALOGBAR, right click and select
the ClassWizard context menu.

Figure 37: Invoking ClassWizard from dialog editor.

For the Adding a Class dialog prompt, choose Select an existing class.

Figure 38: Adding dialog to an existing class.

Select the CMyex35aView class.

Figure 39: Selecting an existing class.

Just click Yes for the following dialog prompt.

Figure 40: Dialog prompt for the class to dialog linking.

Add the following message map command and update command handler functions.

ID Command
ID_EDIT_CLEAR_ALL Command
IDC_START Command and update command
IDC_STOP Command and update command

Table 2.

You may add those commands and update commands manually if needed.

Listing 8.

Add the following #include directives to myex35aView.cpp.

#include "Urlthread.h"
#include "MainFrm.h"
#include "IpFrame.h"

Listing 9.

If you add some of the previous handlers manually make sure message map in myex35aView.cpp as shown below.

Listing 10.

Don’t forget to delete the OnDestroy() implementation and complete the message handler implementations as shown
below.

void CMyex35aView::OnEditClearAll()
{
 // Not so useable here, coz of the save as...
 SetWindowText("");
}

void CMyex35aView::OnStart()
{
 CWnd* pFrm = GetParent(); // SDI only
 CWnd* pBar;
 if(pFrm->IsKindOf(RUNTIME_CLASS(CMainFrame))) {
 pBar = &((CMainFrame*) pFrm)->m_wndDialogBar;
 }
 else {
 pBar = &((CInPlaceFrame*) pFrm)->m_wndDialogBar;
 }

 // g_strURL: thread sync?
 pBar->GetDlgItemText(IDC_URL, g_strURL);
 TRACE("CMyex35aView::OnRequest -- URL = %s\n", g_strURL);
 AfxBeginThread(UrlThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
}

void CMyex35aView::OnStop()
{
 g_eKill.SetEvent();
}

void CMyex35aView::OnUpdateStop(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(g_bThreadStarted);
}

void CMyex35aView::OnUpdateStart(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!g_bThreadStarted);
}

Build and run. Type the localhost address or any other address if you are online and click the green button. You can stop
the progress anytime by pressing the red button that only visible when the program is in progress.

Figure 41: MYEX35A phase 2 program output in action, testing the localhost.

Figure 42: MYEX35A phase 2 program output in action, testing the google.com.

Use the File Open menu to open the previous test.35a file.

Figure 43: MYEX35A phase 2 program output in action, opening test.35a file.

Create a text file, let name it test.txt. Write some content and put it under the wwwroot directory and type the address of
the text file as shown below. Press the green button.

Figure 44: MYEX35A phase 2 program output in action, opening text file.

It seems very useful and fun isn’t it? Let have some story for what we have done.

The Story of MYEX35A Phase 2: Adding WinInet Calls

The completed MYEX35A example includes two dialog bar objects, one for the main frame window and another for the
in-place frame window. Both are attached to the same resource template, IDD_DIALOGBAR, which contains an edit
control that accepts a text file URL plus start and stop buttons that display green and red bitmaps. If you click the green
button (handled by the OnStart() member function of the CMyex35aView class), you'll start a thread that reads the
text file one line at a time. The thread code from the file UrlThread.cpp is shown here:

CString g_strURL = "http:// ";
volatile BOOL g_bThreadStarted = FALSE;
CEvent g_eKill;

UINT UrlThreadProc(LPVOID pParam)
{
 g_bThreadStarted = TRUE;
 CString strLine;
 CInternetSession session;
 CStdioFile* pFile1 = NULL;

 try {
 pFile1 = session.OpenURL(g_strURL, 0,
INTERNET_FLAG_TRANSFER_BINARY | INTERNET_FLAG_KEEP_CONNECTION); // needed
// for Windows NT c/r authentication
 // Keep displaying text from the URL until the Kill event is
 // received
 while(::WaitForSingleObject(g_eKill.m_hObject, 0) !=
WAIT_OBJECT_0) {
 // one line at a time
 if(pFile1->ReadString(strLine) == FALSE) break;
 strLine += `\n';
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999,
 1000000);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) (const char*) strLine);
 Sleep(250); // Deliberately slow down the transfer
 }
 }
 catch(CInternetException* e) {

 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1 != NULL) delete pFile1; // closes the file—prints a warning
 g_bThreadStarted = FALSE;
 // Post any message to update the toolbar buttons
 ::PostMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 TRACE("Post thread exiting normally\n");
 return 0;
}

This code uses the CStdioFile pointer to pFile1 returned from OpenURL(). The ReadString member function
reads one line at a time, and each line is sent to the rich edit view window. When the main thread sets the "kill" event
(the red button), the URL thread exits.
Before you test MYEX35A, make sure that the server (MYEX34A or IIS) is running and that you have a text file in the
server's home directory. Test the MYEX35A program first in stand-alone mode by entering the text file URL in the
dialog bar. Next try running the program in server mode from Internet Explorer. Enter test.35a (the document you
created when you ran MYEX35A in stand-alone mode) in Internet Explorer's Address field to load the server.
We considered using the CAsyncMonikerFile class instead of the MFC WinInet classes to read the text file. We
stuck with WinInet, however, because the program could use the CStdioFile class ReadString() member
function to "pull" individual text lines from the server when it wanted them. The CAsyncMonikerFile class would
have "pushed" arbitrary blocks of characters into the program (by calling the overridden OnDataAvailable()
function) as soon as the characters had been received.

Displaying Bitmaps on Buttons

Module 21 describes the CBitmapButton class for associating a group of bitmaps with a pushbutton. Microsoft
Windows 95, Microsoft Windows 98, and Microsoft Windows NT 4.0 above support an alternative technique that
associates a single bitmap with a button. First you apply the Bitmap style (on the button's property sheet) to the button,
and then you declare a variable of class CBitmap that will last at least as long as the button is enabled. Then you make
sure that the CButton::SetBitmap function is called just after the button is created. Here is the code for associating
a bitmap with a button, from the MYEX35A MainFrm.cpp and IpFrame.cpp files:

m_bitmapGreen.LoadBitmap(IDB_GREEN);
HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle();
((CButton*) m_wndDialogBar.GetDlgItem(IDC_START))
->SetBitmap(hBitmap);

If your button was in a dialog, you could put similar code in the OnInitDialog() member function and declares a
CBitmap member in the class derived from CDialog.

ActiveX Document Server Example MYEX35B

Look at the pizza form example from Module 33 (MYEX34A). Note that the server (the ISAPI DLL) processes the
order only when the customer clicks the Submit Order Now button. This is okay for ordering pizzas because you're
probably happy to accept money from anyone, no matter what kind of browser is used.
For a form-based intranet application, however, you can be more selective. You can dictate what browser your clients
have, and you can distribute your own client software on the net. In that environment, you can make data entry more
sophisticated, allowing, for example, the client computer to validate each entry as the user types it. That's exactly what's
happening in MYEX35B, which is another ActiveX document server, of course. MYEX35B is a form-based employee
time-sheet entry program that works inside Internet Explorer (as shown in Figure 45) or works as a stand-alone
application. Looks like a regular HTML form, doesn't it? It's actually an MFC form view, but the average user probably
won't know the difference. The Name field is a drop-down combo box, however, which is different from the select field
you would see in an HTML form, because the user can type in a value if necessary. The Job Number field has a spin
button control that helps the user select the value. These aren't necessarily the ideal controls for time-sheet entry, but the
point here is that you can use any Windows controls you want, including tree controls, list controls, trackbars, and
ActiveX controls, and you can make them interact any way you want.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc21.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html

Figure 45: Employee time-sheet entry form.

MYEX35B From Scratch

Let build MYEX35B from scratch. This is an SDI application program. Follow the shown steps.

Figure 46: MYEX35B – MFC AppWizard new project dialog.

Figure 47: MYEX35B – MFC AppWizard step 1 of 6.

Figure 48: MYEX35B – MFC AppWizard step 2 of 6.

Figure 49: MYEX35B – MFC AppWizard step 3 of 6, selecting the compound document and deselecting the
Automation and ActiveX Controls.

Figure 50: MYEX35B – MFC AppWizard step 4 of 6.

Click the Advanced button. Enter the File Extension as shown below.

Figure 51: MYEX35B – entering a file extension.

Figure 52: MYEX35B – MFC AppWizard step 5 of 6.

Figure 53: MYEX35B – MFC AppWizard step 6 of 6, Selecting CFormView as the base class.

Figure 54: MYEX35B project summary.

Insert a dialog and controls. Use the following information and Figures for the dialog and controls.

Resource ID Caption/text
Dialog IDD_ADDRDIALOG Internet Address Dialog
Static text - Server Name:
Static text - File:
Edit control IDC_SERVERNAME -
Edit control IDC_FILE -

Table 3.

Figure 55: IDD_ADDRDIALOG property page.

Figure 56: IDC_SERVERNAME, an edit control property page.

Figure 57: IDC_FILE property page.

Insert another dialog and use the following information.

Resource ID Caption/text/other
Dialog IDD_MYEX35B_FORM Styles – Style: Child, Border: None, deselect Title bar

Table 4.

Figure 58: IDD_MYEX35B_FORM dialog property page.

Figure 59: Styles dialog property page.

Resource ID Caption/text/other
Static texts - Employee time-sheet entry: Period
Static texts - Name:
Static texts - Hours:
Static texts - Job Number:
Edit control IDC_PERIOD Styles - Left, Number, Auto HScroll, Border, Read-only.

Combo box IDC_EMPLOYEE
Data – Kurt, Cobain, Jeremy, Matt Cutt, William, Dunkel,
Diana, Major, Masterjee, Stallman (separate the name with
Ctrl + Enter)

Edit control IDC_HOURS -
Edit control IDC_JOB Styles - Number

Spin control IDC_SPIN1 Styles - Vertical, Unattached, Auto buddy, Set buddy integer,
Arrow keys.

Button control IDC_SUBMIT Submit
Button control IDCANCEL Reset

Table 5.

Figure 60: IDC_PERIOD property page.

Figure 61: IDC_PERIOD Styles property page.

Figure 62: IDC_EMPLOYEE property page.

Figure 63: IDC_EMPLOYEE sample data.

Figure 64: IDC_HOURS property page.

Figure 65: IDC_JOB property page.

Figure 66: IDC_JOB Styles property page.

Figure 67: IDC_SPIN1 property job.

Figure 68: IDC_SPIN1 Styles property job.

Figure 69: IDC_SUBMIT property page.

Figure 70: IDC_SUBMIT Styles property page.

Figure 71: IDCANCEL property page.

Add menu and item in IDR_MAINFRAME, IDR_ SRVR_EMBEDDED and IDR_SRVR_INPLACE.

Resource ID Caption/text/other
Menu - Server
Menu item ID_SERVER_ADDRESS Address

Table 6.

Figure 72: Adding menu and menu item to IDR_MAINFRAME.

Figure 73: Adding menu and menu item to IDR_SRVR_EMBEDDED.

Figure 74: Adding menu and menu item to IDR_SRVR_INPLACE.

In ResourceView select IDD_ADDRDIALOG and launch ClassWizard. Select Create a new class and click OK.

Figure 75: Adding a new class to project.

Fill in as shown below. Click OK.

Figure 76: Entering IDD_ADDRDIALOG class information.

Add the following member variables to CAddrDialog class.

ID Type Variable name
IDC_FILE CString m_strFile
IDC_SERVERNAME CString m_strServerName

Table 7.

Figure 77: Adding member variable to class.

Figure 78: The added member variables.

Add a new class. Click the Add Class button and select New. Add CValidForm class information as shown below.

Figure 79: Adding CValidForm class information.

Figure 80: Modifying the source and header files for the class.

Add new header and source files, PostThread.h and PostThread.cpp.

Figure 81: Adding new files to a class.

Figure 82: Adding new header and source files, PostThread.h and PostThread.cpp.

Copy the following codes to PostThread.h and PostThread.cpp file respectively.

// PostThread.h

#define WM_POSTCOMPLETE WM_USER + 6

extern CString g_strFile;
extern CString g_strServerName;
extern CString g_strParameters;

UINT PostThreadProc(LPVOID pParam);

// PostThread.cpp (uses MFC Wininet calls)

#include <stdafx.h>
#include "PostThread.h"

#define MAXBUF 50000

CString g_strFile = "/scripts/myex34a.dll";
CString g_strServerName = "localhost";
CString g_strParameters;

UINT PostThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 DWORD dwStatusCode;
 BOOL bOkStatus = FALSE;

 try
 {
 pConnection = session.GetHttpConnection(g_strServerName, (INTERNET_PORT) 80);
 pFile1 = pConnection->OpenRequest(0, g_strFile + "?ProcessTimesheet", // POST
 // request
 NULL, 1, NULL, NULL, INTERNET_FLAG_KEEP_CONNECTION |
INTERNET_FLAG_RELOAD); // no cache
 pFile1->SendRequest(NULL, 0, (LPVOID) (const char*) g_strParameters,
 g_strParameters.GetLength());
 pFile1->QueryInfoStatusCode(dwStatusCode);
 if(dwStatusCode == 200) { // OK status
 // doesn't matter what came back from server
 // -- we're looking for OK status
 bOkStatus = TRUE;
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for TRACE
 TRACE(buffer);
 TRACE("\n");
 }
 }
 catch(CInternetException* pe) {
 char text[100];
 pe->GetErrorMessage(text, 99);
 TRACE("WinInet exception %s\n", text);
 pe->Delete();
 }
 if(pFile1) delete pFile1; // does the close -- prints a warning
 if(pConnection) delete pConnection; // why does it print a warning?
 delete [] buffer;
 ::PostMessage((HWND) pParam, WM_POSTCOMPLETE, (WPARAM) bOkStatus, 0);
 return 0;
}

Listing 11.

The Coding Part

Add the following #include directives in StdAfx.h.

#include <afxinet.h>
#include <afxmt.h>

Listing 12.

CMainFrame Class

Add the following codes in MainFrm.cpp.

// TODO: Remove this if you don't want tool tips or a resizable toolbar
m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

Listing 13.

Edit the PreCreateWindow() as shown below.

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFrameWnd::PreCreateWindow(cs);
}

Listing 14.

Add the following code in InitInstance().

AfxEnableControlContainer();

Listing 15.

And delete the following code at the end of the InitInstance().

// The one and only window has been initialized, so show and update it.
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

CInPlaceFrame Class

Using ClassView, delete OnCreateControlBars() virtual function and delete the implementation in
IpFrame.cpp.

Figure 83: Deleting a message handler.

Delete also the following variable.

CToolBar m_wndToolBar;

Listing 16.

Edit/change the ValForm.h and ValForm.cpp code as shown below.

// ValForm.h

#ifndef _VALIDFORM
#define _VALIDFORM

#define WM_VALIDATE WM_USER + 5

class CValidForm : public CFormView
{
DECLARE_DYNAMIC(CValidForm)
private:
 BOOL m_bValidationOn;
public:
 CValidForm(UINT ID);
 // override in derived dlg to perform validation
 virtual void ValidateDlgItem(CDataExchange* pDX, UINT ID);

 //{{AFX_VIRTUAL(CValidForm)
 protected:
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CValidForm)
 afx_msg LONG OnValidate(UINT wParam, LONG lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#endif // _VALIDFORM

// ValForm.cpp : implementation file
//

#include "stdafx.h"
#include "myex35b.h"
#include "ValForm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

IMPLEMENT_DYNAMIC(CValidForm, CFormView)

BEGIN_MESSAGE_MAP(CValidForm, CFormView)
 //{{AFX_MSG_MAP(CValidForm)
 ON_MESSAGE(WM_VALIDATE, OnValidate)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

CValidForm::CValidForm(UINT ID) : CFormView(ID)
{
 TRACE("CValidForm ctor\n");
 m_bValidationOn = TRUE; // turn validation on
}

void CValidForm::ValidateDlgItem(CDataExchange* pDX, UINT ID)
{
 // return valid unless overridden in the form
 ASSERT(this);
 TRACE("CValidForm::ValidateDlgItem (should be overridden)\n");
 return;
}

BOOL CValidForm::OnCommand(WPARAM wParam, LPARAM lParam)
{
 // specific for WIN32 -- wParam/lParam processing different for WIN16
 TRACE("CValidForm::OnCommand, wParam = %x, lParam = %x\n", wParam, lParam);
 TRACE("m_bValidationOn = %d\n", m_bValidationOn);
 if(m_bValidationOn) { // might be a killfocus
 UINT notificationCode = (UINT) HIWORD(wParam);
 if((notificationCode == EN_KILLFOCUS) ||
 (notificationCode == LBN_KILLFOCUS) ||
 (notificationCode == CBN_KILLFOCUS)) {
 CWnd* pFocus = CWnd::GetFocus(); // static function call
 // if we're changing focus to another control in the same form
 if(pFocus && (pFocus->GetParent() == this)){
 if(pFocus->GetDlgCtrlID() != IDCANCEL) {
 // and focus not in Cancel button
 // validate AFTER drawing finished
 BOOL rtn = PostMessage(WM_VALIDATE, wParam);
 TRACE("posted message, rtn = %d\n", rtn);

 }
 }
 }
 }
 return CFormView::OnCommand(wParam, lParam); // pass it on
}

LONG CValidForm::OnValidate(UINT wParam, LONG lParam)
{
 TRACE("Entering CValidForm::OnValidate\n");
 CDataExchange dx(this, TRUE);
 m_bValidationOn = FALSE; // temporarily off
 UINT controlID = (UINT) LOWORD(wParam);
 try {
 ValidateDlgItem(&dx, controlID);
 }
 catch(CUserException* pUE) {
 pUE->Delete();
 TRACE("CValidForm caught the exception\n");
 // fall through -- user already alerted via message box
 }
 m_bValidationOn = TRUE;
 return 0; // goes no further
}

Listing 17.

CMyex35bDoc Class

Use ClassView or manually add the following public variable.

public:
 int m_nPeriod;

Figure 84: Adding variable.

Listing 18.

Initialize the variable as shown below.

CMyex35bDoc::CMyex35bDoc()
{
 // Use OLE compound files
 EnableCompoundFile();
 // TODO: add one-time construction code here
 m_nPeriod = 12; // should initialize this some other way
}

Edit Serialize() as shown below.

void CMyex35bDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 ar << m_nPeriod;
 }
 else
 {
 // TODO: add loading code here
 ar >> m_nPeriod;
 }

 // Calling the base class COleServerDoc enables serialization
 // of the container document's COleClientItem objects.
 COleServerDoc::Serialize(ar);
}

Listing 19.

CMyex35bView Class

Add the #include "ValForm.h" directive and change the CView base class to CValidForm in
myex35bView.h.

Listing 20.

Then, manually add the following virtual function.

virtual void ValidateDlgItem(CDataExchange* pDX, UINT ID);

Listing 21.

Using ClassWizard, delete OnDraw() and add DoDataExchange() and OnPrint() virtual functions. Don’t
forget to delete the implementation part of the deleted function.

Figure 85: Adding and deleting virtual functions.

Listing 22.

Next, delete OnDestroy() and add the following message map functions. Don’t forget to delete the implementation
part of the deleted function.

ID Message Function
IDC_CANCEL BN_CLICK OnCancel()
IDC_SUBMIT BN_CLICK OnSubmit()
ID_SERVER_ADDRESS COMMAND OnServerAddress()
OnPostComplete() – Added manually if you cannot found it in ClassWizard.

afx_msg LONG OnPostComplete(UINT wParam, LONG lParam);

Table 8.

Figure 86: Adding message handlers.

Listing 23.

Manually, add the following AFX DATA.

public:
 //{{AFX_DATA(CMyex35bView)
 enum { IDD = IDD_MYEX35B_FORM };
 double m_dHours;
 CString m_strEmployee;
 int m_nJob;
 int m_nPeriod;
 //}}AFX_DATA

Listing 24.

Add the following #include directives to myex35bView.cpp

#include "AddrDialog.h"
#include "PostThread.h"

Listing 25.

Use Edit Find/Replace menu to replace all the CView base class to CValidForm and add the following at the end of
the message map.

ON_MESSAGE(WM_POSTCOMPLETE, OnPostComplete)

Listing 26.

Add the following data initialization in constructor.

//{{AFX_DATA_INIT(CMyex35bView)
 m_dHours = 0.0;
 m_strEmployee = _T("");
 m_nJob = 0;
 m_nPeriod = 0;
 //}}AFX_DATA_INIT

Listing 27.

Complete the implementation part for the other as shown in the following Listing.

// myex35bView.cpp : implementation of the CMyex35bView class
//

#include "stdafx.h"
#include "myex35b.h"

#include "myex35bDoc.h"
#include "CntrItem.h"
#include "myex35bView.h"
#include "AddrDialog.h"
#include "PostThread.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMyex35bView

IMPLEMENT_DYNCREATE(CMyex35bView, CValidForm)

BEGIN_MESSAGE_MAP(CMyex35bView, CValidForm)
 //{{AFX_MSG_MAP(CMyex35bView)
 ON_WM_SETFOCUS()
 ON_WM_SIZE()
 ON_COMMAND(ID_OLE_INSERT_NEW, OnInsertObject)
 ON_COMMAND(ID_CANCEL_EDIT_CNTR, OnCancelEditCntr)
 ON_COMMAND(ID_CANCEL_EDIT_SRVR, OnCancelEditSrvr)
 ON_BN_CLICKED(IDC_SUBMIT, OnSubmit)
 ON_BN_CLICKED(IDCANCEL, OnCancel)
 ON_COMMAND(ID_SERVER_ADDRESS, OnServerAddress)
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CValidForm::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CValidForm::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CValidForm::OnFilePrintPreview)
 ON_MESSAGE(WM_POSTCOMPLETE, OnPostComplete)
END_MESSAGE_MAP()

///
// CMyex35bView construction/destruction

CMyex35bView::CMyex35bView()
 : CValidForm(CMyex35bView::IDD)
{
 //{{AFX_DATA_INIT(CMyex35bView)
 m_dHours = 0.0;
 m_strEmployee = _T("");
 m_nJob = 0;
 m_nPeriod = 0;
 //}}AFX_DATA_INIT
 m_pSelection = NULL;
 // TODO: add construction code here

}

CMyex35bView::~CMyex35bView()
{
}

void CMyex35bView::DoDataExchange(CDataExchange* pDX)
{
 CValidForm::DoDataExchange(pDX);
 DDX_CBString(pDX, IDC_EMPLOYEE, m_strEmployee);
 DDV_MaxChars(pDX, m_strEmployee, 10);
 if(pDX->m_bSaveAndValidate && m_strEmployee.IsEmpty()) {
 AfxMessageBox("Must supply an employee name");
 pDX->Fail();
 }
 //{{AFX_DATA_MAP(CMyex35bView)
 DDX_Text(pDX, IDC_HOURS, m_dHours);
 DDV_MinMaxDouble(pDX, m_dHours, 0.1, 100.);
 DDX_Text(pDX, IDC_JOB, m_nJob);
 DDV_MinMaxInt(pDX, m_nJob, 1, 20);
 DDX_Text(pDX, IDC_PERIOD, m_nPeriod);
 //}}AFX_DATA_MAP
}

BOOL CMyex35bView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CValidForm::PreCreateWindow(cs);

}

void CMyex35bView::OnInitialUpdate()
{
 CMyex35bDoc* pDoc = GetDocument();
 m_nPeriod = pDoc->m_nPeriod;
 UpdateData(FALSE);

 // TODO: remove this code when final selection model code is written
 m_pSelection = NULL; // initialize selection

}

///
// CMyex35bView printing

BOOL CMyex35bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CMyex35bView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CMyex35bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

void CMyex35bView::OnPrint(CDC* pDC, CPrintInfo*)
{
 // TODO: add code to print the controls
}

///
// OLE Client support and commands

BOOL CMyex35bView::IsSelected(const CObject* pDocItem) const
{
 // The implementation below is adequate if your selection consists of
 // only CMyex35bCntrItem objects. To handle different selection
 // mechanisms, the implementation here should be replaced.

 // TODO: implement this function that tests for a selected OLE client item

 return pDocItem == m_pSelection;
}

void CMyex35bView::OnInsertObject()
{
 // Invoke the standard Insert Object dialog box to obtain information
 // for new CMyex35bCntrItem object.
 COleInsertDialog dlg;
 if (dlg.DoModal() != IDOK)
 return;

 BeginWaitCursor();

 CMyex35bCntrItem* pItem = NULL;
 TRY
 {
 // Create new item connected to this document.
 CMyex35bDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);
 pItem = new CMyex35bCntrItem(pDoc);
 ASSERT_VALID(pItem);

 // Initialize the item from the dialog data.
 if (!dlg.CreateItem(pItem))
 AfxThrowMemoryException(); // any exception will do
 ASSERT_VALID(pItem);

 // If item created from class list (not from file) then launch
 // the server to edit the item.
 if (dlg.GetSelectionType() == COleInsertDialog::createNewItem)
 pItem->DoVerb(OLEIVERB_SHOW, this);

 ASSERT_VALID(pItem);

 // As an arbitrary user interface design, this sets the selection
 // to the last item inserted.

 // TODO: re-implement selection as appropriate for your application

 m_pSelection = pItem; // set selection to last inserted item
 pDoc->UpdateAllViews(NULL);
 }
 CATCH(CException, e)
 {
 if (pItem != NULL)
 {
 ASSERT_VALID(pItem);
 pItem->Delete();
 }
 AfxMessageBox(IDP_FAILED_TO_CREATE);
 }
 END_CATCH

 EndWaitCursor();
}

// The following command handler provides the standard keyboard
// user interface to cancel an in-place editing session. Here,
// the container (not the server) causes the deactivation.
void CMyex35bView::OnCancelEditCntr()
{
 // Close any in-place active item on this view.
 COleClientItem* pActiveItem = GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL)
 {
 pActiveItem->Close();
 }
 ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);
}

// Special handling of OnSetFocus and OnSize are required for a container
// when an object is being edited in-place.
void CMyex35bView::OnSetFocus(CWnd* pOldWnd)
{
 COleClientItem* pActiveItem = GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL &&
 pActiveItem->GetItemState() == COleClientItem::activeUIState)
 {
 // need to set focus to this item if it is in the same view
 CWnd* pWnd = pActiveItem->GetInPlaceWindow();
 if (pWnd != NULL)
 {
 pWnd->SetFocus(); // don't call the base class
 return;

 }
 }

 CValidForm::OnSetFocus(pOldWnd);
}

void CMyex35bView::OnSize(UINT nType, int cx, int cy)
{
 CValidForm::OnSize(nType, cx, cy);
 COleClientItem* pActiveItem = GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL)
 pActiveItem->SetItemRects();
}

///
// OLE Server support

// The following command handler provides the standard keyboard
// user interface to cancel an in-place editing session. Here,
// the server (not the container) causes the deactivation.
void CMyex35bView::OnCancelEditSrvr()
{
 GetDocument()->OnDeactivateUI(FALSE);
}

///
// CMyex35bView diagnostics

#ifdef _DEBUG
void CMyex35bView::AssertValid() const
{
 CValidForm::AssertValid();
}

void CMyex35bView::Dump(CDumpContext& dc) const
{
 CValidForm::Dump(dc);
}

CMyex35bDoc* CMyex35bView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyex35bDoc)));
 return (CMyex35bDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CMyex35bView message handlers

void CMyex35bView::OnCancel()
{
 CMyex35bDoc* pDoc = GetDocument();
 m_dHours = 0;
 m_strEmployee = "";
 m_nJob = 0;
 m_nPeriod = pDoc->m_nPeriod;
 UpdateData(FALSE);
}

void CMyex35bView::OnSubmit()
{
 if(UpdateData(TRUE) == TRUE) {
 GetDlgItem(IDC_SUBMIT)->EnableWindow(FALSE);
 CString strHours, strJob, strPeriod;
 strPeriod.Format("%d", m_nPeriod);
 strHours.Format("%3.2f", m_dHours);

 strJob.Format("%d", m_nJob);
 g_strParameters = "Period=" + strPeriod + "&Employee=" +
 m_strEmployee + "&Hours=" + strHours +
 "&Job=" + strJob + "\r\n";
 TRACE("parameter string = %s", g_strParameters);
 AfxBeginThread(PostThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
 }
}

// overridden CValidForm function
void CMyex35bView::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 ASSERT(this);
 TRACE("CMyex35bView::ValidateDlgItem\n");
 switch (uID) {
 case IDC_EMPLOYEE:
 DDX_CBString(pDX, IDC_EMPLOYEE, m_strEmployee);
 // need custom DDV for empty string
 DDV_MaxChars(pDX, m_strEmployee, 10);
 if(m_strEmployee.IsEmpty()) {
 AfxMessageBox("Must supply an employee name");
 pDX->Fail();
 }
 break;
 case IDC_HOURS:
 DDX_Text(pDX, IDC_HOURS, m_dHours);
 DDV_MinMaxDouble(pDX, m_dHours, 0.1, 100.);
 break;
 case IDC_JOB:
 DDX_Text(pDX, IDC_JOB, m_nJob);
 DDV_MinMaxInt(pDX, m_nJob, 1, 20);
 break;
 default:
 break;
 }
 return;
}

void CMyex35bView::OnServerAddress()
{
 CAddrDialog dlg;
 dlg.m_strServerName = g_strServerName;
 dlg.m_strFile = g_strFile;
 if(dlg.DoModal() == IDOK) {
 g_strFile = dlg.m_strFile;
 g_strServerName = dlg.m_strServerName;
 }
}

// thread sends this message when it's done wParam = 1 for success
LONG CMyex35bView::OnPostComplete(UINT wParam, LONG lParam)
{
 TRACE("CMyex35bView::OnPostComplete - %d\n", wParam);
 if(wParam == 0) {
 AfxMessageBox("Server did not accept the transaction");
 }
 else OnCancel();
 GetDlgItem(IDC_SUBMIT)->EnableWindow(TRUE);
 return 0;
}

Listing 28.

Build and run MYEX35B. The following is the output. Activate the Server Address menu.

Figure 87: MYEX35B program output.

Figure 88: The Address sub menu displaying the server address and DLL file location settings. You can change this.

Figure 89: The validation message box for the Name field.

Figure 90: The validation message box for the Hours field.

Enter some data a shown below and click the Submit button.

Figure 91: Entering some data to myex35b form.

Figure 92: Saving the form.

Figure 93: Saving the form, test.35b under wwwroot sub directory.

Figure 94: Opening test.35b in internet Explorer browser.

Figure 95: Testing the validation in the browser.

The Story
Field Validation in an MFC Form View

Problem: MFC's standard validation scheme validates data only when CWnd::UpdateData(TRUE) is called, usually
when the user exits the dialog. Applications often need to validate data the moment the user leaves a field (edit control,
list box, and so on). The problem is complex because Windows permits the user to freely jump between fields in any
sequence by using the mouse. Ideally, standard MFC DDX/DDV (data exchange/validation) code should be used for
field validation and the standard DoDataExchange() function should be called when the user finishes the
transaction.
Solution: Derive your field validation form view classes from the class CValidForm, derived from CFormView, with
this header:

// valform.h
#ifndef _VALIDFORM
#define _VALIDFORM

#define WM_VALIDATE WM_USER + 5

class CValidForm : public CFormView
{
DECLARE_DYNAMIC(CValidForm)
private:
 BOOL m_bValidationOn;
public:
 CValidForm(UINT ID);
 // override in derived dlg to perform validation
 virtual void ValidateDlgItem(CDataExchange* pDX, UINT ID);
 //{{AFX_VIRTUAL(CValidForm)
 protected:
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CValidForm)
 afx_msg LONG OnValidate(UINT wParam, LONG lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
#endif // _VALIDFORM

This class has one virtual function, ValidateDlgItem(), which accepts the control ID as the second parameter. The
derived form view class implements this function to call the DDX/DDV functions for the appropriate field. Here is a
sample ValidateDlgItem() implementation for a form view that has two numeric edit controls:

void CMyForm::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 switch (uID) {
 case IDC_EDIT1:
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 break;
 case IDC_EDIT2:
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 break;
 default:
 break;
 }
}

Notice the similarity to the wizard-generated DoDataExchange() function:

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 //{{AFX_DATA_MAP(CMyForm)
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 //}}AFX_DATA_MAP
}

How does it work? The CValidForm class traps the user's attempt to move away from a control. When the user
presses the Tab key or clicks on another control, the original control sends a killfocus command message (a control
notification message) to the parent window, the exact format depending on the kind of control. An edit control, for
example, sends an EN_KILLFOCUS command. When the form window receives this killfocus message, it invokes the
DDX/DDV code that is necessary for that field, and if there's an error, the focus is set back to that field.
There are some complications, however. First, we want to allow the user to freely switch the focus to another application
- we're not interested in trapping the killfocus message in that case. Next, we must be careful how we set the focus back
to the control that produced the error. We can't just call SetFocus() in direct response to the killfocus message;
instead we must allow the killfocus process to complete. We can achieve this by posting a user-defined WM_VALIDATE
message back to the form window. The WM_VALIDATE handler calls our ValidateDlgItem() virtual function
after the focus has been moved to the next field. Also, we must ignore the killfocus message that results when we switch
back from the control that the user tried to select, and we must allow the IDCANCEL button to abort the transaction
without validation.
Most of the work here is done in the view's virtual OnCommand() handler, which is called for all control notification
messages. We could, of course, individually map each control's killfocus message in our derived form view class, but
that would be too much work. Here is the OnCommand() handler:

BOOL CValidForm::OnCommand(WPARAM wParam, LPARAM lParam)
{
 // specific for WIN32 — wParam/lParam processing different for

 // WIN16
 TRACE("CValidForm::OnCommand, wParam = %x, lParam = %x\n",
 wParam, lParam);
 TRACE("m_bValidationOn = %d\n", m_bValidationOn);
 if(m_bValidationOn) { // might be a killfocus
 UINT notificationCode = (UINT) HIWORD(wParam);
 if((notificationCode == EN_KILLFOCUS) ||
 (notificationCode == LBN_KILLFOCUS) ||
 (notificationCode == CBN_KILLFOCUS)) {
 CWnd* pFocus = CWnd::GetFocus(); // static function call
 // if we're changing focus to another control in the
 // same form
 if(pFocus && (pFocus->GetParent() == this)) {
 if(pFocus->GetDlgCtrlID() != IDCANCEL) {
 // and focus not in Cancel button
 // validate AFTER drawing finished
 BOOL rtn = PostMessage(WM_VALIDATE, wParam);
 TRACE("posted message, rtn = %d\n", rtn);
 }
 }
 }
 }
 return CFormView::OnCommand(wParam, lParam); // pass it on
}

Note that m_bValidationOn is a Boolean data member in CValidForm. Finally, here is the OnValidate()
message handler, mapped to the user-defined WM_VALIDATE message:

LONG CValidForm::OnValidate(UINT wParam, LONG lParam)
{
 TRACE("Entering CValidForm::OnValidate\n");
 CDataExchange dx(this, TRUE);
 m_bValidationOn = FALSE; // temporarily off
 UINT controlID = (UINT) LOWORD(wParam);
 try {
 ValidateDlgItem(&dx, controlID);
 }
 catch(CUserException* pUE)
 {
 pUE->Delete();
 TRACE("CValidForm caught the exception\n");
 // fall through — user already alerted via message box
 }
 m_bValidationOn = TRUE;
 return 0; // goes no further
}

Instructions for use:

1. Add valform.h and valform.cpp to your project.
2. Insert the following statement in your view class header file:

#include "valform.h"

3. Change your view class base class from CFormView to CValidForm.
4. Override ValidateDlgItem() for your form's controls as shown above.

That's all. For dialogs, follow the same steps, but use valid.h and valid.cpp. Derive your dialog class from
CValidDialog instead of from CDialog.

Generating POST Requests Under Program Control

The heart of the MYEX35B program is a worker thread that generates a POST request and sends it to a remote server.
The server doesn't care whether the POST request came from an HTML form or from your program. It could process the
POST request with an ISAPI DLL, with a PERL script, or with a Common Gateway Interface (CGI) executable
program. Here's what the server receives when the user clicks the MYEX35B Submit button:

POST scripts/myex34a.dll?ProcessTimesheet HTTP/1.0
(request headers)
(blank line)
Period=12&Name=Dunkel&Hours=6.5&Job=5

And here's the thread code from PostThread.cpp:

// PostThread.cpp (uses MFC WinInet calls)

#include <stdafx.h>
#include "PostThread.h"

#define MAXBUF 50000

CString g_strFile = "/scripts/ex35a.dll";
CString g_strServerName = "localhost";
CString g_strParameters;

UINT PostThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 DWORD dwStatusCode;
 BOOL bOkStatus = FALSE;
 try {
 pConnection = session.GetHttpConnection(g_strServerName,
 (INTERNET_PORT) 80);
 pFile1 = pConnection->OpenRequest(0, g_strFile +
 "?ProcessTimesheet", // POST request
 NULL, 1, NULL, NULL, INTERNET_FLAG_KEEP_CONNECTION |
 INTERNET_FLAG_RELOAD); // no cache
 pFile1->SendRequest(NULL, 0,
 (LPVOID) (const char*) g_strParameters,
 g_strParameters.GetLength());
 pFile1->QueryInfoStatusCode(dwStatusCode);
 if(dwStatusCode == 200) { // OK status
 // doesn't matter what came back from server — we're looking
 // for OK status
 bOkStatus = TRUE;
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for TRACE
 TRACE(buffer);
 TRACE("\n");
 }
 }
 catch(CInternetException* pe) {
 char text[100];
 pe->GetErrorMessage(text, 99);

 TRACE("WinInet exception %s\n", text);
 pe->Delete();
 }
 if(pFile1) delete pFile1; // does the close — prints a warning
 if(pConnection) delete pConnection; // Why does it print a warning?
 delete [] buffer;
 ::PostMessage((HWND) pParam, WM_POSTCOMPLETE, (WPARAM) bOkStatus, 0);
 return 0;
}

The main thread assembles the g_strParameters string based on what the user typed, and the worker thread sends
the POST request using the CHttpFile::SendRequest call. The tQueryInfoStatusCode to find out if the
server sent back an OK response. Before exiting, the thread posts a message to the main thread, using the bOkStatus
value in wParam to indicate success or failure.

The MYEX35B View Class

The CMYEX35BView class is derived from CValidForm, as described in "Field Validation in an MFC Form View".
CMYEX35BView collects user data and starts the post thread when the user clicks the Submit button after all fields
have been successfully validated. Field validation is independent of the internet application. You could use
CValidForm in any MFC form view application. Here is the code for the overridden or the overridden
ValidateDlgItem() member function, which is called whenever the user moves from one control to another:

void CMyex35bView::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 ASSERT(this);
 TRACE("CMyex35bView::ValidateDlgItem\n");
 switch (uID) {
 case IDC_EMPLOYEE:
 DDX_CBString(pDX, IDC_EMPLOYEE, m_strEmployee);
 // need custom DDV for empty string
 DDV_MaxChars(pDX, m_strEmployee, 10);
 if(m_strEmployee.IsEmpty()) {
 AfxMessageBox("Must supply an employee name");
 pDX->Fail();
 }
 break;
 case IDC_HOURS:
 DDX_Text(pDX, IDC_HOURS, m_dHours);
 DDV_MinMaxDouble(pDX, m_dHours, 0.1, 100.);
 break;
 case IDC_JOB:
 DDX_Text(pDX, IDC_JOB, m_nJob);
 DDV_MinMaxInt(pDX, m_nJob, 1, 20);
 break;
 default:
 break;
 }
 return;
}

The OnSubmit() member function is called when the user clicks the Submit button. CWnd::UpdateData returns
TRUE only when all the fields have been successfully validated. At that point, the function disables the Submit button,
formats g_strParameters, and starts the post thread.

void CMyex35bView::OnSubmit()
{
 if(UpdateData(TRUE) == TRUE) {

 GetDlgItem(IDC_SUBMIT)->EnableWindow(FALSE);
 CString strHours, strJob, strPeriod;
 strPeriod.Format("%d", m_nPeriod);
 strHours.Format("%3.2f", m_dHours);
 strJob.Format("%d", m_nJob);
 g_strParameters = "Period=" + strPeriod + "&Employee=" +
 m_strEmployee + "&Hours=" +strHours + "&Job=" +
 strJob + "\r\n";
 TRACE("parameter string = %s", g_strParameters);
 AfxBeginThread(PostThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
 }
}

The OnCancel() member function is called when the user clicks the Reset button. The CValidForm logic requires
that the button's control ID be IDCANCEL.

void CMyex35bView::OnCancel()
{
 CMyex35bDoc* pDoc = GetDocument();
 m_dHours = 0;
 m_strEmployee = "";
 m_nJob = 0;
 m_nPeriod = pDoc->m_nPeriod;
 UpdateData(FALSE);
}

The OnPostComplete() handler is called in response to the user-defined WM_POSTCOMPLETE message sent by the
post thread:

LONG CMyex35bView::OnPostComplete(UINT wParam, LONG lParam)
{
 TRACE("CMyex35bView::OnPostComplete - %d\n", wParam);
 if(wParam == 0) {
 AfxMessageBox("Server did not accept the transaction");
 }
 else
 OnCancel();
 GetDlgItem(IDC_SUBMIT)->EnableWindow(TRUE);
 return 0;
}

This function displays a message box if the server didn't send an OK response. It then enables the Submit button,
allowing the user to post another time-sheet entry.

Building and Testing MYEX35B

Build the MYEX35B project, and then run it once in stand-alone mode to register it and to save a document file sample
called test.35b in your WWW root directory. Make sure the MYEX34A DLL (myex34a.dll) is available in the scripts
directory (with execute permission) because that DLL contains an ISAPI function, ProcessTimesheet(), which
handles the server end of the POST request. Be sure that you have IIS or some other ISAPI-capable server running.
Now run Internet Explorer and load test.35b from your server. The MYEX35B program should be running in the
Browser window, and you should be able to enter time-sheet transactions.

ActiveX Document Servers vs. VB Script

It's possible to insert VB Script (or JavaScript) code into an HTML file. We're not experts on VB Script, but we've seen
some sample code. You could probably duplicate the MYEX35B time-sheet application with VB Script, but you would
be limited to the standard HTML input elements. It would be interesting to see how a VB Script programmer would

solve the problem. In any case, you're a C++ programmer, not a Visual Basic programmer, so you might as well stick to
what you know.

Going Further with ActiveX Document Servers

MYEX35A used a worker thread to read a text file from an Internet server. It used the MFC WinInet classes, and it
assumed that a standard HTTP server was available. An ActiveX document server could just as easily make Winsock
calls using the CBlockingSocket class from Module 32. That would imply that you were going beyond the HTTP
and FTP protocols. You could, for example, write a custom internet server program that listened on port 81. That server
could run concurrently with IIS if necessary. Your ActiveX document server could use a custom TCP/IP protocol to get
binary data from an open socket. The server could use this data to update its window in real-time, or it could send the
data to another device, such as a sound card.

------------------End----------------

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library.
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc32.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

