

TCP/IP, Winsock, and WinInet

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2 and
some screen snapshot Figures have been taken on Windows 2000 server. Topics and sub topics for this tutorial are listed
below. Don’t forget to read Tenouk’s small disclaimer. Supplementary item is WEBSITE.

TCP/IP, Winsock, and WinInet
To COM or Not to COM
Internet Primer
Network Protocols: Layering
The Internet Protocol
The User Datagram Protocol - UDP
IP Address Format: Network Byte Order
The Transmission Control Protocol - TCP
The Domain Name System
Servers and Domain Names
Clients and Domain Names
HTTP Basics
FTP Basics
Internet vs. Intranet
Winsock
Synchronous vs. Asynchronous Winsock Programming
The MFC Winsock Classes
The Blocking Socket Classes
The CSockAddr Helper Class
The CBlockingSocketException Class
The CBlockingSocket Class
The CHttpBlockingSocket Class
A Simplified HTTP Server Program
Initializing Winsock
Starting the Server
The Server Thread
Cleaning Up
A Simplified HTTP Client Program
Building a Web Server with CHttpBlockingSocket
MYEX33A Server Limitations
MYEX33A Server Architecture
Using the Win32 TransmitFile() Function
Building MYEX33A From Scratch
Back to the Story
Building and Testing MYEX33A
Using Telnet
Building a Web Client with CHttpBlockingSocket
The MYEX33A Winsock Client
MYEX33A Support for Proxy Servers
Testing the MYEX33A Winsock Client
WinInet
WinInet's Advantages over Winsock
The MFC WinInet Classes
CInternetSession
CHttpConnection
CFtpConnection, CGopherConnection

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/WEBSITE/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

CInternetFile
CHttpFile
CFtpFileFind, CGopherFileFind
CInternetException
Internet Session Status Callbacks
A Simplified WinInet Client Program
Building a Web Client with the MFC WinInet Classes
The MYEX33A WinInet Client #1: Using CHttpConnection
Testing the WinInet Client #1
The MYEX33A WinInet Client #2: Using OpenURL()
Testing the WinInet Client #2
Asynchronous Moniker Files
Monikers
The MFC CAsyncMonikerFile Class
Using the CAsyncMonikerFile Class in a Program
Asynchronous Moniker Files vs. WinInet Programming

TCP/IP, Winsock, and WinInet

As a C++ programmer, you're going to be asked to do more than create Web pages. You'll be the one who makes the
Internet reach its true potential and who creates distributed applications that haven't even been imagined yet. To be
successful, you'll have to understand how the Internet works and how to write programs that can access other computers
on the Internet.
In this section, you'll start with a primer on the Transmission Control Protocol/Internet Protocol (TCP/IP) that's used
throughout the Internet, and then you'll move up one level to see the workings of HyperText Transport Protocol (HTTP).
Then it's time to get something running. You'll assemble your own intranet (a local version of the Internet) and study an
HTTP client-server program based on Winsock, the fundamental API for TCP/IP in Windows. Finally you'll move on
to WinInet, which is a higher level API than Winsock and part of Microsoft's ActiveX technology.

To COM or Not to COM

Surely you've read about ActiveX Controls for the Internet. You've probably encountered concepts such as composite
monikers and anti-monikers, which are part of the Microsoft Component Object Model (COM). If you were
overwhelmed, don't worry, it's possible to program for the Internet without COM, and that's a good place to start. This
module and the next module are mostly COM-free. In Module 34, you'll be writing a COM-based ActiveX document
server, but MFC effectively hides the COM details so you can concentrate on Winsock and WinInet programming. It's
not that ActiveX controls aren't important, but we can't do them justice in this book. We'll defer to Adam Denning's
book on this subject, ActiveX Controls Inside Out (Microsoft Press, 1997). Your study of this book's COM material and
Internet material will prepare you well for Adam's book.

Internet Primer

You can't write a good Winsock program without understanding the concept of a socket, which is used to send and
receive packets of data across the network. To fully understand sockets, you need a thorough knowledge of the
underlying Internet protocols. This section contains a concentrated dose of Internet theory. It should be enough to get
you going, but you might want to refer to one of the TCP/IP textbooks if you want more theory or you can dig the Linux
Socket, a complete story of the TCP/IP and OSI, down to the packet level, RAW socket and working program example,
available at Tenouk.com.

Network Protocols: Layering

All networks use layering for their transmission protocols, and the collection of layers is often called a stack. The
application program talks to the top layer and the bottom layer talks to the network. Figure 1 shows you the stack for a
local area network (LAN) running TCP/IP. Each layer is logically connected to the corresponding layer at the other end
of the communications channel. The server program, as shown at the right in Figure 1, continuously listens on one end
of the channel, while the client program, as shown on the left, periodically connects with the server to exchange data.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc34.html
http://www.tenouk.com/cnlinuxsockettutorials.html
http://www.tenouk.com/cnlinuxsockettutorials.html
http://www.tenouk.com/cnlinuxsockettutorials.html
http://www.tenouk.com/Module41.html

Think of the server as an HTTP-based World Wide Web server, and think of the client as a browser program running on
your computer.

Figure 1: The stack for a LAN running TCP/IP.

You can get more information of the Internet Protocol suite and other standards discussed in this module at RFC Editor.

The Internet Protocol

The Internet Protocol (IP) layer is the best place to start in your quest to understand TCP/IP. The IP protocol defines
packets called datagrams that are fundamental units of Internet communication. These packets, typically less than 1000
bytes in length, go bouncing all over the world when you open a Web page, download a file, or send e-mail. Figure 2
shows a simplified layout of an IP datagram.
Notice that the IP datagram contains 32-bit addresses for both the source and destination computers. These IP addresses
uniquely identify computers on the Internet and are used by routers (specialized computers that act like telephone
switches, Layer 3 of the TCP/IP stack) to direct the individual datagrams to their destinations. The routers don't care
about what's inside the datagrams, they're only interested in that datagram's destination address and total length. Their
job is to resend the datagram as quickly as possible.
The IP layer doesn't tell the sending program whether a datagram has successfully reached its destination. That's a job
for the next layer up the stack, Transmission Control Protocol, TCP. The receiving program can look only at the
checksum to determine whether the IP datagram header was corrupted or not.

http://www.rfc-editor.org/

Figure 2: A simple IP datagram layout.

The User Datagram Protocol - UDP

The TCP/IP protocol should really be called TCP/UDP/IP because it includes the User Datagram Protocol (UDP), which
is a peer of TCP. All IP-based transport protocols store their own headers and data inside the IP data block. First let's
look at the UDP layout in Figure 3.

Figure 3: A simple UDP layout.

A complete UDP/IP datagram is shown in Figure 4.

Figure 4: The relationship between the IP datagram and the UDP datagram.

UDP is only a small step up from IP, but applications never use IP directly. Like IP, UDP doesn't tell the sender when
the datagram has arrived. That's up to the application. The sender could, for example, require that the receiver send a
response, and the sender could retransmit the datagram if the response didn't arrive within, say, 20 seconds. UDP is good
for simple one-shot messages and is used by the Internet Domain Name System (DNS), which is explained later in this
module. UDP is used for transmitting live audio and video, for which some lost or out-of-sequence data is not a big
problem.
Figure 3 shows that the UDP header does convey some additional information, namely the source and destination port
numbers. The application programs on each end use these 16-bit numbers. For example, a client program might send a
datagram addressed to port 1700 on the server. The server program is listening for any datagram that includes 1700 in its
destination port number, and when the server finds one, it can respond by sending another datagram back to the client,
which is listening for a datagram that includes 1701 in its destination port number.

IP Address Format: Network Byte Order

You know that IP addresses are 32-bits long. You might think that 232 (more than 4 billion) uniquely addressed
computers could exist on the Internet, but that's not true. Part of the address identifies the LAN on which the host
computer is located, and part of it identifies the host computer within the network. Most IP addresses are Class C
addresses, version 4 (IPv4) which are formatted as shown in Figure 5.

ftp://ftp.rfc-editor.org/in-notes/std/std5.txt
ftp://ftp.rfc-editor.org/in-notes/std/std6.txt

Figure 5: The layout of a Class C IP address.

This means that slightly more than 2 million networks can exist, and each of those networks can have 28 (256)
addressable host computers. The Class A and Class B IP addresses, which allow more host computers on a network, are
all used up.
The Internet "powers-that-be" have recognized the shortage of IP addresses, so they have proposed a new standard, the
IP Next Generation (IPng) protocol or IPv6. IPng defines a new IP datagram format that uses 128-bit addresses instead
of 32-bit addresses. With IPng, you'll be able, for example, to assign a unique Internet address to each light switch in
your house, so you can switch off your bedroom light from your portable computer from anywhere in the world. IPng
already implemented in new computer, network and electronics devices.
By convention, IP addresses are written in dotted-decimal format. The four parts of the address refer to the individual
byte values. An example of a Class C IP address is 194.128.198.201. In a computer with an Intel CPU, the address bytes
are stored low-order-to-the-left, in so-called little-endian order. In most other computers, including the UNIX
machines that first supported the Internet, bytes are stored high-order-to-the-left, in big-endian order. Because the
Internet imposes a machine-independent standard for data interchange, all multibyte numbers must be transmitted in
big-endian order. This means that programs running on Intel-based machines must convert between network byte order
(big-endian) and host byte order (little-endian). This rule applies to 2-byte port numbers as well as to 4-byte IP
addresses.

The Transmission Control Protocol - TCP

You've learned about the limitations of UDP. What you really need is a protocol that supports error-free transmission of
large blocks of data. Obviously, you want the receiving program to be able to reassemble the bytes in the exact sequence
in which they are transmitted, even though the individual datagrams might arrive in the wrong sequence. TCP is that
protocol, and it's the principal transport protocol for all Internet applications, including HTTP and File Transfer Protocol
(FTP). Figure 6 shows the layout of a TCP segment. (It's not called a datagram.) The TCP segment fits inside an IP
datagram, as shown in Figure 7.

Figure 6: A simple layout of a TCP segment.

ftp://ftp.rfc-editor.org/in-notes/std/std7.txt

Figure 7: The relationship between an IP datagram and a TCP segment.

The TCP protocol establishes a full-duplex, point-to-point connection between two computers, and a program at each
end of this connection uses its own port. The combination of an IP address and a port number is called a socket.
The connection is first established with a three-way handshake. The initiating program sends a segment with the SYN
flag set, the responding program sends a segment with both the SYN and ACK flags set, and then the initiating program
sends a segment with the ACK flag set.
After the connection is established, each program can send a stream of bytes to the other program. TCP uses the
sequence number fields together with ACK flags to control this flow of bytes. The sending program doesn't wait for
each segment to be acknowledged but instead sends a number of segments together and then waits for the first
acknowledgment. If the receiving program has data to send back to the sending program, it can piggyback its
acknowledgment and outbound data together in the same segments.
The sending program's sequence numbers are not segment indexes but rather indexes into the byte stream. The receiving
program sends back the sequence numbers (in the acknowledgment number field) to the sending program, thereby
ensuring that all bytes are received and assembled in sequence. The sending program resends unacknowledged
segments.
Each program closes its end of the TCP connection by sending a segment with the FIN flag set, which must be
acknowledged by the program on the other end. A program can no longer receive bytes on a connection that has been
closed by the program on the other end.
Don't worry about the complexity of the TCP protocol. The Winsock and WinInet APIs hide most of the details, so you
don't have to worry about ACK flags and sequence numbers. Your program calls a function to transmit a block of data,
and Windows takes care of splitting the block into segments and stuffing them inside IP datagrams. Windows also takes
care of delivering the bytes on the receiving end, but that gets tricky, as you'll see later in this module.

The Domain Name System

When you surf the Web, you don't use IP addresses. Instead, you use human-friendly names like microsoft.com or
www.cnn.com. A significant portion of Internet resources is consumed when host names (such as microsoft.com) are
translated into IP addresses that TCP/IP can use. A distributed network of name server (domain server) computers
performs this translation by processing DNS queries. The entire Internet namespace is organized into domains, starting
with an unnamed root domain. Under the root is a series of top-level domains (TLDs) such as com, edu, gov, and org.
Do not confuse Internet domains with Microsoft Windows NT domains. The latter are logical groups of networked
computers that share a common security database.

Servers and Domain Names

Let's look at the server end first. Suppose a company named SlowSoft has two host computers connected to the Internet,
one for World Wide Web (WWW) service and the other for FTP service. By convention, these host computers are
named www.slowsoft.com and ftp.slowsoft.com, respectively, and both are members of the second-level domain
slowsoft, which SlowSoft has registered with an organization called InterNIC or other delegated domain name registrars.
(INTERNIC.)
Now SlowSoft must designate two (or more) host computers as its name servers. The name servers for the com domain
each have a database entry (zone record) for the slowsoft domain, and that entry contains the names and IP addresses of
SlowSoft's two name servers. Each of the two slowsoft name servers has database entries for both of SlowSoft's host
computers. These servers might also have database entries for hosts in other domains, and they might have entries for

http://www.internic.com/

name servers in third-level domains. Thus, if a name server can't provide a host's IP address directly, it can redirect the
query to a lower-level name server. Figure 34-8 illustrates SlowSoft's domain configuration.
A top-level name server runs on its own host computer. InterNIC manages (at last count) nine computers that serve the
root domain and top-level domains (root-servers.org). Lower-level name servers could be programs running on host
computers anywhere on the Net. SlowSoft's Internet service provider (ISP), ExpensiveNet, can furnish one of SlowSoft's
name servers. If the ISP is running Windows NT Server, the name server is usually the DNS program that comes
bundled with the operating system. That name server might be designated ns1.expensivenet.com. Unix/Linux system
will normally use BIND program for the name server.

Clients and Domain Names

Now for the client side. A user types http://www.slowsoft.com in the browser. The http:// prefix tells the browser to
use the HTTP protocol when it eventually finds the host computer. The browser must then resolve www.slowsoft.com
into an IP address, so it uses TCP/IP to send a DNS query to the default gateway IP address for which TCP/IP is
configured at the client machine as shown below.

Figure 8: The TCP/IP settings of the network card.

This default gateway address identifies a local name server, which might have the needed host IP address in its cache. If
not, the local name server relays the DNS query up to one of the root name servers. The root server looks up slowsoft in
its database and sends the query back down to one of SlowSoft's designated name servers. In the process, the IP address
for www.slowsoft.com will be cached for later use if it was not cached already. If you want to go the other way, name
servers are also capable of converting an IP address to a name.

http://www.root-servers.org/

Figure 9: SlowSoft's domain configuration.

HTTP Basics

You're going to be doing some Winsock programming soon, but just sending raw byte streams back and forth isn't very
interesting. You need to use a higher-level protocol in order to be compatible with existing Internet servers and
browsers. HTTP is a good place to start because it's the protocol of the popular World Wide Web and it's relatively
simple.
HTTP is built on TCP, and this is the way it works: First a server program listens on the default port 80. Then some
client program (typically a browser) connects to the server (www.slowsoft.com, in this case) after receiving the server's
IP address from a name server. Using its own port number, the client sets up a two-way TCP connection to the server.
As soon as the connection is established, the client sends a request to the server, which might look something like this:

GET /customers/newproducts.html HTTP/1.0

The server identifies the request as a GET, the most common type, and it concludes that the client wants a file named
newproducts.html that's located in a server directory known as /customers (which might or might not be \customers
on the server's hard disk). Immediately following are request headers, which mostly describe the client's capabilities.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/x

ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

-jg, */*
Accept-Language: en
UA-pixels: 1024x768
UA-color: color8
UA-OS: Windows NT
UA-CPU: x86
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; AK; Windows NT)
Host: www.slowsoft.com
Connection: Keep-Alive
If-Modified-Since: Wed, 26 Mar 2005 20:23:04 GMT
(blank line)

The If-Modified-Since header tells the server not to bother to transmit newproducts.html unless the file has been
modified since March 26, 2005. This implies that the browser already has a dated copy of this file stored in its cache.
The blank line at the end of the request is crucial; it provides the only way for the server to tell that it is time to stop
receiving and start transmitting, and that's because the TCP connection stays open. Now the server springs into action. It
sends newproducts.html, but first it sends an OK response:

HTTP/1.0 200 OK

Immediately followed by some response header lines:

Server: Microsoft-IIS/2.0
Date: Thu, 03 Mar 2005 17:33:12 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, Mar 26 2005 20:23:04 GMT
Content-Length: 407
(blank line)

The contents of newproducts.html immediately follow the blank line:

<html>
<head><title>SlowSoft's New Products</title></head>
<body><body background="/images/clouds.jpg">
<h1><center>Welcome to SlowSoft's New Products List
</center></h1><p>
Unfortunately, budget constraints have prevented SlowSoft from
 introducing any new products this year. We suggest you keep
 enjoying the old products.<p>
SlowSoft's Home Page<p>
</body>
</html>

You're looking at elementary HyperText Markup Language (HTML) code here, and the resulting Web page won't win
any prizes. We won't go into details because dozens of HTML books are already available. From these books, you'll
learn that HTML tags are contained in angle brackets and that there's often an "end" tag (with a / character) for every
"start" tag. Some tags, such as <a> (hypertext anchor), have attributes. In the example above, the line:

SlowSoft's Home Page<p>

creates a link to another HTML file. The user clicks on "SlowSoft's Home Page," and the browser requests default.htm
from the original server.
Actually, newproducts.html references two server files, default.htm and /images/clouds.jpg. The clouds.jpg file is a
JPEG file that contains a background picture for the page. The browser downloads each of these files as a separate
transaction, establishing and closing a separate TCP connection each time. The server just dishes out files to any client
that asks for them. In this case, the server doesn't know or care whether the same client requested newproducts.html and
clouds.jpg. To the server, clients are simply IP addresses and port numbers. In fact, the port number is different for each

request from a client. For example, if ten of your company's programmers are surfing the Web via your company's proxy
server (more on proxy servers later), the server sees the same IP address for each client.
Web pages use two dominant graphics formats, GIF and JPEG. GIF files are compressed images that retain all the detail
of the original uncompressed image but are usually limited to 256 colors. They support transparent regions and
animation. JPEG files are smaller, but they don't carry all the detail of the original file. GIF files are often used for small
images such as buttons, and JPEG files are often used for photographic images for which detail is not critical. Visual
C++ can read, write, and convert both GIF and JPEG files, but the Win32 API cannot handle these formats unless you
supply a special compression/decompression module. There are other formats as well such as PNG.
The HTTP standard includes a PUT request type that enables a client program to upload a file to the server. Client
programs and server programs seldom implement PUT.

FTP Basics

The File Transfer Protocol handles the uploading and downloading of server files plus directory navigation and
browsing. A Windows command-line program called ftp (it doesn't work through a Web proxy server) lets you connect
to an FTP server using UNIX-like keyboard commands. Browser programs also usually support the FTP protocol in a
more user-friendly manner. Normally, you can protect an FTP server's directories with a user-name/password
combination, but both strings are passed over the Internet as clear text. Nowadays we have a dedicated ftp client
programs such as gFtp, cuteFtp etc. and the connection can be secured one. FTP is based on TCP. Two separate
connections are established between the client and server, one for control and one for data.

Internet vs. Intranet

Up to now, we've been assuming that client and server computers were connected to the worldwide Internet. The fact is
you can run exactly the same client and server software on a local intranet. An intranet is often implemented on a
company's LAN and is used for distributed applications. Users see the familiar browser interface at their client
computers, and server computers supply simple Web-like pages or do complex data processing in response to user input.
An intranet offers a lot of flexibility. If, for example, you know that all your computers are Intel-based, you can use
ActiveX controls and ActiveX document servers that provide ActiveX document support. If necessary, your server and
client computers can run custom TCP/IP software that allows communication beyond HTTP and FTP. To secure your
company's data, you can separate your intranet completely from the Internet or you can connect it through a firewall,
which is another name for a proxy server.

Winsock

Winsock is the lowest level Windows API for TCP/IP programming. Part of the code is located in wsock32.dll (the
exported functions that your program calls), and part is inside the Windows kernel. You can write both internet server
programs and internet client programs using the Winsock API. This API is based on the original Berkeley Sockets API
for UNIX. A new and much more complex version, Winsock 2, is included for the first time with Windows NT 4.0, but
we'll stick with the old version because it's simplicity. The Winsock 2 has been discussed in module Winsock2.

Synchronous vs. Asynchronous Winsock Programming

Winsock was introduced first for Win16, which did not support multithreading. Consequently, most developers used
Winsock in the asynchronous mode. In that mode, all sorts of hidden windows and PeekMessage() calls enabled
single-threaded programs to make Winsock send and receive calls without blocking, thus keeping the user interface (UI)
alive. Asynchronous Winsock programs were complex, often implementing "state machines" that processed callback
functions, trying to figure out what to do next based on what had just happened. Well, we're not in 16-bit land anymore,
so we can do modern multithreaded programming. If this scares you, go back and review Module 22. Once you get used
to multithreaded programming, you'll love it.
In this module, we will make the most of our Winsock calls from worker threads so that the program's main thread is
able to carry on with the UI. The worker threads contain nice, sequential logic consisting of blocking Winsock calls.

The MFC Winsock Classes

We try to use MFC classes where it makes sense to use them, but the MFC developers informed us that the
CAsyncSocket and CSocket classes were not appropriate for 32-bit synchronous programming. The Visual C++

ftp://ftp.rfc-editor.org/in-notes/std/std9.txt
http://www.tenouk.com/cnwinsock2tutorials.html
http://www.tenouk.com/cnwinsock2tutorials.html
http://www.tenouk.com/cnwinsock2tutorials.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc22.html

online help says you can use CSocket for synchronous programming, but if you look at the source code you'll see
some ugly message-based code left over from Win16.

The Blocking Socket Classes

Since we couldn't use MFC, we had to write our own Winsock classes. CBlockingSocket is a thin wrapping of the
Winsock API, designed only for synchronous use in a worker thread. The only fancy features are exception-throwing on
errors and time-outs for sending and receiving data. The exceptions help you write cleaner code because you don't need
to have error tests after every Winsock call. The time-outs (implemented with the Winsock select function) prevent a
communication fault from blocking a thread indefinitely.
CHttpBlockingSocket is derived from CBlockingSocket and provides functions for reading HTTP data.
CSockAddr and CBlockingSocketException are helper classes.

The CSockAddr Helper Class

Many Winsock functions take socket address parameters. As you might remember, a socket address consists of a 32-bit
IP address plus a 16-bit port number. The actual Winsock type is a 16-byte sockaddr_in structure, which looks like
this:

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The IP address is stored as type in_addr, which looks like this:

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
}

These are ugly structures, so we'll derive a programmer-friendly C++ class from sockaddr_in. The file Blocksock.h
contains the following code for doing this, with inline functions included:

class CSockAddr : public sockaddr_in {
public:
 // constructors
 CSockAddr()
 {
 sin_family = AF_INET;
 sin_port = 0;
 sin_addr.s_addr = 0;
 } // Default
 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa,
 sizeof(SOCKADDR)); }
 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin,
 sizeof(SOCKADDR_IN)); }
 CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)
 // parms are host byte ordered
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = htonl(ulAddr);

 }
 CSockAddr(const char* pchIP, const USHORT ushPort = 0)
 // dotted IP addr string
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = inet_addr(pchIP);
 } // already network byte ordered
 // Return the address in dotted-decimal format
 CString DottedDecimal()
 { return inet_ntoa(sin_addr); }
 // constructs a new CString object
 // Get port and address (even though they're public)
 USHORT Port() const
 { return ntohs(sin_port); }
 ULONG IPAddr() const
 { return ntohl(sin_addr.s_addr); }
 // operators added for efficiency
 const CSockAddr& operator=(const SOCKADDR& sa)
 {
 memcpy(this, &sa, sizeof(SOCKADDR));
 return *this;
 }
 const CSockAddr& operator=(const SOCKADDR_IN& sin)
 {
 memcpy(this, &sin, sizeof(SOCKADDR_IN));
 return *this;
 }
 operator SOCKADDR()
 { return *((LPSOCKADDR) this); }
 operator LPSOCKADDR()
 { return (LPSOCKADDR) this; }
 operator LPSOCKADDR_IN()
 { return (LPSOCKADDR_IN) this; }
};

As you can see, this class has some useful constructors and conversion operators, which make the CSockAddr object
interchangeable with the type sockaddr_in and the equivalent types SOCKADDR_IN, sockaddr, and SOCKADDR.
There's a constructor and a member function for IP addresses in dotted-decimal format. The internal socket address is in
network byte order, but the member functions all use host byte order parameters and return values. The Winsock
functions htonl, htons, ntohs, and ntohl take care of the conversions between network and host byte order.

The CBlockingSocketException Class

All the CBlockingSocket functions throw a CBlockingSocketException object when Winsock returns an
error. This class is derived from the MFC CException class and thus overrides the GetErrorMessage() function.
This function gives the Winsock error number and a character string that CBlockingSocket provided when it threw
the exception.

The CBlockingSocket Class

Listing 1 shows an excerpt from the header file for the CBlockingSocket class.

BLOCKSOCK.H

class CBlockingSocket : public CObject
{
 DECLARE_DYNAMIC(CBlockingSocket)
public:

 SOCKET m_hSocket;
 CBlockingSocket(); { m_hSocket = NULL; }
 void Cleanup();
 void Create(int nType = SOCK_STREAM);
 void Close();
 void Bind(LPCSOCKADDR psa);
 void Listen();
 void Connect(LPCSOCKADDR psa);
 BOOL Accept(CBlockingSocket& s, LPCSOCKADDR psa);
 int Send(const char* pch, const int nSize, const int nSecs);
 int Write(const char* pch, const int nSize, const int nSecs);
 int Receive(char* pch, const int nSize, const int nSecs);
 int SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 int ReceiveDatagram(char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 void GetPeerAddr(LPCSOCKADDR psa);
 void GetSockAddr(LPCSOCKADDR psa);
 static CSockAddr GetHostByName(const char* pchName,
 const USHORT ushPort = 0);
 static const char* GetHostByAddr(LPCSOCKADDR psa);
 operator SOCKET();
 { return m_hSocket; }
};

Listing 1: Excerpt from the header file for the CBlockingSocketclass.

Following is a list of the CBlockingSocket member functions, starting with the constructor:

▪ Constructor(): The CBlockingSocket constructor makes an uninitialized object. You must call
the Create() member function to create a Windows socket and connect it to the C++ object.

▪ Create(): This function calls the Winsock socket function and then sets the m_hSocket data member
to the returned 32-bit SOCKET handle.

Parameter Description
nType Type of socket; should be SOCK_STREAM (the default value) or SOCK_DGRAM.

Table 1.

▪ Close(): This function closes an open socket by calling the Winsock closesocket function. The

Create() function must have been called previously. The destructor does not call this function because
it would be impossible to catch an exception for a global object. Your server program can call Close()
anytime for a socket that is listening.

▪ Bind(): This function calls the Winsock bind function to bind a previously created socket to a specified
socket address. Prior to calling Listen(), your server program calls Bind() with a socket address
containing the listening port number and server's IP address. If you supply INADDR_ANY as the IP
address, Winsock deciphers your computer's IP address.

Parameter Description
psa A CSockAddr object or a pointer to a variable of type sockaddr.

Table 2.

▪ Listen(): This TCP function calls the Winsock listen function. Your server program calls Listen()

to begin listening on the port specified by the previous Bind() call. The function returns immediately.
▪ Accept(): This TCP function calls the Winsock accept function. Your server program calls Accept()

immediately after calling Listen(). Accept returns when a client connects to the socket, sending back a
new socket (in a CBlockingSocket object that you provide) that corresponds to the new connection.

Parameter Description

s A reference to an existing CBlockingSocket object for which Create() has not been called.
psa A CSockAddr object or a pointer to a variable of type sockaddr for the connecting socket's address.
Return value TRUE if successful.

Table 3.

▪ Connect(): This TCP function calls the Winsock connect function. Your client program calls

Connect() after calling Create(). Connect returns when the connection has been made.

Parameter Description
psa A CSockAddr object or a pointer to a variable of type sockaddr.

Table 4.

▪ Send(): This TCP function calls the Winsock send function after calling select to activate the time-out.

The number of bytes actually transmitted by each Send() call depends on how quickly the program at the
other end of the connection can receive the bytes. Send() throws an exception if the program at the other
end closes the socket before it reads all the bytes.

Parameter Description
pch A pointer to a buffer that contains the bytes to send.
nSize The size (in bytes) of the block to send.
nSecs Time-out value in seconds.
Return value The actual number of bytes sent.

Table 5.

▪ Write(): This TCP function calls Send() repeatedly until all the bytes are sent or until the receiver

closes the socket.

Parameter Description
pch A pointer to a buffer that contains the bytes to send.
nSize The size (in bytes) of the block to send.
nSecs Time-out value in seconds.
Return value The actual number of bytes sent.

Table 6.

▪ Receive(): This TCP function calls the Winsock recv function after calling select to activate the time-

out. This function returns only the bytes that have been received. For more information, see the description
of the CHttpBlockingSocket class in the next section.

Parameter Description
pch A pointer to an existing buffer that will receive the incoming bytes.
nSize The maximum number of bytes to receive.
nSecs Time-out value in seconds.
Return value The actual number of bytes received.

Table 7.

▪ SendDatagram(): This UDP function calls the Winsock sendto() function. The program on the

other end needs to call ReceiveDatagram(). There is no need to call Listen(), Accept(), or
Connect() for datagrams. You must have previously called Create() with the parameter set to
SOCK_DGRAM.

Parameter Description

pch A pointer to a buffer that contains the bytes to send.
nSize The size (in bytes) of the block to send.

psa The datagram's destination address; a CSockAddr object or a pointer to a variable
of type sockaddr.

nSecs Time-out value in seconds.
Return value The actual number of bytes sent.

Table 8.

▪ ReceiveDatagram(): This UDP function calls the Winsock recvfrom() function. The function

returns when the program at the other end of the connection calls SendDatagram(). You must have
previously called Create() with the parameter set to SOCK_DGRAM.

Parameter Description
pch A pointer to an existing buffer that will receive the incoming bytes.
nSize The size (in bytes) of the block to send.

psa The datagram's destination address; a CSockAddr object or a pointer to a variable
of type sockaddr.

nSecs Time-out value in seconds.
Return value The actual number of bytes received.

Table 9.

▪ GetPeerAddr(): This function calls the Winsock getpeername() function. It returns the port and

IP address of the socket on the other end of the connection. If you are connected to the Internet through a
Web proxy server, the IP address is the proxy server's IP address.

Parameter Description
psa A CSockAddr object or a pointer to a variable of type sockaddr.

Table 10.

▪ GetSockAddr(): This function calls the Winsock getsockname() function. It returns the socket

address that Winsock assigns to this end of the connection. If the other program is a server on a LAN, the
IP address is the address assigned to this computer's network board. If the other program is a server on the
Internet, your service provider assigns the IP address when you dial in. In both cases, Winsock assigns the
port number, which is different for each connection.

Parameter Description
psa A CSockAddr object or a pointer to a variable of type sockaddr.

Table 11.

▪ GetHostByName(): This static function calls the Winsock function gethostbyname(). It queries a

name server and then returns the socket address corresponding to the host name. The function times out by
itself.

Parameter Description
pchName A pointer to a character array containing the host name to resolve.

ushPort The port number (default value 0) that will become part of the returned socket
address.

Return value The socket address containing the IP address from the DNS plus the port number
ushPort.

Table 12.

▪ GetHostByAddr(): This static function calls the Winsock gethostbyaddr() function. It queries a
name server and then returns the host name corresponding to the socket address. The function times out by
itself.

Parameter Description
psa A CSockAddr object or a pointer to a variable of type sockaddr.

Return value A pointer to a character array containing the host name; the caller should not delete
this memory.

Table 13.

▪ Cleanup(): This function closes the socket if it is open. It doesn't throw an exception, so you can call it

inside an exception catch block.
▪ Operator SOCKET: This overloaded operator lets you use a CBlockingSocket object in place of a

SOCKET parameter.

The CHttpBlockingSocket Class

If you call CBlockingSocket::Receive, you'll have a difficult time knowing when to stop receiving bytes. Each
call returns the bytes that are stacked up at your end of the connection at that instant. If there are no bytes, the call
blocks, but if the sender closed the socket, the call returns zero bytes. In the HTTP section, you learned that the client
sends a request terminated by a blank line. The server is supposed to send the response headers and data as soon as it
detects the blank line, but the client needs to analyze the response headers before it reads the data. This means that as
long as a TCP connection remains open, the receiving program must process the received data as it comes in. A simple
but inefficient technique would be to call Receive() for 1 byte at a time. A better way is to use a buffer. The
CHttpBlockingSocket class adds buffering to CBlockingSocket, and it provides two new member functions.
Here is part of the Blocksock.h file:

class CHttpBlockingSocket : public CBlockingSocket
{
public:
 DECLARE_DYNAMIC(CHttpBlockingSocket)
 enum {nSizeRecv = 1000}; // max receive buffer size (> hdr line
 // length)
 CHttpBlockingSocket();
 ~CHttpBlockingSocket();
 int ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs);
 int ReadHttpResponse(char* pch, const int nSize, const int nSecs);
private:
 char* m_pReadBuf; // read buffer
 int m_nReadBuf; // number of bytes in the read buffer
};

The constructor and destructor take care of allocating and freeing a 1000-character buffer. The two new member
functions are as follows:

▪ ReadHttpHeaderLine(): This function returns a single header line, terminated with a <cr><lf>
pair. ReadHttpHeaderLine() inserts a terminating zero at the end of the line. If the line buffer is full,
the terminating zero is stored in the last position.

Parameter Description
pch A pointer to an existing buffer that will receive the incoming line (zero-terminated).
nSize The size of the pch buffer.
nSecs Time-out value in seconds.
Return value The actual number of bytes received, excluding the terminating zero.

Table 14.

▪ ReadHttpResponse(): This function returns the remainder of the server's response received when the
socket is closed or when the buffer is full. Don't assume that the buffer contains a terminating zero.

Parameter Description
pch A pointer to an existing buffer that will receive the incoming data.
nSize The maximum number of bytes to receive.
nSecs Time-out value in seconds.
Return value The actual number of bytes received.

Table 15.

A Simplified HTTP Server Program

Now it's time to use the blocking socket classes to write an HTTP server program. All the frills have been eliminated,
but the code actually works with a browser. This server doesn't do much except return some hard-coded headers and
HTML statements in response to any GET request. (See the MYEX33A program later in this module for a more
complete HTTP server.)

Initializing Winsock

Before making any Winsock calls, the program must initialize the Winsock library. The following statements in the
application's InitInstance() member function do the job:

WSADATA wsd;
WSAStartup(0x0101, &wsd);

Starting the Server

The server starts in response to some user action, such as a menu choice. Here's the command handler:

CBlockingSocket g_sListen; // one-and-only global socket for listening
void CSocketView::OnInternetStartServer()
{
 try {
 CSockAddr saServer(INADDR_ANY, 80);
 g_sListen.Create();
 g_sListen.Bind(saServer);
 g_sListen.Listen();
 AfxBeginThread(ServerThreadProc, GetSafeHwnd());
 }
 catch(CBlockingSocketException* e) {
 g_sListen.Cleanup();
 // Do something about the exception
 e->Delete();
 }
}

Pretty simple, really. The handler creates a socket, starts listening on it, and then starts a worker thread that waits for
some client to connect to port 80. If something goes wrong, an exception is thrown. The global g_sListen object lasts
for the life of the program and is capable of accepting multiple simultaneous connections, each managed by a separate
thread.

The Server Thread

Now let's look at the ServerThreadProc() function:

UINT ServerThreadProc(LPVOID pParam)
{

 CSockAddr saClient;
 CHttpBlockingSocket sConnect;
 char request[100];
 char headers[] = "HTTP/1.0 200 OK\r\n"
 "Server: Inside Visual C++ SOCK01\r\n"
 "Date: Thu, 05 Sep 2005 17:33:12 GMT\r\n"
 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: 187\r\n"
 "\r\n"; // the important blank line
 char html[] =
 "<html><head><title>Inside Visual C++ Server</title></head>\r\n"
 "<body><body background=\"/samples/images/usa1.jpg\">\r\n"
 "<h1><center>This is a custom home page</center></h1><p>\r\n"
 "</body></html>\r\n\r\n";
 try {
 if(!g_sListen.Accept(sConnect, saClient)) {
 // Handler in view class closed the listening socket
 return 0;
 }
 AfxBeginThread(ServerThreadProc, pParam);
 // read request from client
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the first header
 if(strnicmp(request, "GET", 3) == 0) {
 do { // Process the remaining request headers
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the other headers
 } while(strcmp(request, "\r\n"));
 sConnect.Write(headers, strlen(headers), 10); // response hdrs
 sConnect.Write(html, strlen(html), 10); // HTML code
 }
 else {
 TRACE("SERVER: not a GET\n");
 // don't know what to do
 }
 sConnect.Close(); // Destructor doesn't close it
 }
 catch(CBlockingSocketException* e) {
 // Do something about the exception
 e->Delete();
 }
 return 0;
}

The most important function call is the Accept() call. The thread blocks until a client connects to the server's port 80,
and then Accept() returns with a new socket, sConnect. The current thread immediately starts another thread.
In the meantime, the current thread must process the client's request that just came in on sConnect. It first reads all the
request headers by calling ReadHttpHeaderLine() until it detects a blank line. Then it calls Write() to send the
response headers and the HTML statements. Finally, the current thread calls Close() to close the connection socket.
End of story for this connection. The next thread is sitting, blocked at the Accept() call, waiting for the next
connection.

Cleaning Up

To avoid a memory leak on exit, the program must ensure that all worker threads have been terminated. The simplest
way to do this is to close the listening socket. This forces any thread's pending Accept() to return FALSE, causing the
thread to exit.

try {
 g_sListen.Close();
 Sleep(340); // Wait for thread to exit
 WSACleanup(); // Terminate Winsock
}
catch(CUserException* e) {
 e->Delete();
}

A problem might arise if a thread were in the process of fulfilling a client request. In that case, the main thread should
positively ensure that all threads have terminated before exiting.

A Simplified HTTP Client Program

Now for the client side of the story, a simple working program that does a blind GET request. When a server receives a
GET request with a slash, as shown below, it's supposed to deliver its default HTML file:

GET / HTTP/1.0

If you typed http://www.slowsoft.com in a browser, the browser sends the blind GET request. This client program can
use the same CHttpBlockingSocket class you've already seen, and it must initialize Winsock the same way the
server did. A command handler simply starts a client thread with a call like this:

AfxBeginThread(ClientSocketThreadProc, GetSafeHwnd());

Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientSocketThreadProc(LPVOID pParam)
{
 CHttpBlockingSocket sClient;
 char* buffer = new char[MAXBUF];
 int nBytesReceived = 0;
 char request[] = "GET / HTTP/1.0\r\n";
 char headers[] = // Request headers
 "User-Agent: Mozilla/1.22 (Windows; U; 32bit)\r\n"
 "Accept: */*\r\n"
 "Accept: image/gif\r\n"
 "Accept: image/x-xbitmap\r\n"
 "Accept: image/jpeg\r\n"
 "\r\n"; // need this
 CSockAddr saServer, saClient;
 try {
 sClient.Create();
 saServer = CBlockingSocket::GetHostByName(g_strServerName, 80);
 sClient.Connect(saServer);
 sClient.Write(request, strlen(request), 10);
 sClient.Write(headers, strlen(headers), 10);
 do { // Read all the server's response headers
 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, 100, 10);
 } while(strcmp(buffer, "\r\n")); // through the first blank line
 nBytesReceived = sClient.ReadHttpResponse(buffer, 100, 10);
 if(nBytesReceived == 0) {
 AfxMessageBox("No response received");
 }
 else {
 buffer[nBytesReceived] = `\0';
 AfxMessageBox(buffer);
 }

 }
 catch(CBlockingSocketException* e) {
 // Log the exception
 e->Delete();
 }
 sClient.Close();
 delete [] buffer;
 return 0; // The thread exits
}

This thread first calls CBlockingSocket::GetHostByName to get the server computer's IP address. Then it
creates a socket and calls Connect() on that socket. Now there's a two-way communication channel to the server. The
thread sends its GET request followed by some request headers, reads the server's response headers, and then reads the
response file itself, which it assumes is a text file. After the thread displays the text in a message box, it exits.

Building a Web Server with CHttpBlockingSocket

If you need a Web server, your best bet is to buy one or to use the Microsoft Internet Information Server (IIS) that comes
bundled with Windows NT/2000/2003 Server. Of course, you'll learn more if you build your own server and you'll also
have a useful diagnostic tool. And what if you need features that IIS can't deliver? Suppose you want to add Web server
capability to an existing Windows application, or suppose you have a custom ActiveX control that sets up its own non-
HTTP TCP connection with the server. Take a good look at the server code in MYEX33A, which works under Windows
NT, Windows 95, and Windows 98. It might work as a foundation for your next custom server application.

MYEX33A Server Limitations

The server part of the MYEX33A program honors GET requests for files, and it has logic for processing POST requests.
(POST requests are described in Module 33.) These are the two most common HTTP request types. MYEX33A will not,
however, launch Common Gateway Interface (CGI) scripts or load Internet Server Application Programming
Interface (ISAPI) DLLs. You'll learn more about ISAPI in Module 33.) MYEX33A makes no provision for security,
and it doesn't have FTP capabilities. Other than that, it's a great server! If you want the missing features, just write the
code for them yourself.

MYEX33A Server Architecture

You'll soon see that MYEX33A combines an HTTP server, a Winsock HTTP client, and two WinInet HTTP clients.
All three clients can talk to the built-in server or to any other server on the Internet. Any client program, including the
Telnet utility and standard browsers such as Microsoft Internet Explorer, can communicate with the MYEX33A server.
You'll examine the client sections a little later in this module.
MYEX33A is a standard MFC SDI document-view application with a view class derived from CEditView. The
main menu includes Start Server and Stop Server menu choices as well as a Configuration command that brings up a
tabbed dialog for setting the home directory, the default file for blind GETs, and the listening port number (default is 80).
The Start Server command handler starts a global socket listening and then launches a thread, as in the simplified HTTP
server described previously. Look at the ServerThreadProc() function included in the file ServerThread.cpp of
the MYEX33A project. Each time a server thread processes a request, it logs the request by sending a message to the
CEditView window. It also sends messages for exceptions, such as bind errors.
The primary job of the server is to deliver files. It first opens a file, storing a CFile pointer in pFile, and then it reads
10 KB (SERVERMAXBUF) blocks and writes them to the socket sConnect, as shown in the code below:

char* buffer = new char[SERVERMAXBUF];
DWORD dwLength = pFile->GetLength();
nBytesSent = 0;
DWORD dwBytesRead = 0;
UINT uBytesToRead;
while(dwBytesRead < dwLength) {
 uBytesToRead = min(SERVERMAXBUF, dwLength - dwBytesRead);
 VERIFY(pFile->Read(buffer, uBytesToRead) == uBytesToRead);
 nBytesSent += sConnect.Write(buffer, uBytesToRead, 10);

http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html

 dwBytesRead += uBytesToRead;
}

The server is programmed to respond to a GET request for a phony file named Custom. It generates some HTML code
that displays the client's IP address, port number, and a sequential connection number. This is one possibility for server
customization.
The server normally listens on a socket bound to address INADDR_ANY. This is the server's default IP address
determined by the Ethernet board or assigned during your connection to your ISP. If your server computer has several IP
addresses, you can force the server to listen to one of them by filling in the Server IP Address in the Advanced
Configuration page. You can also change the server's listening port number on the Server page. If you choose port 90,
for example, browser users would connect to http://localhost:90 but make sure the port that you select does
not conflict with the well known ports. The leftmost status bar indicator pane displays "Listening" when the server is
running.

Using the Win32 TransmitFile() Function

If you have Windows NT 4.0 and above, you can make your server more efficient by using the Win32
TransmitFile() function in place of the CFile::Read loop in the code excerpt shown. TransmitFile()
sends bytes from an open file directly to a socket and is highly optimized. The MYEX33A ServerThreadProc()
function contains the following line:

if (::TransmitFile(sConnect, (HANDLE) pFile >m_hFile, dwLength, 0,
 NULL, NULL, TF_DISCONNECT))

If you have Windows NT, uncomment the line:

#define USE_TRANSMITFILE

at the top of ServerThread.cpp to activate the TransmitFile() logic.

Building MYEX33A From Scratch

Well, before we dig any deeper, let build MYMFC33A project from scratch. As usual, select New Project in Visual
C++ and follow the shown steps.

http://www.iana.org/assignments/port-numbers

Figure 10: MYEX33A – Visual C++ New project dialog.

Figure 11: MYEX33A – AppWizard step 1 of 6, SDI project.

Figure 12: MYEX33A – AppWizard step 2 of 6.

Figure 13: MYEX33A – AppWizard step 3 of 6, deselect Automation and ActiveX Controls.

Figure 14: MYEX33A – AppWizard step 4 of 6, we will use a normal dialog to create an address bar.

Figure 15: MYEX33A – AppWizard step 5 of 6.

Figure 16: MYEX33A – AppWizard step 6 of 6, selecting CEditView as the view base class.

Figure 17: MYEX33A project summary.

First of all let add the project resources. In ResourceView, add new dialog, rename the ID to IDD_DIALOGBAR. In
Styles tab, deselect the Title bar option, select Child for Style and None for Border. Add Static text, Edit and Button
controls as shown below. Follow the shown steps.

Control/resource ID Caption/Text
Dialog IDD_DIALOGBAR -
Static text Default Address:
Edit control IDC_URL -
Button IDC_REQUEST URL Request

Table 16.

Figure 18: IDD_DIALOGBAR property page.

Figure 19: Setting dialog’s Styles and Border properties.

Figure 20: The IDC_URL property.

Figure 21: The IDC_REQUEST property.

Add another three dialogs for the property page of the Configuration menu. Firstly add IDD_PROPPAGE_ADV, for the
advanced page settings and the following controls. Follow the shown steps.

Control/resource ID Caption/Text
Dialog IDD_PROPPAGE_ADV Advanced
Static text Default Server IP Address:
Edit control IDC_IPSERVER -
Static text Default Client IP Address:
Edit control IDC_IPCLIENT -

Static text Default
Static text - Use these fields ONLY if your computer supports
multiple IP addresses. The client IP address applies to WinSock
client ONLY.

Table 17.

Figure 22: The IDD_PROPPAGE_ADV property.

Figure 23: The IDC_IPSERVER property.

Figure 24: The IDC_IPCLIENT property.

Add new dialog, IDD_PROPPAGE_CLIENT, the client settings property page and the following controls. Follow the
shown steps.

Control/resource ID Caption/Text
Dialog IDD_PROPPAGE_CLIENT Client
Static text Default Server Name:
Edit control IDC_SERVER -
Static text Default Server IP Addr:
Edit control IDC_IPADDR -
Static text Default Port:
Edit control IDC_PORT -
Static text Default Server File:
Edit control IDC_FILE -
Tick box IDC_USEPROXY Use Web Proxy
Static text Default Proxy Server:
Edit control IDC_PROXY -

Static text Default

Specify either a name or IP address but not both. Server name
and IP address apply to both the WinSock and WinInet clients.
The Proxy fields apply only to the WinSock client. WinInet
client reads registry for proxy information.

Table 18.

Figure 25: The IDD_PROPPAGE_CLIENT property.

Figure 26: The IDC_SERVER property.

Figure 27: The IDC_IPADDR property.

Figure 28: The IDC_PORT property.

Figure 29: The IDC_FILE property.

Figure 30: The IDC_USEPROXY property.

Figure 31: The IDC_PROXY property.

Add new dialog and the following controls for server settings property page. Follow the shown steps.

Control/resource ID Caption/Text
Dialog IDD_PROPPAGE_SERVER Server
Static text Default Home Directory:
Edit control IDC_DIRECT -
Static text Default Default File:
Edit control IDC_DEFAULT -
Static text Default Listening Port:
Edit control IDC_PORTSERVER -

Table 19.

Figure 32: The IDD_PROPPAGE_SERVER property.

Figure 33: The IDC_DIRECT property.

Figure 34: The IDC_DEFAULT property.

Figure 35: The IDC_PORTSERVER property.

Add the following context menu. Follow the shown steps.

ID Caption
IDR_CONTEXT_MENU X
ID_EDIT_CLEAR_ALL Clear All

Table 20.

Figure 36: The X main menu property page.

Figure 37: The ID_EDIT_CLEAR_ALL property.

Add the following menu and their items. Follow the shown steps.

ID Caption Prompt
- Internet -
ID_INTERNET_START_SERVER Start Server Start the server thread
ID_INTERNET_STOP_SERVER Stop Server Stop the server thread
ID_INTERNET_REQUEST_SOCK Request (Winsock) Client request using Winsock functions
ID_INTERNET_REQUEST_INET Request (WinInet) Client request using WinInet functions
ID_INTERNET_CONFIGURATION Configuration Set home directory, server etc. for client

Table 21.

Figure 38: The Internet menu property.

Figure 39: The Start Server menu property.

Figure 40: The Stop Server menu property.

Figure 41: The Request (Winsock) menu property.

Figure 42: The Request (WinInet) menu property.

Figure 43: The Configuration menu property.

In ResourceView, select the IDD_PROPPAGE_ADV dialog, then, launch ClassWizard. The Adding a Class prompt
dialog will be displayed. Select Create a new class radio button and click OK. Add the following classes and all are
using the same Sheetconfig.h and Sheetconfig.cpp header and source files respectively.

ID Class name Base class
IDD_PROPPAGE_ADV CPageAdv CPropertyPage
IDD_PROPPAGE_SERVER CPageServer CPropertyPage
IDD_PROPPAGE_CLIENT CPageClient CPropertyPage
- CSheetConfig CPropertySheet

Table 22.

Figure 44: Adding new class dialog prompt.

Figure 45: Entering the header and source file names for the classes.

Figure 46: The CPageAdv class information.

Add other classes in the same Sheetconfig.h and Sheetconfig.cpp files.

Figure 47: Adding new class through ClassWizard.

Figure 48: The CPageClient class information.

Figure 49: The CPageServer class information.

Figure 50: The CSheetConfig class information.

Add member variable to CPageAdv class. In the ClassWizard, click the Member Variables page and click the Add
Variable button. Add the following variables. Follow the shown steps.

ID Variable name Type
IDC_IPCLIENT m_strIPClient CString
IDC_IPSERVER m_strIPServer CString

Table 23.

Figure 51: Adding member variables.

Figure 52: Adding m_strIPServer variable.

Figure 53: The added variables.

By following the previous steps, add member variable to CPageClient class. Don’t forget to save the previous
member variables addition by clicking the Yes button as shown below.

Figure 54: Save changes dialog prompt.

Add the following variables to CPageClient class. Follow the shown steps.

ID Variable name Type
IDC_FILE m_strFile CString
IDC_IPADDR m_strServerIP CString
IDC_PORT m_nPort UINT
IDC_PROXY m_strProxy CString
IDC_SERVER m_strServerName CString
IDC_USEPROXY m_bUseProxy BOOL

Table 24.

Figure 55: The added CPageClient member variables.

Select CPageServer class in the Class Name field, add the following member variables.

ID Variable name Type
IDC_DEFAULT m_strDefault CString
IDC_DIRECT m_strDirect CString
IDC_PORTSERVER m_nPortServer UINT

Table 25.

Figure 56: The added CPageServer member variables.

Using ClassView, add the following public member variables to CSheetConfig class.

public:
 CPageAdv m_pageAdv;
 CPageClient m_pageClient;
 CPageServer m_pageServer;

Figure 57: Adding member variables through ClassView.

Figure 58: Adding m_pageClient variable.

Listing 2.

Using ClassView add the following generic class.

Class name Base class
CSockAddr sockaddr_in
CBlockingSocket CObject
CBlockingSocketException CException
CHttpBlockingSocket CBlockingSocket

Table 26.

Don’t forget to use the same header and source Blocksock.h and Blocksock.cpp files respectively for all the generic
classes. Follow the shown steps.

Figure 59: Adding new class through ClassView.

Figure 60: Modifying the header and source file names.

Figure 61: The CSockAddr class information.

Figure 62: The dialog prompt for non-existence file. Just click OK.

Figure 63: The CBlockingSocket class information.

Figure 64: The CBlockingSocketException class information.

Figure 65: The CHttpBlockingSocket class information.

Add another generic CCallbackInternetSession class using Utility.h and Utility.cpp as the header and source
files respectively.

Class name Base class
CCallbackInternetSession CInternetSession

Table 27.

Figure 66: Modifying the header and source file names for new class.

Figure 67: The CCallbackInternetSession class information.

Figure 68: Dialog prompt for the non-existence file, just click the OK.

The Coding Part

Add the following header files in StdAfx.h. You can use winsock2.h, Winsock version 2. The library for the older
Winsock (ws_32.lib) cannot be found in Tenouk’s Visual C++ 6.0. Later on, you need to add the ws2_32.lib (Winsock
2) to your project.

#include <afxinet.h> // MFC WinInet
#include <afxmt.h> // MFC multi-threading classes
#include <winsock.h> // Winsock

Listing 3.

We have to add the ID_INDICATOR_LISTENING status indicator to the resource symbol manually. Select View
Resource Symbols menu.

Figure 69: Viewing, adding or modifying resource symbols.

Click the New button and add the status indicator as shown below.

Figure 70: Adding new resource symbol.

Add string in string table. In ResourceView, double click the String Table sub directory. Right click the area under
IDR_MAINFRAME and select New String.

Figure 71: Adding new string to string table.

Add the following string.

Figure 72: New string information.

Then we are ready to use the status bar indicator. Add the following status bar indicator with separator in
MainFrm.cpp.

 ID_SEPARATOR, // Wininet status
 ID_INDICATOR_LISTENING, // server listening

Listing 4.

Change the following code in MainFrm.h file. Later, we need to access those variables.

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

to

public: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CDialogBar m_wndDialogBar;
protected:
 CToolBar m_wndToolBar;

Listing 5.

The ID_INDICATOR_LISTENING cannot be found in the ClassWizard (though the ClassWizard database has been
rebuilt) so we need to add the code manually. Add the following indicator message handler declaration, command and
command update, in MainFrm.h. Add the code just before the DECLARE_MESSAGE_MAP().

afx_msg void OnUpdateListening(CCmdUI* pCmdUI);

Listing 6.

Add the message map for the declared status bar indicator in MainFrm.cpp.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_LISTENING, OnUpdateListening)

Listing 7.

Then add the implementation code at the end of the MainFrm.cpp.

void CMainFrame::OnUpdateListening(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(g_bListening);
}

Listing 8.

Next, add the following #include directive.

#include "Utility.h"

Listing 9.

Add/modify the OnCreate() as shown below.

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE | CBRS_TOP
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Remove this if you don't want tool tips or a resizable toolbar
 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 if (!m_wndDialogBar.Create(this, IDD_DIALOGBAR, CBRS_TOP, 0xE810))
 {
 TRACE0("Failed to create dialog bar\n");
 return -1; // fail to create
 }
 m_wndDialogBar.SetDlgItemText(IDC_URL, g_strURL);
 return 0;
}

Listing 10.

Listing 11.

And the PreCreateWindow().

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFrameWnd::PreCreateWindow(cs);
}

Listing 12.

Using ClassWizard, add/override ExitInstance() and OnIdle() to CMyex33aApp class.

Figure 73: Adding/overriding message handler.

Click the Edit Code button, add the following #include directive to myex33a.cpp.

#include "Utility.h"
#include "Blocksock.h"

Listing 13.

Edit myex33a.cpp as shown below.

// myex33a.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "myex33a.h"

#include "MainFrm.h"
#include "myex33aDoc.h"
#include "myex33aView.h"
#include "Utility.h"
#include "Blocksock.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

extern CBlockingSocket g_sListen;

///
// CMyex33aApp

BEGIN_MESSAGE_MAP(CMyex33aApp, CWinApp)
 //{{AFX_MSG_MAP(CMyex33aApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

///
// CMyex33aApp construction

CMyex33aApp::CMyex33aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CMyex33aApp object

CMyex33aApp theApp;

///
// CMyex33aApp initialization

BOOL CMyex33aApp::InitInstance()
{
 AfxEnableControlContainer();
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options (including MRU)

 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CMyex33aDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMyex33aView));
 AddDocTemplate(pDocTemplate);

// Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // socket initialization
 WSADATA wsd;
 VERIFY(WSAStartup(0x0101, &wsd) == 0);
 TRACE("WSAStartup -- min version = %x\n", wsd.wVersion);
 g_hMainWnd = m_pMainWnd->m_hWnd;

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)

 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CMyex33aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CMyex33aApp message handlers

int CMyex33aApp::ExitInstance()
{
 // TODO: Add your specialized code here and/or call the base class

try {
 if(g_bListening) {
 g_sListen.Close();
 Sleep(30); // wait for thread to exit
 }
 VERIFY(WSACleanup() != SOCKET_ERROR);
 }
 catch(CUserException* e) {
 TRACE("exception in CSock01App::ExitInstance\n");
 e->Delete();
 }
 return CWinApp::ExitInstance();
}

BOOL CMyex33aApp::OnIdle(LONG lCount)
{
 // TODO: Add your specialized code here and/or call the base class
 CStatusBar* pStatus = &((CMainFrame*) m_pMainWnd)->m_wndStatusBar;
 g_csStatus.Lock(); // blocking call in main thread -- could be dangerous
 pStatus->SetPaneText(1, g_pchStatus);
 g_csStatus.Unlock();
 return CWinApp::OnIdle(lCount);
}

Listing 14.

Add/modify the Sheetconfig.cpp code. Add the following code to the second constructor as shown below.

CSheetConfig::CSheetConfig(LPCTSTR pszCaption, CWnd* pParentWnd, UINT
iSelectPage):CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
 AddPage(&m_pageClient);
 AddPage(&m_pageServer);
 AddPage(&m_pageAdv);
}

Listing 15.

Add/modify the Blocksock.h code as shown below.

// Blocksock.h: interface for the CSockAddr class.
//
// needs winsock.h in the precompiled headers, add ws2_32.lib to the
// project later on...
//

#if !defined(AFX_BLOCKSOCK_H__68C3054C_1A67_4CAE_8B43_5BEF5CFA1C19__INCLUDED_)
#define AFX_BLOCKSOCK_H__68C3054C_1A67_4CAE_8B43_5BEF5CFA1C19__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

typedef const struct sockaddr* LPCSOCKADDR;

class CBlockingSocketException : public CException
{
 DECLARE_DYNAMIC(CBlockingSocketException)
public:
// Constructor
 CBlockingSocketException(char* pchMessage);

public:
 ~CBlockingSocketException() {}
 virtual BOOL GetErrorMessage(LPTSTR lpstrError, UINT nMaxError,
 PUINT pnHelpContext = NULL);
private:
 int m_nError;
 CString m_strMessage;
};

extern void LogBlockingSocketException(LPVOID pParam, char* pch,
CBlockingSocketException* pe);

class CSockAddr : public sockaddr_in {
public:
 // constructors
 CSockAddr()
 { sin_family = AF_INET;
 sin_port = 0;
 // Default
 sin_addr.s_addr = 0; }
 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa, sizeof(SOCKADDR)); }
 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin, sizeof(SOCKADDR_IN)); }
 // parms are host byte ordered
 CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)
 { sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = htonl(ulAddr); }

 // dotted IP addr string
 CSockAddr(const char* pchIP, const USHORT ushPort = 0)
 { sin_family = AF_INET;
 sin_port = htons(ushPort);
 // already network byte ordered
 sin_addr.s_addr = inet_addr(pchIP); }
 // Return the address in dotted-decimal format
 CString DottedDecimal()
 // constructs a new CString object
 { return inet_ntoa(sin_addr); }
 // Get port and address (even though they're public)
 USHORT Port() const
 { return ntohs(sin_port); }
 ULONG IPAddr() const
 { return ntohl(sin_addr.s_addr); }
 // operators added for efficiency
 const CSockAddr& operator=(const SOCKADDR& sa)
 { memcpy(this, &sa, sizeof(SOCKADDR));
 return *this; }
 const CSockAddr& operator=(const SOCKADDR_IN& sin)
 { memcpy(this, &sin, sizeof(SOCKADDR_IN));
 return *this; }
 operator SOCKADDR()
 { return *((LPSOCKADDR) this); }
 operator LPSOCKADDR()
 { return (LPSOCKADDR) this; }
 operator LPSOCKADDR_IN()
 { return (LPSOCKADDR_IN) this; }
};

// member functions truly block and must not be used in UI threads
// use this class as an alternative to the MFC CSocket class
class CBlockingSocket : public CObject
{
 DECLARE_DYNAMIC(CBlockingSocket)
public:
 SOCKET m_hSocket;
 CBlockingSocket() { m_hSocket = NULL; }
 void Cleanup();
 void Create(int nType = SOCK_STREAM);
 void Close();
 void Bind(LPCSOCKADDR psa);
 void Listen();
 void Connect(LPCSOCKADDR psa);
 BOOL Accept(CBlockingSocket& s, LPSOCKADDR psa);
 int Send(const char* pch, const int nSize, const int nSecs);
 int Write(const char* pch, const int nSize, const int nSecs);
 int Receive(char* pch, const int nSize, const int nSecs);
 int SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 int ReceiveDatagram(char* pch, const int nSize, LPSOCKADDR psa,
 const int nSecs);
 void GetPeerAddr(LPSOCKADDR psa);
 void GetSockAddr(LPSOCKADDR psa);
 static CSockAddr GetHostByName(const char* pchName,
 const USHORT ushPort = 0);
 static const char* GetHostByAddr(LPCSOCKADDR psa);
 operator SOCKET()
 { return m_hSocket; }
};

class CHttpBlockingSocket : public CBlockingSocket
{
public:
 DECLARE_DYNAMIC(CHttpBlockingSocket)
 // max receive buffer size (> hdr line length)

 enum {nSizeRecv = 10000};
 CHttpBlockingSocket();
 ~CHttpBlockingSocket();
 int ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs);
 int ReadHttpResponse(char* pch, const int nSize, const int nSecs);
private:
 // read buffer
 char* m_pReadBuf;
 // number of bytes in the read buffer
 int m_nReadBuf;
};

#endif // !defined(AFX_BLOCKSOCK_H__68C3054C_1A67_4CAE_8B43_5BEF5CFA1C19__INCLUDED_)

Listing 16.

Next, add/modify the implementation part of the previous member functions and variables in Blocksock.cpp.

// Blocksock.cpp: implementation of the
// CBlockingSocketException, CBlockingSocket, CHttpBlockingSocket
//

#include "stdafx.h"
#include "myex33a.h"
#include "Blocksock.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif

// Class CBlockingSocketException
IMPLEMENT_DYNAMIC(CBlockingSocketException, CException)

CBlockingSocketException::CBlockingSocketException(char* pchMessage)
{
 m_strMessage = pchMessage;
 m_nError = WSAGetLastError();
}

BOOL CBlockingSocketException::GetErrorMessage(LPTSTR lpstrError, UINT nMaxError,
 PUINT pnHelpContext /*= NULL*/)
{

 char text[200];
 if(m_nError == 0)
 { wsprintf(text, "%s error", (const char*) m_strMessage); }
 else
 { wsprintf(text, "%s error #%d", (const char*) m_strMessage, m_nError); }
 strncpy(lpstrError, text, nMaxError - 1);
 return TRUE;
}

// Class CBlockingSocket
IMPLEMENT_DYNAMIC(CBlockingSocket, CObject)

void CBlockingSocket::Cleanup()
{
 // doesn't throw an exception because it's called in a catch block
 if(m_hSocket == NULL) return;
 VERIFY(closesocket(m_hSocket) != SOCKET_ERROR);
 m_hSocket = NULL;
}

void CBlockingSocket::Create(int nType /* = SOCK_STREAM */)
{
 ASSERT(m_hSocket == NULL);
 if((m_hSocket = socket(AF_INET, nType, 0)) == INVALID_SOCKET) {
 throw new CBlockingSocketException("Create");
 }
}

void CBlockingSocket::Bind(LPCSOCKADDR psa)
{
 ASSERT(m_hSocket != NULL);
 if(bind(m_hSocket, psa, sizeof(SOCKADDR)) == SOCKET_ERROR) {
 throw new CBlockingSocketException("Bind");
 }
}

void CBlockingSocket::Listen()
{
 ASSERT(m_hSocket != NULL);
 if(listen(m_hSocket, 5) == SOCKET_ERROR) {
 throw new CBlockingSocketException("Listen");
 }
}

BOOL CBlockingSocket::Accept(CBlockingSocket& sConnect, LPSOCKADDR psa)
{
 ASSERT(m_hSocket != NULL);
 ASSERT(sConnect.m_hSocket == NULL);
 int nLengthAddr = sizeof(SOCKADDR);
 sConnect.m_hSocket = accept(m_hSocket, psa, &nLengthAddr);
 if(sConnect == INVALID_SOCKET) {
 // no exception if the listen was canceled
 if(WSAGetLastError() != WSAEINTR) {
 throw new CBlockingSocketException("Accept");
 }
 return FALSE;
 }
 return TRUE;
}

void CBlockingSocket::Close()
{
 if (NULL == m_hSocket)
 return;

 if(closesocket(m_hSocket) == SOCKET_ERROR) {
 // should be OK to close if closed already
 throw new CBlockingSocketException("Close");
 }
 m_hSocket = NULL;
}

void CBlockingSocket::Connect(LPCSOCKADDR psa)
{
 ASSERT(m_hSocket != NULL);
 // should timeout by itself
 if(connect(m_hSocket, psa, sizeof(SOCKADDR)) == SOCKET_ERROR) {
 throw new CBlockingSocketException("Connect");
 }
}

int CBlockingSocket::Write(const char* pch, const int nSize, const int nSecs)
{
 int nBytesSent = 0;
 int nBytesThisTime;

 const char* pch1 = pch;
 do {
 nBytesThisTime = Send(pch1, nSize - nBytesSent, nSecs);
 nBytesSent += nBytesThisTime;
 pch1 += nBytesThisTime;
 } while(nBytesSent < nSize);
 return nBytesSent;
}

int CBlockingSocket::Send(const char* pch, const int nSize, const int nSecs)
{
 ASSERT(m_hSocket != NULL);
 // returned value will be less than nSize if client cancels the reading
 FD_SET fd = {1, m_hSocket};
 TIMEVAL tv = {nSecs, 0};
 if(select(0, NULL, &fd, NULL, &tv) == 0) {
 throw new CBlockingSocketException("Send timeout");
 }
 int nBytesSent;
 if((nBytesSent = send(m_hSocket, pch, nSize, 0)) == SOCKET_ERROR) {
 throw new CBlockingSocketException("Send");
 }
 return nBytesSent;
}

int CBlockingSocket::Receive(char* pch, const int nSize, const int nSecs)
{
 ASSERT(m_hSocket != NULL);
 FD_SET fd = {1, m_hSocket};
 TIMEVAL tv = {nSecs, 0};
 if(select(0, &fd, NULL, NULL, &tv) == 0) {
 throw new CBlockingSocketException("Receive timeout");
 }

 int nBytesReceived;
 if((nBytesReceived = recv(m_hSocket, pch, nSize, 0)) == SOCKET_ERROR) {
 throw new CBlockingSocketException("Receive");
 }
 return nBytesReceived;
}

int CBlockingSocket::ReceiveDatagram(char* pch, const int nSize, LPSOCKADDR psa, const
int nSecs)
{
 ASSERT(m_hSocket != NULL);
 FD_SET fd = {1, m_hSocket};
 TIMEVAL tv = {nSecs, 0};
 if(select(0, &fd, NULL, NULL, &tv) == 0) {
 throw new CBlockingSocketException("Receive timeout");
 }

 // input buffer should be big enough for the entire datagram
 int nFromSize = sizeof(SOCKADDR);
 int nBytesReceived = recvfrom(m_hSocket, pch, nSize, 0, psa, &nFromSize);
 if(nBytesReceived == SOCKET_ERROR) {
 throw new CBlockingSocketException("ReceiveDatagram");
 }
 return nBytesReceived;
}

int CBlockingSocket::SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
const int nSecs)
{
 ASSERT(m_hSocket != NULL);
 FD_SET fd = {1, m_hSocket};
 TIMEVAL tv = {nSecs, 0};

 if(select(0, NULL, &fd, NULL, &tv) == 0) {
 throw new CBlockingSocketException("Send timeout");
 }

 int nBytesSent = sendto(m_hSocket, pch, nSize, 0, psa, sizeof(SOCKADDR));
 if(nBytesSent == SOCKET_ERROR) {
 throw new CBlockingSocketException("SendDatagram");
 }
 return nBytesSent;
}

void CBlockingSocket::GetPeerAddr(LPSOCKADDR psa)
{
 ASSERT(m_hSocket != NULL);
 // gets the address of the socket at the other end
 int nLengthAddr = sizeof(SOCKADDR);
 if(getpeername(m_hSocket, psa, &nLengthAddr) == SOCKET_ERROR) {
 throw new CBlockingSocketException("GetPeerName");
 }
}

void CBlockingSocket::GetSockAddr(LPSOCKADDR psa)
{
 ASSERT(m_hSocket != NULL);
 // gets the address of the socket at this end
 int nLengthAddr = sizeof(SOCKADDR);
 if(getsockname(m_hSocket, psa, &nLengthAddr) == SOCKET_ERROR) {
 throw new CBlockingSocketException("GetSockName");
 }
}

//static
CSockAddr CBlockingSocket::GetHostByName(const char* pchName, const USHORT ushPort /* = 0
*/)
{
 hostent* pHostEnt = gethostbyname(pchName);
 if(pHostEnt == NULL) {
 throw new CBlockingSocketException("GetHostByName");
 }
 ULONG* pulAddr = (ULONG*) pHostEnt->h_addr_list[0];
 SOCKADDR_IN sockTemp;
 sockTemp.sin_family = AF_INET;
 sockTemp.sin_port = htons(ushPort);
 sockTemp.sin_addr.s_addr = *pulAddr; // address is already in network byte order
 return sockTemp;
}

//static
const char* CBlockingSocket::GetHostByAddr(LPCSOCKADDR psa)
{
 hostent* pHostEnt = gethostbyaddr((char*) &((LPSOCKADDR_IN) psa)
 ->sin_addr.s_addr, 4, PF_INET);
 if(pHostEnt == NULL) {
 throw new CBlockingSocketException("GetHostByAddr");
 }
 return pHostEnt->h_name; // caller shouldn't delete this memory
}

// Class CHttpBlockingSocket
IMPLEMENT_DYNAMIC(CHttpBlockingSocket, CBlockingSocket)

CHttpBlockingSocket::CHttpBlockingSocket()
{
 m_pReadBuf = new char[nSizeRecv];
 m_nReadBuf = 0;
}

CHttpBlockingSocket::~CHttpBlockingSocket()
{
 delete [] m_pReadBuf;
}

int CHttpBlockingSocket::ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs)
// reads an entire header line through CRLF (or socket close)
// inserts zero string terminator, object maintains a buffer
{
 int nBytesThisTime = m_nReadBuf;
 int nLineLength = 0;
 char* pch1 = m_pReadBuf;
 char* pch2;
 do {
 // look for lf (assume preceded by cr)
 if((pch2 = (char*) memchr(pch1 , '\n', nBytesThisTime)) != NULL) {
 ASSERT((pch2) > m_pReadBuf);
 ASSERT(*(pch2 - 1) == '\r');
 nLineLength = (pch2 - m_pReadBuf) + 1;
 if(nLineLength >= nSize) nLineLength = nSize - 1;
 memcpy(pch, m_pReadBuf, nLineLength); // copy the line to caller
 m_nReadBuf -= nLineLength;
 // shift remaining characters left
 memmove(m_pReadBuf, pch2 + 1, m_nReadBuf);
 break;
 }
 pch1 += nBytesThisTime;
 nBytesThisTime = Receive(m_pReadBuf + m_nReadBuf, nSizeRecv - m_nReadBuf,
nSecs);
 if(nBytesThisTime <= 0)
 { // sender closed socket or line longer than buffer
 throw new CBlockingSocketException("ReadHeaderLine");
 }
 m_nReadBuf += nBytesThisTime;
 }
 while(TRUE);
 *(pch + nLineLength) = '\0';
 return nLineLength;
}

int CHttpBlockingSocket::ReadHttpResponse(char* pch, const int nSize, const int nSecs)
// reads remainder of a transmission through buffer full or socket close
// (assume headers have been read already)
{
 int nBytesToRead, nBytesThisTime, nBytesRead = 0;
 if(m_nReadBuf > 0) { // copy anything already in the recv buffer
 memcpy(pch, m_pReadBuf, m_nReadBuf);
 pch += m_nReadBuf;
 nBytesRead = m_nReadBuf;
 m_nReadBuf = 0;
 }
 do { // now pass the rest of the data directly to the caller
 nBytesToRead = min(nSizeRecv, nSize - nBytesRead);
 nBytesThisTime = Receive(pch, nBytesToRead, nSecs);
 if(nBytesThisTime <= 0) break; // sender closed the socket
 pch += nBytesThisTime;
 nBytesRead += nBytesThisTime;
 }
 while(nBytesRead <= nSize);
 return nBytesRead;
}

void LogBlockingSocketException(LPVOID pParam, char* pch, CBlockingSocketException* pe)
{ // pParam holds the HWND for the destination window (in another thread)
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:%S GMT");

 char text1[200], text2[50];
 pe->GetErrorMessage(text2, 49);
 wsprintf(text1, "WINSOCK ERROR--%s %s -- %s\r\n", pch, text2, (const char*)
strGmt);
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 65534, 65535);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0, (LPARAM) text1);
}

Listing 17.

Before we forget, add the precompiled header for the Winsock2.h, else there will be errors during the linking. Select
Project Settings menu. In the Link page on the right window, add Ws2_32.lib as shown below. Here, we are using
Winsock 2 library. It works fine.

Figure 74: Adding library module to Visual C++ project.

Then modify/add the Utility.h and Utility.cpp code as shown below.

// Utility.h: interface for the CCallbackInternetSession class.
//
//

#if !defined(AFX_UTILITY_H__C57D5E4E_7F33_4249_BEA4_E69BD55D710B__INCLUDED_)
#define AFX_UTILITY_H__C57D5E4E_7F33_4249_BEA4_E69BD55D710B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define WM_CALLBACK WM_USER + 5

extern volatile int g_nConnection;
extern CString g_strServerName; // used by both winsock and wininet code
extern CString g_strServerIP; // used by both winsock and wininet code

extern CString g_strFile;
extern char g_pchStatus[];
extern HWND g_hMainWnd;
extern CCriticalSection g_csStatus;
extern CString g_strIPClient;
extern volatile UINT g_nPort;
extern CString g_strProxy;
extern BOOL g_bUseProxy;
extern volatile BOOL g_bListening;
extern CString g_strDirect;
extern CString g_strIPServer;
extern volatile UINT g_nPortServer;
extern CString g_strURL;
extern CString g_strDefault;

extern UINT ClientUrlThreadProc(LPVOID pParam);
extern UINT ServerThreadProc(LPVOID pParam);
extern UINT ClientWinInetThreadProc(LPVOID pParam);
extern UINT ClientSocketThreadProc(LPVOID pParam);

extern void LogInternetException(LPVOID pParam, CInternetException* pe);

class CCallbackInternetSession : public CInternetSession
{
public:
 CCallbackInternetSession(LPCTSTR pstrAgent = NULL, DWORD dwContext = 1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS, LPCTSTR pstrProxyName = NULL,
 LPCTSTR pstrProxyBypass = NULL, DWORD dwFlags = 0);
protected:
 virtual void OnStatusCallback(DWORD dwContext, DWORD dwInternalStatus,
 LPVOID lpvStatusInformation, DWORD dwStatusInformationLength);
};

#endif // !defined(AFX_UTILITY_H__C57D5E4E_7F33_4249_BEA4_E69BD55D710B__INCLUDED_)

Listing 18.

// Utility.cpp: implementation of the CCallbackInternetSession class
// and other functions - contains stuff used by more than one thread
//
//

#include "stdafx.h"
#include "myex33a.h"
#include "Utility.h"
#include "Blocksock.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif

// connection number
volatile int g_nConnection = 0;
// used by both winsock and wininet
CString g_strServerName = "localhost";
CString g_strServerIP;
volatile UINT g_nPort = 80;
CString g_strFile = "/custom";

CCallbackInternetSession::CCallbackInternetSession(LPCTSTR pstrAgent, DWORD dwContext,
 DWORD dwAccessType, LPCTSTR pstrProxyName, LPCTSTR pstrProxyBypass, DWORD
dwFlags) :

 CInternetSession(pstrAgent, dwContext, dwAccessType, pstrProxyName,
pstrProxyBypass, dwFlags)
{
 EnableStatusCallback();
}

void CCallbackInternetSession::OnStatusCallback(DWORD dwContext, DWORD dwInternalStatus,
 LPVOID lpvStatusInformation, DWORD dwStatusInformationLength)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 int errors[] = {10, 11, 20, 21, 30, 31, 40, 41, 42, 43, 50, 51, 60, 70, 100, 110,
0};
 char* text[] = {
 "Resolving name",
 "Name resolved",
 "Connecting to server",
 "Connected to server",
 "Sending request",
 "Request sent",
 "Receiving response",
 "Response received",
 "Ctl response received",
 "Prefetch",
 "Closing connection",
 "Connection closed",
 "Handle created",
 "Handle closing",
 "Request complete",
 "Redirect",
 "Unknown" };
 int n;
/* // demonstrates request cancellation
 if(dwInternalStatus == INTERNET_STATUS_REQUEST_SENT) {
 AfxThrowInternetException(dwContext, 999);
 }
*/
 for(n = 0; errors[n] != 0; n++) {
 if(errors[n] == (int) dwInternalStatus) break;
 }
 g_csStatus.Lock();
 strcpy(g_pchStatus, text[n]);
 if(dwInternalStatus == INTERNET_STATUS_RESOLVING_NAME ||
 dwInternalStatus == INTERNET_STATUS_NAME_RESOLVED) {
 strcat(g_pchStatus, "-");
 strcat(g_pchStatus, (char*) lpvStatusInformation);
 }
 TRACE("WININET STATUS: %s\n", g_pchStatus);
 g_csStatus.Unlock();
 // frame doesn't need a handler -- message triggers OnIdle, which updates status
bar
 ::PostMessage(g_hMainWnd, WM_CALLBACK, 0, 0);
}

void LogInternetException(LPVOID pParam, CInternetException* pe)
{ // pParam holds the HWND for the destination window (in another thread)
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:% GMT");
 char text1[300], text2[100];
 wsprintf(text1, "CLIENT ERROR: WinInet error #%d -- %s\r\n ",
 pe->m_dwError, (const char*) strGmt);
 pe->GetErrorMessage(text2, 99);
 strcat(text1, text2);
 if(pe->m_dwError == 12152) {
 strcat(text1, " URL not found?\r\n");
 }
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 65534, 65535);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0, (LPARAM) text1);

}

Listing 19.

Add the server thread source file, ServerThread.cpp as shown below.

Figure 75: Adding new file to project.

Figure 76: Adding source file to project.

Copy and paste the following code.

// serverthread.cpp

#include <stdafx.h>

#include "Blocksock.h"
#include "Utility.h"
#define SERVERMAXBUF 10000
#define MAXLINELENGTH 200

//#define USE_TRANSMITFILE // uncomment if you have Windows NT

volatile BOOL g_bListening = FALSE;
volatile UINT g_nPortServer = 80;

// Adjust to your programming environment accordingly...
CString g_strDirect = "F:\\mfcproject\\myex33a\\WebSite";
CString g_strIPServer;
// The default document, later, you need to create this file...
CString g_strDefault = "default.htm";
CBlockingSocket g_sListen;

BOOL Parse(char* pStr, char** ppToken1, char** ppToken2)
// really stupid parsing routine
// (must find two tokens, each followed by a space)
{
 *ppToken1 = pStr;
 char* pch = strchr(pStr, ' ');
 if(pch) {
 *pch = '\0';
 pch++;
 *ppToken2 = pch;
 pch = strchr(pch, ' ');
 if(pch) {
 *pch = '\0';
 return TRUE;
 }
 }
 return FALSE;
}

void LogRequest(LPVOID pParam, char* pch, CSockAddr sa)
{ // pParam holds the HWND for the destination window (in another thread)
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:%S GMT");
 char text1[1000];
 wsprintf(text1, "SERVER CONNECTION # %d: IP addr = %s, port = %d -- %s\r\n",
 g_nConnection, sa.DottedDecimal(), sa.Port(), (const char*) strGmt);
 strcat(text1, pch);
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 65534, 65535);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0, (LPARAM) text1);
}

CFile* OpenFile(const char* pName)
{
 // if it's really a directory, open the default HTML file
 CFileException e;
 CFile* pFile = new CFile();
 if(*pName == '/') pName++;
 CString strName = pName;
 if(pFile->Open(strName, CFile::modeRead, &e)) {
 return pFile;
 }
 if((e.m_cause == CFileException::accessDenied) ||
 (e.m_cause == CFileException::badPath)) { // directory?
 int nLength;
 // add a / unless it's the "root" directory
 if((nLength = strName.GetLength()) > 1) {
 if(strName[nLength - 1] != '/') {
 strName += '/';
 }
 }

 strName += g_strDefault;
 if(pFile->Open(strName, CFile::modeRead, &e)) {
 return pFile;
 }
 }
 delete pFile;
 return NULL;
}

UINT ServerThreadProc(LPVOID pParam)
{
 CSockAddr saClient;
 CHttpBlockingSocket sConnect;
 char* buffer = new char[SERVERMAXBUF];
 char message[100], headers[500], request1[MAXLINELENGTH],
request2[MAXLINELENGTH];
 char hdrErr[] = "HTTP/1.0 404 Object Not Found\r\n"
 "Server: Inside Visual C++ SOCK01\r\n"
 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: 66\r\n\r\n" // WinInet wants correct length
 "<html><h1><body>HTTP/1.0 404 Object Not Found</h1></body></html>\r\n";
 char hdrFmt[] = "HTTP/1.0 200 OK\r\n"
 "Server: Inside Visual C++ EX34A\r\n"
 "Date: %s\r\n"
 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: %d\r\n";
 char html1[] = "<html><head><title>Inside Visual C++ \
 Server</title></head>\r\n"
 "<body><body background=\"/samples/images/usa1.jpg\">\r\n"
 "<h1><center>This is a custom home page</center></h1><p>\r\n"
 "Click here for iisdocs.htm.<p>\r\n"
 "Click here for
disclaim.htm.<p>\r\n";
 // custom message goes here
 char html2[] = "</body></html>\r\n\r\n";
 CString strGmtNow = CTime::GetCurrentTime().FormatGmt("%a, %d %b %Y %H:%M:%S
GMT");
 int nBytesSent = 0;
 CFile* pFile = NULL;
 try {
 if(!g_sListen.Accept(sConnect, saClient)) {
 // view or application closed the listing socket
 g_bListening = FALSE;
 delete [] buffer;
 return 0;
 }
 g_nConnection++;
 ::SetCurrentDirectory(g_strDirect);
 AfxBeginThread(ServerThreadProc, pParam, THREAD_PRIORITY_NORMAL);
 // read request from client
 sConnect.ReadHttpHeaderLine(request1, MAXLINELENGTH, 10);
 LogRequest(pParam, request1, saClient);
 char* pToken1; char* pToken2;
 if(Parse(request1, &pToken1, &pToken2)) {
 if(!stricmp(pToken1, "GET")) {
 do { // eat the remaining headers
 sConnect.ReadHttpHeaderLine(request2, MAXLINELENGTH, 10);
 TRACE("SERVER: %s", request2);
 }
 while(strcmp(request2, "\r\n"));
 if(!stricmp(pToken2, "/custom")) { // special request
 // send a "custom" HTML page
 wsprintf(message, "Hi! you are connection #%d on IP %s, port
%d<p>%s", g_nConnection, saClient.DottedDecimal(), saClient.Port(), strGmtNow);

 wsprintf(headers, hdrFmt, (const char*) strGmtNow, strlen(html1)
 + strlen(message) + strlen(html2));
 // no If-Modified
 strcat(headers, "\r\n"); // blank line
 sConnect.Write(headers, strlen(headers), 10);
 sConnect.Write(html1, strlen(html1), 10);
 sConnect.Write(message, strlen(message), 10);
 sConnect.Write(html2, strlen(html2), 10);
 }
 else if(strchr(pToken2, '?')) { // CGI request
 // Netscape doesn't pass function name in a GET
 TRACE("SERVER: CGI request detected %s\n", pToken2);
 // could load and run the ISAPI DLL here
 }
 else { // must be a file
 // assume this program has already
 // set the default WWW directory
 if((pFile = OpenFile(pToken2)) != NULL) {
 CFileStatus fileStatus;
 pFile->GetStatus(fileStatus);
 CString strGmtMod = fileStatus.m_mtime.FormatGmt("%a, %d
 %b %Y %H:%M:%S GMT");
 char hdrModified[50];
 wsprintf(hdrModified, "Last-Modified: %s\r\n\r\n",
 (const char*) strGmtMod);
 DWORD dwLength = pFile->GetLength();
 // Date: , Content-Length:
 wsprintf(headers, hdrFmt, (const char*) strGmtNow,
 dwLength);
 strcat(headers, hdrModified);
 nBytesSent = sConnect.Write(headers, strlen(headers),

 10);
 TRACE("SERVER: header characters sent = %d\n",
 nBytesSent);
 // would be a good idea to send
 // the file only if the If-
 // Modified-Since date
 // were less than the file's m_mtime
 nBytesSent = 0;
#ifdef USE_TRANSMITFILE
 if(::TransmitFile(sConnect, (HANDLE) pFile->m_hFile, dwLength,
 0, NULL, NULL, TF_DISCONNECT)) {
 nBytesSent = (int) dwLength;
 }
#else
 DWORD dwBytesRead = 0;
 UINT uBytesToRead;
 // send file in small chunks (5K) to avoid big memory alloc overhead
 while(dwBytesRead < dwLength) {
 uBytesToRead = min(SERVERMAXBUF, dwLength - dwBytesRead);
 VERIFY(pFile->Read(buffer, uBytesToRead) == uBytesToRead);
 nBytesSent += sConnect.Write(buffer, uBytesToRead, 10);
 dwBytesRead += uBytesToRead;
 }
#endif
 TRACE("SERVER: full file sent successfully\n");
 }
 else {
 // 404 Object Not Found
 nBytesSent = sConnect.Write(hdrErr, strlen(hdrErr), 10);
 }
 }
 }
 else if(!stricmp(pToken1, "POST")) {
 do { // eat the remaining headers thru blank line

 sConnect.ReadHttpHeaderLine(request2, MAXLINELENGTH, 10);
 TRACE("SERVER: POST %s", request2);
 }
 while(strcmp(request2, "\r\n"));
 // read the data line sent by the client
 sConnect.ReadHttpHeaderLine(request2, MAXLINELENGTH, 10);
 TRACE("SERVER: POST PARAMETERS = %s\n", request2);
 LogRequest(pParam, request2, saClient);
 // launch ISAPI DLL here?
 // 404 error for now
 nBytesSent = sConnect.Write(hdrErr, strlen(hdrErr),
 10);
 }
 else {
 TRACE("SERVER: %s (not a GET or POST)\n", pToken1);
 // don't know how to eat the headers
 }
 }
 else {
 TRACE("SERVER: bad request\n");
 }
 sConnect.Close(); // destructor can't close it
 }
 catch(CBlockingSocketException* pe) {
 LogBlockingSocketException(pParam, "SERVER:", pe);
 pe->Delete();
 }
 TRACE("SERVER: file characters sent = %d\n", nBytesSent);
 delete [] buffer;
 if(pFile) delete pFile;
 return 0;
}

Listing 20.

Add the following client threads source files for Winsock, WinInet and OpenURL(): ClientinetThread.cpp,
ClientsockThread.cpp and ClienturlThread.cpp.

Figure 77: Adding another new source file to project.
Add the codes.

// clientinetthread.cpp (uses MFC Wininet calls)

#include <stdafx.h>
#include "utility.h"
#define MAXBUF 80000

HWND g_hMainWnd = 0;
char g_pchStatus[25] = "";
CCriticalSection g_csStatus;

UINT ClientWinInetThreadProc(LPVOID pParam)
{
 CCallbackInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 DWORD dwStatus;
 try {
 // username/password doesn't work yet
 if(!g_strServerName.IsEmpty()) {
 pConnection = session.GetHttpConnection(g_strServerName,
 (INTERNET_PORT) g_nPort);
 }
 else {
 pConnection = session.GetHttpConnection(g_strServerIP,
 (INTERNET_PORT) g_nPort);
 }
 pFile1 = pConnection->OpenRequest(1, g_strFile, NULL, 1, NULL, NULL, // GET
request
 INTERNET_FLAG_KEEP_CONNECTION); // needed for NT

Challenge/Response authentication
 // INTERNET_FLAG_RELOAD forces reload from the server (bypasses client's
 // cache)
 pFile1->SendRequest();
 pFile1->QueryInfoStatusCode(dwStatus);
 TRACE("QueryInfoStatusCode = %d\n", dwStatus);
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0) { // makes caching work if read complete
 AfxMessageBox("File overran buffer -- not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer, "WININET
CLIENT", MB_OK);
 // could use existing pFile1 to SendRequest again if we wanted to
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 // could call OpenRequest again on same connection if we wanted to
 if(pFile1) delete pFile1; // does the close -- prints a warning
 // why does it print a warning?
 if(pConnection) delete pConnection;
 delete [] buffer;
 g_csStatus.Lock();
 // problem with empty string. bug #9897
 strcpy(g_pchStatus, "");
 g_csStatus.Unlock();
 return 0;
}

Listing 21.

// clientsockthread.cpp (uses Winsock calls only)

#include <stdafx.h>
#include "blocksock.h"
#include "utility.h"
#define MAXBUF 80000

CString g_strIPClient;
CString g_strProxy = "ITGPROXY";
BOOL g_bUseProxy = FALSE;

UINT ClientSocketThreadProc(LPVOID pParam)
{
 // sends a blind request, followed by a request for a specific URL
 CHttpBlockingSocket sClient;
 char* buffer = new char[MAXBUF];
 int nBytesReceived = 0;
 // We're doing a blind GET, but we must provide server name if we're using a
proxy.
 // A blind GET is supposed to retrieve the server's default HTML document.
 // Some servers don't have a default document but return a document name
 // in the Location header.
 char request[] = "GET %s%s%s HTTP/1.0\r\n";
 char headers[] =
 "User-Agent: Mozilla/1.22 (Windows; U; 32bit)\r\n"
 "Accept: */*\r\n"
 "Accept: image/gif\r\n"
 "Accept: image/x-xbitmap\r\n"
 "Accept: image/jpeg\r\n"
 // following line tests server's ability to not send the URL

 // "If-Modified-Since: Wed, 11 Sep 1996 20:23:04 GMT\r\n"
 "\r\n"; // need this
 CSockAddr saServer, saPeer, saTest, saClient;
 try {
 sClient.Create();
 if(!g_strIPClient.IsEmpty()) {
 // won't work if network is assigning us our IP address
 // good only for intranets where client computer
 // has several IP addresses
 saClient = CSockAddr(g_strIPClient);
 sClient.Bind(saClient);
 }
 if(g_bUseProxy) {
 saServer = CBlockingSocket::GetHostByName(g_strProxy, 80);
 }
 else {
 if(g_strServerIP.IsEmpty()) {
 saServer = CBlockingSocket::GetHostByName(g_strServerName, g_nPort);
 }
 else {
 saServer = CSockAddr(g_strServerIP, g_nPort);
 }
 }
 sClient.Connect(saServer);
 sClient.GetSockAddr(saTest);
 TRACE("SOCK CLIENT: GetSockAddr = %s, %d\n", saTest.DottedDecimal(),
saTest.Port());
 if(g_bUseProxy) {
 wsprintf(buffer, request, "http://" , (const char*) g_strServerName,
g_strFile);
 }
 else {
 wsprintf(buffer, request, "", "", g_strFile);
 }
 sClient.Write(buffer, strlen(buffer), 10);
 sClient.Write(headers, strlen(headers), 10);
 // read all the server's response headers
 do {
 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, MAXBUF, 10);
 TRACE("SOCK CLIENT: %s", buffer);
 } while(strcmp(buffer, "\r\n"));
 // read the server's file
 nBytesReceived = sClient.ReadHttpResponse(buffer, MAXBUF, 10);
 TRACE("SOCK CLIENT: bytes received = %d\n", nBytesReceived);
 if(nBytesReceived == 0) {
 AfxMessageBox("No response received. Bad URL?");
 }
 else {
 buffer[nBytesReceived] = '\0';
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer, "WINSOCK
CLIENT", MB_OK);
 }

 // could do another request on sClient by calling Close, then Create, etc.
 }
 catch(CBlockingSocketException* e) {
 LogBlockingSocketException(pParam, "CLIENT:", e);
 e->Delete();
 }
 sClient.Close();
 delete [] buffer;
 return 0;
}

Listing 22.

// clienturlthread.cpp (uses CInternetSession::OpenURL)

#include <stdafx.h>
#include "utility.h"
#define MAXBUF 80000

CString g_strURL = "http://";

UINT ClientUrlThreadProc(LPVOID pParam)
{
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;

 CInternetSession session; // can't get status callbacks for OpenURL
 CStdioFile* pFile1 = NULL; // could call ReadString to get 1 line
 try {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY |
 INTERNET_FLAG_KEEP_CONNECTION);
 // if OpenURL fails, we won't get past here
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0) { // makes caching work if read complete
 AfxMessageBox("File overran buffer -- not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer, "URL CLIENT",
MB_OK);
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1) delete pFile1;
 delete [] buffer;
 return 0;
}

Listing 23.

Using ClassWizard, add SaveModified() virtual function to CMyex33aDoc class.

Figure 78: Adding SaveModified() function to CMyex33aDoc class.

Click the Edit Code button and edit the SaveModified() as shown below.

BOOL CMyex33aDoc::SaveModified()
{
 // TODO: Add your specialized code here and/or call the base class
 return TRUE; // eliminates "save doc" message on exit
}

Using ClassWizard, add the following message map to CMyex33aView class. Before that, open the ResourceView,
select the IDD_DIALOGBAR under the dialog folder and launch ClassWizard. When the Adding a class prompt
displayed, choose Select an existing class radio button and select CMyex33aView class. Just click Yes button if
warning/prompt dialog displayed.

Figure 79: Adding new class prompt dialog.

Figure 80: Selecting the existing class.

Next, add the following message handlers.

ID Message Function
IDR_REQUEST BN_CLICK OnRequest()

Table 28.

Figure 81: Adding message handler to CMyex33aView class.

Next, add the following command, command updates and Windows message handler to the CMyex33aView class.

ID Message map Function
ID_INTERNET_START_SERVER Command OnInternetStartServer()

 Command Update OnUpdateInternetStartServer(CCmdUI*
pCmdUI)

ID_INTERNET_REQUEST_SOCK Command OnInternetRequestSocket()
ID_INTERNET_REQUEST_INET Command OnInternetRequestWininet()
ID_INTERNET_STOP_SERVER Command OnInternetStopServer()

 Command Update OnUpdateInternetStopServer(CCmdUI*
pCmdUI)

ID_INTERNET_CONFIGURATION Command OnInternetConfiguration()

 Command Update OnUpdateInternetConfiguration(CCmdUI*
pCmdUI)

ID_EDIT_CLEAR_ALL Command OnEditClearAll()

IDR_CONTEXT_MENU WM_CONTEXTMENU OnContextMenu(CWnd* pWnd, CPoint
point)

Table 29.

Figure 82: Adding command, command update and Windows message handler.

You can verify the result in Myex33aView.h as shown below.

Listing 24.

And in Myex33aView.cpp as shown below.

Listing 25.

Next, add the implementation codes to CMyex33aView.cpp. Don’t forget the related header files that need to be
included as shown below.

// myex33aView.cpp : implementation of the CMyex33aView class
//

#include "stdafx.h"
#include "myex33a.h"
#include "MainFrm.h"

#include "myex33aDoc.h"
#include "myex33aView.h"
#include "Utility.h"
#include "Sheetconfig.h"
#include "Blocksock.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

extern CBlockingSocket g_sListen;

///
// CMyex33aView

IMPLEMENT_DYNCREATE(CMyex33aView, CEditView)

BEGIN_MESSAGE_MAP(CMyex33aView, CEditView)
 //{{AFX_MSG_MAP(CMyex33aView)
 ON_BN_CLICKED(IDC_REQUEST, OnRequest)
 ON_COMMAND(ID_INTERNET_START_SERVER, OnInternetStartServer)
 ON_UPDATE_COMMAND_UI(ID_INTERNET_START_SERVER, OnUpdateInternetStartServer)
 ON_COMMAND(ID_INTERNET_REQUEST_SOCK, OnInternetRequestSocket)
 ON_COMMAND(ID_INTERNET_REQUEST_INET, OnInternetRequestWininet)
 ON_COMMAND(ID_INTERNET_STOP_SERVER, OnInternetStopServer)
 ON_UPDATE_COMMAND_UI(ID_INTERNET_STOP_SERVER, OnUpdateInternetStopServer)
 ON_COMMAND(ID_INTERNET_CONFIGURATION, OnInternetConfiguration)
 ON_UPDATE_COMMAND_UI(ID_INTERNET_CONFIGURATION, OnUpdateInternetConfiguration)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 //}}AFX_MSG_MAP
 ON_WM_CONTEXTMENU()
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CEditView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CEditView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CEditView::OnFilePrintPreview)
END_MESSAGE_MAP()

///
// CMyex33aView construction/destruction

CMyex33aView::CMyex33aView()
{
 // TODO: add construction code here
}

CMyex33aView::~CMyex33aView()
{
}

BOOL CMyex33aView::PreCreateWindow(CREATESTRUCT& cs)
{
 BOOL bPreCreated = CEditView::PreCreateWindow(cs);
 cs.style &= ~(ES_AUTOHSCROLL|WS_HSCROLL); // Enable word-wrapping
 cs.style |= ES_READONLY;
 return bPreCreated;
}

///
// CMyex33aView drawing

void CMyex33aView::OnDraw(CDC* pDC)
{
 CMyex33aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 // TODO: add draw code for native data here
}

///
// CMyex33aView printing

BOOL CMyex33aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default CEditView preparation
 return CEditView::OnPreparePrinting(pInfo);
}

void CMyex33aView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 // Default CEditView begin printing.
 CEditView::OnBeginPrinting(pDC, pInfo);
}

void CMyex33aView::OnEndPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 // Default CEditView end printing
 CEditView::OnEndPrinting(pDC, pInfo);
}

///
// CMyex33aView diagnostics

#ifdef _DEBUG
void CMyex33aView::AssertValid() const
{
 CEditView::AssertValid();
}

void CMyex33aView::Dump(CDumpContext& dc) const
{
 CEditView::Dump(dc);
}

CMyex33aDoc* CMyex33aView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyex33aDoc)));
 return (CMyex33aDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CMyex33aView message handlers

void CMyex33aView::OnInternetStartServer()
{
 try {
 CSockAddr saServer;
 if(g_strIPServer.IsEmpty()) { // first or only IP
 saServer = CSockAddr(INADDR_ANY, (USHORT) g_nPortServer);
 }
 else { // if our computer has multiple IP addresses...
 saServer = CSockAddr(g_strIPServer, (USHORT) g_nPortServer);
 }
 g_sListen.Create();
 g_sListen.Bind(saServer);
 g_sListen.Listen();// start listening
 g_bListening = TRUE;
 g_nConnection = 0;
 AfxBeginThread(ServerThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
 }
 catch(CBlockingSocketException* e) {
 g_sListen.Cleanup();
 LogBlockingSocketException(GetSafeHwnd(), "VIEW:", e);
 e->Delete();
 }
}

void CMyex33aView::OnUpdateInternetStartServer(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!g_bListening);
}

void CMyex33aView::OnInternetRequestSocket()
{
 AfxBeginThread(ClientSocketThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
}

void CMyex33aView::OnInternetRequestWininet()
{
 AfxBeginThread(ClientWinInetThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
}

void CMyex33aView::OnInternetStopServer()
{
 try {
 if(g_bListening) {
 g_sListen.Close();
 }
 }
 catch(CBlockingSocketException* e) {
 LogBlockingSocketException(GetSafeHwnd(), "VIEW:", e);
 e->Delete();
 }
}

void CMyex33aView::OnUpdateInternetStopServer(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(g_bListening);
}

void CMyex33aView::OnInternetConfiguration()
{
 CSheetConfig sh("Configuration");
 sh.m_pageServer.m_strDirect = g_strDirect;
 sh.m_pageServer.m_strDefault = g_strDefault;
 sh.m_pageServer.m_nPortServer = g_nPortServer;
 sh.m_pageClient.m_strServerIP = g_strServerIP;
 sh.m_pageClient.m_nPort = g_nPort;
 sh.m_pageClient.m_strServerName = g_strServerName;
 sh.m_pageClient.m_strFile = g_strFile;
 sh.m_pageClient.m_strProxy = g_strProxy;
 sh.m_pageClient.m_bUseProxy = g_bUseProxy;
 sh.m_pageAdv.m_strIPClient = g_strIPClient;
 sh.m_pageAdv.m_strIPServer = g_strIPServer;
 if(sh.DoModal() == IDOK) {
 g_strDirect = sh.m_pageServer.m_strDirect;
 g_strDefault = sh.m_pageServer.m_strDefault;
 g_nPortServer = sh.m_pageServer.m_nPortServer;
 g_strServerIP = sh.m_pageClient.m_strServerIP;
 g_nPort = sh.m_pageClient.m_nPort;
 g_strServerName = sh.m_pageClient.m_strServerName;
 if(sh.m_pageClient.m_strFile.IsEmpty()) {
 g_strFile = "/";
 }
 else {
 g_strFile = sh.m_pageClient.m_strFile;
 }
 g_strProxy = sh.m_pageClient.m_strProxy;
 g_bUseProxy = sh.m_pageClient.m_bUseProxy;
 g_strIPClient = sh.m_pageAdv.m_strIPClient;
 g_strIPServer = sh.m_pageAdv.m_strIPServer;
 if(!g_strIPClient.IsEmpty() && g_bUseProxy) {
 AfxMessageBox("Warning: you can't assign a client IP address if "
 "you are using a proxy server");
 }
 if(!g_strServerIP.IsEmpty() && g_bUseProxy) {
 AfxMessageBox("Warning: you must specify the server by name if "
 "you are using a proxy server");

 }
 if(g_strServerIP.IsEmpty() && g_strServerName.IsEmpty()) {
 AfxMessageBox("Warning: you must specify either a server name or "
 "a server IP address");
 }
 if(!g_strServerIP.IsEmpty() && !g_strServerName.IsEmpty()) {
 AfxMessageBox("Warning: you cannot specify both a server name "
 "and a server IP address");
 }
 ::SetCurrentDirectory(g_strDirect);
 }
}

void CMyex33aView::OnUpdateInternetConfiguration(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!g_bListening);
}

void CMyex33aView::OnEditClearAll()
{
 SetWindowText("");
}

void CMyex33aView::OnRequest()
{
 CWnd& rBar = ((CMainFrame*) AfxGetApp()->m_pMainWnd)->m_wndDialogBar;
 // g_strURL: thread sync?
 rBar.GetDlgItemText(IDC_URL, g_strURL);
 TRACE("CMyex33aView::OnRequest -- URL = %s\n", (const char*) g_strURL);
 AfxBeginThread(ClientUrlThreadProc, GetSafeHwnd(), THREAD_PRIORITY_NORMAL);
}

void CMyex33aView::OnContextMenu(CWnd* pWnd, CPoint point)
{
 // clear-all menu activated on right button
 CMenu menu;
 menu.LoadMenu(IDR_CONTEXT_MENU);
 menu.GetSubMenu(0)->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 point.x, point.y, this);
}

Listing 26.

Create a directory named WEBSITE under your project directory and copy the following sample files. You can create
your own files if needed, provided the html file names are same, else you have to do some source code modifications.

http://www.tenouk.com/visualcplusmfc/WEBSITE/

Figure 83: Creating the root directory of the web for MYEX33A.

Build and run this program. Let start our web server by selecting the Internet Start Server menu and make sure the
IIS/World Wide Web is not running, else you need to stop it.

Figure 84: The IIS/WWW Publishing service was stopped to give a way for our own web server application.

Next, start the server.

Figure 85: MYEX33A in action, starting the web server.

It seems that our status indicator not working lol! Forget it; next, select the Request (Winsock) client menu.

Figure 86: Testing the Winsock client request

The following message should be displayed.

Figure 87: The Winsock client message.

Together with the following dialog (the html source code).

Figure 88: Winsock client request html code.

Next, test the Request (WinInet) client menu.

Figure 89: Testing the WinInet client request.

The WinInet client html source should be displayed.

Figure 90: The WinInet client request html source code.

And the WinInet message is shown below.

Figure 91: The WinInet client request message.

To change the configuration through the Configuration menu, you have to stop the server (select Stop Server menu).
The following is the property page of the Configuration menu.

Figure 92: The Configuration property page.

You can clear all the child window by using the Clear All context menu by right clicking anywhere in the child window.

Figure 93: Clear All context menu in action.

Finally let test the Address bar. Make sure you are online. Type any URL such as shown below. Just click the OK for
the warning dialog as shown below, the html size not fit to the declared buffer size in our code.

Figure 94: Testing the URL client request.

The following is the URL client html source.

Figure 95: www.yahoo.com html source code.

Try our own test page: http://localhost/.

Figure 96: The local test page

http://www.yahoo.com/

Check your project Debug window to see the previous activities. Well, that all!

Back to the Story
Building and Testing MYEX33A

Open the myex33a project in Visual C++, and then build the project. A directory under MYEX33A, called Website,
contains some HTML files and is set up as the MYEX33A server's home directory, which appears to clients as the
server's root directory.
If you have another HTTP server running on your computer, stop it now. If you have installed IIS along with Windows
NT Server, it is probably running now, so you must run the Internet Service Manager (Internet Information
Services) program from the Administrative Tools menu. Select the web site folder for example, Default Web Site as
shown below and then click the stop button (the one with the square). MYEX33A reports a bind error (10048) if another
server is already listening on port 80.

Figure 97: Stopping the web server.

Run the program from the debugger, and then choose Start Server from the Internet menu.

Figure 98: Starting our own, MYEX33A web server.

Now go to your Web browser and type localhost. You should see the Welcome to the Nothing test page complete with
simple graphics.

Figure 99: MYEX33A – accessing web through browser.

The MYEX33A window should look like this.

Figure 100: MYEX33A – the web server activities.

Look at the Visual C++ debug window for a listing of the client's request headers. If you click the browser's Refresh
button, you might notice MYEX33A error messages like this:

WINSOCK ERROR--SERVER: Send error #10054 -- 10/05/96 04:34:10 GMT

This tells you that the browser read the file's modified date from the server's response header and figured out that it
didn't need the data because it already had the file in its cache. The browser then closed the socket, and the server

detected an error. If the MYEX33A server were smarter, it would have checked the client's If-Modified-Since request
header before sending the file.

Using Telnet

The Telnet utility is included with Windows Operating Systems. It's useful for testing server programs such as
MYEX33A. With Telnet, you're sending one character at a time, which means that the server's
CBlockingSocket::Receive function is receiving one character at a time. The Telnet window is shown here.

Figure 101: Using Telnet to grab a web page.

The first time you run Telnet, choose Preferences from the Terminal menu and turn on Local Echo. Each time
thereafter, choose Remote System from the Connect menu and then type your server name and port number 80. You
can type a GET request (followed by a double carriage return), but you'd better type fast because the MYEX33A server's
Receive() calls are set to time-out after 10 seconds.

Building a Web Client with CHttpBlockingSocket

If you had written your own Internet browser program a few years ago, you could have made a billion dollars by now.
But these days, you can download browsers for free, so it doesn't make sense to write one. It does make sense, however,
to add Internet access features to your Windows applications. Winsock is not the best tool if you need HTTP or FTP
access only, but it's a good learning tool.

The MYEX33A Winsock Client

The MYEX33A program implements a Winsock client in the fileClientSockThread.cpp. The code is similar to the
code for the simplified HTTP client. The client thread uses global variables set by the Configuration property sheet,
including server filename, server host name, server IP address and port, and client IP address. The client IP address is
necessary only if your computer supports multiple IP addresses. When you run the client, it connects to the specified
server and issues a GET request for the file that you specified. The Winsock client logs error messages in the MYEX33A
main window.

MYEX33A Support for Proxy Servers

If your computer is connected to a LAN at work, chances are it's not exposed directly to the Internet but rather connected
through a proxy server, sometimes called a firewall (or proxy with firewall). There are two kinds of proxy servers: Web
and Winsock. Web proxy servers, sometimes called CERN proxies, support only the HTTP, FTP, and gopher protocols.
(The gopher protocol, which predates HTTP, allows character-mode terminals to access Internet files.) A Winsock client
program must be specially adapted to use a Web proxy server. A Winsock proxy server is more flexible and thus can
support protocols such as RealAudio. Instead of modifying your client program source code, you link to a special
Remote Winsock DLL that can communicate with a Winsock proxy server.
The MYEX33A client code can communicate through a Web proxy if you check the Use Proxy check box in the Client
Configuration page. In that case, you must know and enter the name of your proxy server. From that point on, the client
code connects to the proxy server instead of to the real server. All GET and POST requests must then specify the full
Uniform Resource Locator (URL) for the file. If you were connected directly to SlowSoft's server, for example, your
GET request might look like this:

ftp://ftp.rfc-editor.org/in-notes/rfc854.txt

GET /customers/newproducts.html HTTP/1.0

But if you were connected through a Web proxy server, the GET would look like this:

GET http://slowsoft.com/customers/newproducts.html HTTP/1.0

Testing the MYEX33A Winsock Client

The easiest way to test the Winsock client is by using the built-in Winsock server. Just start the server as before, and
then choose Request (Winsock) from the Internet menu. You should see some HTML code in a message box. You can
also test the client against IIS, the server running in another MYEX33A process on the same computer, the MYEX33A
server running on another computer on the Net, and an Internet server. Ignore the "Address" URL on the dialog bar for
the time being; it's for one of the WinInet clients. You must enter the server name and filename in the Client page of the
Configuration dialog.

WinInet

WinInet is a higher-level API than Winsock, but it works only for HTTP, FTP, and gopher client programs in both
asynchronous and synchronous modes. You can't use it to build servers. The WININET DLL is independent of the
WINSOCK32 DLL. Microsoft Internet Explorer 3.0 (IE3) uses WinInet, and so do ActiveX controls.

WinInet's Advantages over Winsock

WinInet far surpasses Winsock in the support it gives to a professional-level client program. Following are just some of
the WinInet benefits:

▪ Caching: Just like IE3, your WinInet client program caches HTML files and other Internet files. You don't
have to do a thing. The second time your client requests a particular file, it's loaded from a local disk
instead of from the Internet.

▪ Security: WinInet supports basic authentication, Windows NT challenge/response authentication, and the
Secure Sockets Layer (SSL). Authentication is described in Module 33.

▪ Web proxy access: You enter proxy server information through the Control Panel (click on the Internet
icon), and it's stored in the Registry. WinInet reads the Registry and uses the proxy server when required.

▪ Buffered I/O: WinInet's read function doesn't return until it can deliver the number of bytes you asked for.
(It returns immediately, of course, if the server closes the socket.) Also, you can read individual text lines
if you need to.

▪ Easy API: Status callback functions are available for UI update and cancellation. One function,
CInternetSession::OpenURL, finds the server's IP address, opens a connection, and makes the file
ready for reading, all in one call. Some functions even copy Internet files directly to and from disk.

▪ User friendly: WinInet parses and formats headers for you. If a server has moved a file to a new location,
it sends back the new URL in an HTTP Location header. WinInet seamlessly accesses the new server for
you. In addition, WinInet puts a file's modified date in the request header for you.

The MFC WinInet Classes

WinInet is a modern API available only for Win32. The MFC wrapping is quite good, which means we didn't have to
write our own WinInet class library. Yes, MFC WinInet supports blocking calls in multithreaded programs, and by now
you know that makes us happy.
The MFC classes closely mirror the underlying WinInet architecture, and they add exception processing. These classes
are summarized in the sections on the following pages.

CInternetSession

You need only one CInternetSession object for each thread that accesses the Internet. After you have your
CInternetSession object, you can establish HTTP, FTP, or gopher connections or you can open remote files
directly by calling the OpenURL() member function. You can use the CInternetSession class directly, or you
can derive a class from it in order to support status callback functions.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html

The CInternetSession constructor calls the WinInet InternetOpen() function, which returns an HINTERNET
session handle that is stored inside the CInternetSession object. This function initializes your application's use of
the WinInet library, and the session handle is used internally as a parameter for other WinInet calls.

CHttpConnection

An object of class CHttpConnection represents a "permanent" HTTP connection to a particular host. You know
already that HTTP doesn't support permanent connections and that FTP doesn't either. (The connections last only for the
duration of a file transfer.) WinInet gives the appearance of a permanent connection because it remembers the host
name.
After you have your CInternetSession object, you call the GetHttpConnection() member function, which
returns a pointer to a CHttpConnection object. (Don't forget to delete this object when you are finished with it.)
The GetHttpConnection() member function calls the WinInet InternetConnect() function, which returns
an HINTERNET connection handle that is stored inside the CHttpConnection object and used for subsequent
WinInet calls.

CFtpConnection, CGopherConnection

These classes are similar to CHttpConnection, but they use the FTP and gopher protocols. The CFtpConnection
member functions GetFile() and PutFile() allow you to transfer files directly to and from your disk.

CInternetFile

With HTTP, FTP, or gopher, your client program reads and writes byte streams. The MFC WinInet classes make these
byte streams look like ordinary files. If you look at the class hierarchy, you'll see that CInternetFile is derived
from CStdioFile, which is derived from CFile. Therefore, CInternetFile and its derived classes override
familiar CFile functions such as Read() and Write(). For FTP files, you use CInternetFile objects directly,
but for HTTP and gopher files, you use objects of the derived classes CHttpFile and CGopherFile. You don't
construct a CInternetFile object directly, but you call CFtpConnection::OpenFile to get a
CInternetFile pointer.
If you have an ordinary CFile object, it has a 32-bit HANDLE data member that represents the underlying disk file. A
CInternetFile object uses the same m_hFile data member, but that data member holds a 32-bit Internet file
handle of type HINTERNET, which is not interchangeable with a HANDLE. The CInternetFile overridden member
functions use this handle to call WinInet functions such as InternetReadFile() and InternetWriteFile().

CHttpFile

This Internet file class has member functions that are unique to HTTP files, such as AddRequestHeaders(),
SendRequest(), and GetFileURL(). You don't construct a CHttpFile object directly, but you call the
CHttpConnection::OpenRequest function, which calls the WinInet function HttpOpenRequest() and
returns a CHttpFile pointer. You can specify a GET or POST request for this call. Once you have your CHttpFile
pointer, you call the CHttpFile::SendRequest member function, which actually sends the request to the server.
Then you call Read().

CFtpFileFind, CGopherFileFind

These classes let your client program explore FTP and gopher directories.

CInternetException

The MFC WinInet classes throw CInternetException objects that your program can process with try/catch logic.

Internet Session Status Callbacks

WinInet and MFC provide callback notifications as a WinInet operation progresses, and these status callbacks are
available in both synchronous (blocking) and asynchronous modes. In synchronous mode (which we're using exclusively

here), your WinInet calls block even though you have status callbacks enabled. Callbacks are easy in C++. You simply
derive a class and override selected virtual functions. The base class for WinInet is CInternetSession. Now let's
derive a class named CCallbackInternetSession:

class CCallbackInternetSession : public CInternetSession
{
public:
 CCallbackInternetSession(LPCTSTR pstrAgent = NULL, DWORD dwContext =
1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS,
 LPCTSTR pstrProxyName = NULL, LPCTSTR pstrProxyBypass = NULL,
 DWORD dwFlags = 0) { EnableStatusCallback() }
protected:
 virtual void OnStatusCallback(DWORD dwContext, DWORD dwInternalStatus,
 LPVOID lpvStatusInformation, DWORD dwStatusInformationLength);
};

The only coding that's necessary is a constructor and a single overridden function, OnStatusCallback(). The
constructor calls CInternetSession::EnableStatusCallback to enable the status callback feature. Your
WinInet client program makes its various Internet blocking calls, and when the status changes,
OnStatusCallback() is called. Your overridden function quickly updates the UI and returns, and then the Internet
operation continues. For HTTP, most of the callbacks originate in the CHttpFile::SendRequest function.
What kind of events trigger callbacks? A list of the codes passed in the dwInternalStatus parameter is shown
here.

Code Passed Action Taken

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the supplied name. The
name is now in lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address. The IP address is now
in lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket.
INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket.
INTERNET_STATUS_SENDING_REQUEST Send the information request to the server.
INTERNET_STATUS_REQUEST_SENT Successfully sent the information request to the server.
INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request.
INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the server.
INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server.
INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the server.
INTERNET_STATUS_HANDLE_CREATED Program can now close the handle.
INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle value.
INTERNET_STATUS_REQUEST_COMPLETE Successfully completed the asynchronous operation.

Table 30.

You can use your status callback function to interrupt a WinInet operation. You could, for example, test for an event set
by the main thread when the user cancels the operation.

A Simplified WinInet Client Program

And now for the WinInet equivalent of our Winsock client program that implements a blind GET request. Because
you're using WinInet in blocking mode, you must put the code in a worker thread. That thread is started from a
command handler in the main thread:

AfxBeginThread(ClientWinInetThreadProc, GetSafeHwnd());

Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientWinInetThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 try
 {
 pConnection = session.GetHttpConnection(g_strServerName, 80);
 pFile1 = pConnection->OpenRequest(1, "/"); // blind GET
 pFile1->SendRequest();
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[10];
 if(pFile1->Read(temp, 10) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 AfxMessageBox(buffer);
 }
 catch(CInternetException* e)
 {
 // Log the exception
 e->Delete();
 }
 if(pFile1) delete pFile1;
 if(pConnection) delete pConnection;
 delete [] buffer;
 return 0;
}

The second Read() call needs some explanation. It has two purposes. If the first Read() doesn't read the whole file,
that means that it was longer than MAXBUF -1. The second Read() will get some bytes, and that lets you detect the
overflow problem. If the first Read() reads the whole file, you still need the second Read() to force WinInet to cache
the file on your hard disk. Remember that WinInet tries to read all the bytes you ask it to, through the end of the file.
Even so, you need to read 0 bytes after that.

Building a Web Client with the MFC WinInet Classes

There are two ways to build a Web client with WinInet. The first method, using the CHttpConnection class, is
similar to the simplified WinInet client on the preceding page. The second method, using
CInternetSession::OpenURL, is even easier. We'll start with the CHttpConnection version.

The MYEX33A WinInet Client #1: Using CHttpConnection

The MYEX33A program implements a WinInet client in the file ClientInetThread.cpp. Besides allowing the use of an
IP address as well as a host name, the program uses a status callback function. That function,
CCallbackInternetSession::OnStatusCallback in the file Utility.cpp, puts a text string in a global
variable g_pchStatus, using a critical section for synchronization. The function then posts a user-defined message to
the application's main window. The message triggers an Update Command UI handler (called by
CWinApp::OnIdle), which displays the text in the second status bar text pane.

Testing the WinInet Client #1

To test the WinInet client #1, you can follow the same procedure you used to test the Winsock client. Note the status bar
messages as the connection is made (failed in the example!). Note that the file appears more quickly the second time you
request it.

The MYEX33A WinInet Client #2: Using OpenURL()

The MYEX33A program implements a different WinInet client in the file ClientUrlThread.cpp. This client uses the
"Address" URL (that you type to access the Internet site). Here's the actual code:

CString g_strURL = "http:// ";

UINT ClientUrlThreadProc(LPVOID pParam)
{
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;

 CInternetSession session; // can't get status callbacks for OpenURL
 CStdioFile* pFile1 = NULL; // could call ReadString to get 1 line
 try {
 pFile1 = session.OpenURL(g_strURL, 0,
 INTERNET_FLAG_TRANSFER_BINARY|INTERNET_FLAG_KEEP_CONNECTION);
 // If OpenURL fails, we won't get past here
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0)
 {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer,
 "URL CLIENT", MB_OK);
 }
 catch(CInternetException* e)
 {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1) delete pFile1;
 delete [] buffer;
 return 0;
}

Note that OpenURL() returns a pointer to a CStdioFile object. You can use that pointer to call Read() as shown,
or you can call ReadString() to get a single line. The file class does all the buffering. As in the previous WinInet
client, it's necessary to call Read() a second time to cache the file. The OpenURL()
INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for Windows NT challenge/response authentication,
which is described in Module 33. If you added the flag INTERNET_FLAG_RELOAD, the program would bypass the
cache just as the browser does when you click the Refresh() button.

Testing the WinInet Client #2

You can test the WinInet client #2 against any HTTP server. You run this client by typing in the URL address, not by
using the menu. You must include the protocol (http:// or ftp://) in the URL address. Type http://localhost. You
should see the same HTML code in a message box. No status messages appear here because the status callback doesn't
work with OpenURL().

Asynchronous Moniker Files

http://www.tenouk.com/visualcplusmfc/visualcplusmfc33.html

Just when you thought you knew all the ways to download a file from the Internet, you're going to learn about another
one. With asynchronous moniker files, you'll be doing all your programming in your application's main thread without
blocking the user interface. Sounds like magic, doesn't it? The magic is inside the Windows URLMON DLL, which
depends on WinInet and is used by Microsoft Internet Explorer. The MFC CAsyncMonikerFile class makes the
programming easy, but you should know a little theory first.

Monikers

A moniker is a "surrogate" COM object that holds the name (URL) of the "real" object, which could be an embedded
component but more often is just an Internet file (HTML, JPEG, GIF, PNG and so on). Monikers implement the
IMoniker interface, which has two important member functions: BindToObject() and BindToStorage(). The
BindToObject() function puts an object into the running state, and the BindToStorage() function provides an
IStream or an IStorage pointer from which the object's data can be read. A moniker has an associated
IBindStatusCallback interface with member functions such as OnStartBinding() and
OnDataAvailable(), which are called during the process of reading data from a URL.
The callback functions are called in the thread that created the moniker. This means that the URLMON DLL must set up
an invisible window in the calling thread and send the calling thread messages from another thread, which uses WinInet
functions to read the URL. The window's message handlers call the callback functions.

The MFC CAsyncMonikerFile Class

Fortunately, MFC can shield you from the COM interfaces described above. The CAsyncMonikerFile class is
derived from CFile, so it acts like a regular file. Instead of opening a disk file, the class's Open() member function
gets an IMoniker pointer and encapsulates the IStream interface returned from a call to BindToStorage().
Furthermore, the class has virtual functions that are tied to the member functions of IBindStatusCallback. Using
this class is a breeze; you construct an object or a derived class and call the Open() member function, which returns
immediately. Then you wait for calls to overridden virtual functions such as OnProgress() and
OnDataAvailable(), named, not coincidentally, after their IBindStatusCallback equivalents.

Using the CAsyncMonikerFile Class in a Program

Suppose your application downloads data from a dozen URLs but has only one class derived from
CAsyncMonikerFile. The overridden callback functions must figure out where to put the data. That means you
must associate each derived class object with some UI element in your program. The steps listed below illustrate one of
many ways to do this. Suppose you want to list the text of an HTML file in an edit control that's part of a form view.
This is what you can do:

1. Use ClassWizard to derive a class from CAsyncMonikerFile.
2. Add a character pointer data member m_buffer. Invoke new for this pointer in the constructor; invoke delete

in the destructor.
3. Add a public data member m_edit of class CEdit.
4. Override the OnDataAvailable() function thus:

void CMyMonikerFile::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 try {
 UINT nBytesRead = Read(m_buffer, MAXBUF - 1);
 TRACE("nBytesRead = %d\n", nBytesRead);
 m_buffer[nBytesRead] = '\0'; // necessary for edit control
 // The following two lines add text to the edit control
 m_edit.SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000);
 m_edit.SendMessage(EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) m_buffer);
 }
 catch(CFileException* pe) {
 TRACE("File exception %d\n, pe->m_cause");

 pe->Delete();
 }
}

5. Embed an object of your new moniker file class in your view class.
6. In you view's OnInitialUpdate() function, attach the CEdit member to the edit control like this:

m_myEmbeddedMonikerFile.m_edit.SubClassDlgItem(ID_MYEDIT, this);

7. In your view class, open the moniker file like this:

m_myEmbeddedMonikerFile.Open("http://host/filename");

For a large file, OnDataAvailable() will be called several times, each time adding text to the edit control.
If you override OnProgress() or OnStopBinding() in your derived moniker file class, your program
can be alerted when the transfer is finished. You can also check the value of bscfFlag in
OnDataAvailable() to determine whether the transfer is completed. Note that everything here is in your
main thread and - most important - the moniker file object must exist for as long as the transfer is in progress.
That's why it's a data member of the view class.

Asynchronous Moniker Files vs. WinInet Programming

In the WinInet examples earlier in this module, you started a worker thread that made blocking calls and sent a message
to the main thread when it was finished. With asynchronous moniker files, the same thing happens; the transfer takes
place in another thread, which sends messages to the main thread. You just don't see the other thread. There is one very
important difference, however, between asynchronous moniker files and WinInet programming: with blocking
WinInet calls, you need a separate thread for each transfer; with asynchronous moniker files, only one extra thread
handles all transfers together. For example, if you're writing a browser that must download 50 bitmaps simultaneously,
using asynchronous moniker files saves 49 threads, which makes the program much more efficient.
Of course, you have some extra control with WinInet, and it's easier to get information from the response headers, such
as total file length. Your choice of programming tools, then, depends on your application. The more you know about
your options, the better your choice will be.

---------------------End Winsock, WinInet, IIS------------------------

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library.
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

