OLE Embedded Components and Containers part 1

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2. The
Excel version is Excel 2003/Office 11. Topics and sub topics for this tutorial are listed below. Don’t forget to read
Tenouk’s small disclaimer. The supplementary notes for this tutorial are I0leObject and OLE.

Index:

Intro

Embedding vs. In-Place Activation (Visual Editing)
Mini-Servers vs. Full Servers (Components): Linking

The Dark Side of Visual Editing

Windows Metafiles and Embedded Objects

The MFC OLE Architecture for Component Programs

The EX32A Example: An MFC In-Place-Activated Mini-Server

Intro

In this module, you'll get familiar with the core of Object Linking and Embedding (OLE). You'll learn how an
embedded component talks to its container. This is the needed knowledge in order to use ActiveX controls, in-
place activation (Visual Editing), and linking, all of which are described in Adam Denning's ActiveX Controls
Inside Out (Microsoft Press, 1997), Kraig Brockschmidt's Inside OLE, 2d ed. (Microsoft Press, 1995), and other
books.

You'll get started with a Microsoft Foundation Class mini-server, an out-of-process OLE component program that
supports in-place activation but can't run as a stand-alone program. Running this component will give you a good
idea of what OLE looks like to the user, in case you don't know already. You'll also see the extensive MFC support
for this kind of application. If you work at only the top MFC level, however, you won't appreciate or understand the
underlying OLE mechanisms. For that, you'll have to dig deeper. Shepherd and Wingo's MFC Internals (Addison-
Wesley, 1996) provides extensive coverage of the internal workings of MFC's OLE Document support.

Next you'll build a container program that uses the familiar parts of the MFC library but supports embedded OLE
objects that can be edited in their own windows. This container can, of course, run your MFC mini-server, but you'll
really start to learn OLE when you build a mini-server from scratch and watch the interactions between it and the
container.

Embedding vs. In-Place Activation (Visual Editing)

Visual Editing is Microsoft's name for in-place activation. A component that supports in-place activation also
supports embedding. Both in-place activation and embedding store their data in a container's document, and the
container can activate both. An in-place-capable component can run inside the container application's main window,
taking over the container's menu and toolbar, and it can run in its own top-level window if necessary. An embedded
component can run only in its own window, and that window has a special menu that does not include file
commands. Figure 1 shows a Microsoft Excel spreadsheet in-place activated inside a Microsoft Word document.
Notice the Excel menus and toolbars.

Some container applications support only embedded components; others support both in-place and embedded
components. Usually, an in-place container program allows the user to activate in-place components either in place
or in their own windows. You should be getting the idea that embedding is a subset of in-place activation. This is
true not only at the user level but also at the OLE implementation level. Embedding relies on two key interfaces,
I01eObject and 101eClientSite, which are used for in-place activation as well.

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/ioleobject.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/ole.html

@I Document? - Microsoft Ward

! Fle Edit “iew Insert Format Tools Data Window Help Adobe FOF

NS i R8s e BHiA-

K E Ky,
AN Ao bl [7 6 JCBER A8 sl A
B3 - fio
—
11 N
Webmaster-SEQ-Friendly:-Free:-Directory:Listq
1
1
3
4 URL
3 WEBMASTER DIRECTORIES
E | Better Webmaster H
7 _|ClickFire http-iwww clickfire com
2 _|Deepcrawl hito liwwy deepcrawl com
3_|Elitezone hitp-Hiwww elitezone orgldirectornd
10_| European Webmasters htto Hiwwy foolinglamerss. ¢om
11_|Ewvolt htto Hidir evolt oral
12| Gdirect hitp-Hadirect adezians. com 1
12_| Intermatics hito Hwwy intermatics. com
14 | SiteProMews hito liwww sitepronews comiwresources. himl
15 | Universal Web Design http:Hiwwy uwdd comf
& | webmaster Heaven hito liwebmastershe aven comd
17_| webmaster Toolkit hito-Hiwww webmaster-toolkit. comidire ctors. shtml W
12 | w3 Dir htto liwww w2 dir, comd
1 2
20 =]
b |
e &
= B|E|= £ >
Page 1 gec 1 11 Ak 45mm Ln S Cal 1 Engl E‘

Figure 1. An Excel spreadsheet activated inside a Word document.
Mini-Servers vs. Full Servers (Components): Linking

A mini-server can't be run as a stand-alone program; it depends on a container application to launch it. It can't do its
own file I/0O but depends on the container's files. A full server, on the other hand, can be run both as a stand-alone
program and from a container. When it's running as a stand-alone program, it can read and write its own files, which
mean that it supports OLE linking. With embedding, the container document contains all the data that the
component needs; with linking, the container contains only the name of a file that the component must open.

The Dark Side of Visual Editing

We're really enthusiastic about the COM architecture, and we truly believe that ActiveX Controls will take over the
programming world. We're not so sure about Visual Editing, though, and we aren't alone. From our cumulative
experience meeting developers around the world, we've learned that few developers are writing applications that fit
the "objects embedded in a document"” model. From our programming experiences, we've learned that it is tricky for
containers and components to coordinate the size and scale of embedded objects. From our "user" experience, we've
learned that in-place activation can be slow and awkward, although the situation is improving with faster computers.
If you don't believe us, try embedding an Excel worksheet in a Word document, as shown in Figure 28-1. Resize the
worksheet in both the active mode and the non-active mode. Notice that the two sizes don't track and that processing
is slow.

Consider the need for drawing graphics. Older versions of Microsoft PowerPoint used an in-place component named
Microsoft Draw. The idea was that other applications could use this component for all their graphics needs. Well, it
didn't work out that way, and PowerPoint now has its own built-in drawing code. If you have old PowerPoint files
with Microsoft Draw objects, you'll have a hard time converting them.

Now consider printing. Let's say you receive a Word document over the Internet from Singapore, and that document
contains the metafiles for some embedded objects. You don't have the objects' component programs, however. You

print the document on your trusty 1200-dpi color laser printer, and the metafiles print with it. Embedded object
metafiles can be rendered for a specific printer, but it's doubtful that the person in Singapore used your printer driver
when creating the document. The result is less-than-optimal output with incorrect line breaks.

We do believe, however, that the OLE embedding technology has a lot of potential. Playing sounds and movies is
cool, and storing objects in a database is interesting. What you learn in this module will help you think of new uses
for this technology.

Windows Metafiles and Embedded Objects

You're going to need a little more Windows theory before you can understand how in-place and embedded
components draw in their clients' windows. We've avoided metafiles up to this point because we haven't needed
them, but they've always been an integral part of Windows. Think of a metafile as a cassette tape for GDI
instructions. To use a cassette, you need a player/recorder, and that's what the metafile device context (DC) is. If you
specify a filename when you create the metafile DC, your metafile will be saved on disk; otherwise, it's saved in
memory and you get a handle.

In the world of OLE embedding, components create metafiles and containers play them. Here's some component
code that creates a metafile containing some text and a rectangle:

CMetaFileDC dcm; // MFC class for metafile DC
VERIFY(dcm.Create());

dcm. SetMapMode (MM_ANISOTROPIC) ;
dcm.SetWindowOrg(0, 0);

dcm. SetWindowExt (5000, -5000);

// drawing code

dcm.Rectangle(CRect(500, -1000, 1500, -2000));
dcm.TextOut(0, 0, m _strText);

HMETAFILE hMF = dcm.Close();

ASSERT(hMF 1= NULL);

It's possible to create a metafile that uses a fixed mapping mode such as MM_LOENGL I SH, but with OLE we'll
always use the MM_ANI1SOTROP IC mode, which is not fixed. The metafile contains a SetWindowExt() call to
set the x and y extents of the window, and the program that plays the metafile calls SetViewportExt() to set
the extents of the viewport. Here's some code that you might put inside your container view's OnDraw() function:

pDC->SetMapMode (MM_HIMETRIC) ;
pDC->SetViewportExt(5000, 5000);
pDC->PlayMetafile(hMF);

What's supposed to show up on the screen is a rectangle 1-by-1-cm square because the component assumes the
MM_HIMETRIC mapping mode. It will be 1-by-1 cm as long as the viewport extent matches the window extent. If
the container sets the viewport extent to (5000, 10000) instead, the rectangle will be stretched vertically but the text
will be the same size because it's drawn with the non-scalable system font. If the container decided to use a mapping
mode other than MM_HIMETRIC, it could adjust the viewport extent to retain the 1-by-1-cm size.

To reiterate, the component sets the window extent to the assumed size of the viewable area and draws inside that
box. If the component uses a negative y extent, the drawing code works just as it does in MM_HIMETRIC mapping
mode. The container somehow gets the component's extent size and attempts to draw the metafile in an area with
those HIMETRIC dimensions.

Why are we bothering with metafiles? Because the container needs to draw something in the component's rectangle,
even if the component program isn't running. The component creates the metafile and hands it off in a data object to
the in-process OLE handler module on the container side of the Remote Procedure Call (RPC) link. The handler
then caches the metafile and plays it on demand and also transfers it to and from the container's storage. When a
component is in-place active, however, its view code is drawing directly in a window that's managed by the
container.

The MFC OLE Architecture for Component Programs

We're not going into too many details here, just enough to allow you to understand the new files in the next
example. You need to know about three new MFC base classes: COle IPFrameWnd, COleServerDoc, and
COleServerltem. When you use AppWizard to generate an OLE component, AppWizard generates a class
derived from each of the base classes, in addition to an application class, a main frame class, and a view class. The

COlelPFrameWnd class is rather like CFrameWnd. It's your application's main frame window, which contains
the view. It has a menu associated with it, IDR_SRVR_INPLACE, which will be merged into the container
program's menu. When your component program is running in place, it's using the in-place frame, and when it's
running stand-alone or embedded, it's using the regular frame, which is an object of a class derived from
CFrameWnd. The embedded menu is IDR_SRVR_EMBEDDED, and the stand-alone menu is IDR_MAINFRAME.
The COleServerDoc class is a replacement for CDocument. It contains added features that support OLE
connections to the container. The COleServer Item class works with the COleServerDoc class. If
components never supported OLE linking, the functionality of the two classes could be combined into one class.
Because stand-alone component programs do support linking, the MFC architecture dictates that both classes be
present in all components. You'll see in the EX28C example that we can make our own simple mini-server without
this division.

Together, the COleServer Item class and the COleServerDoc class implement a whole series of OLE
interfaces, including 101eObject, IDataObject, IPersistStorage, and
I0lelnPlaceActiveObject. These classes make calls to the container, using interface pointers that the
container passes to them. The important things to know, however, are that your derived CView class draws in the
component's in-place-active window and that the derived COleServer Item class draws in the metafile on
command from the container.

The EX32A Example: An MFC In-Place-Activated Mini-Server

You don't need much OLE theory to build an MFC mini-server. This example is a good place to start, though,
because you'll get an idea of how containers and components interact. This component isn't too sophisticated. It
simply draws some text and graphics in a window. The text is stored in the document, and there's a dialog for
updating it. Here are the steps for creating the program from scratch:

Run AppWizard to create the EX32A project in the ex32a directory or wherever you have designated your project
directory.

New @

Filez Projects l “Workzpaces | Other Documents |

A9 ATL COM Appiwizard %] 'win32 Static Library Project name:
1] Cluster Rezource Type Wizard lex32d

gi| Cuztom Apptafizard
Database Project
B2 DevStudio Add-in Wizard [F:mfeproject ex32a =
' Extended Stored Proc 'Wizard

r | SAF Extenzion Wizard

1t akefile % Create new workspace

B bAFC Activer Controfafizard i

87 MFC &ppiwfizard (] r

B LAFC Appiwizard [exe]
@Q‘E Mew D atabase Wizard | J
T4 Utility Project

8|32 &pplication

Location:

jWinSE Congole Application il:urr;sz
%] Win32 Dynamic-Link Library ‘ L
< >

k. | Cancel

Figure 2: EX32A — Visual C++ new project dialog.

Select Single document interface.

MFC AppWizard - S5tep 1

T R T T B | hat type of application would pou like to create?

" Multiple documents

" Dialog based

[+ Cocument™iew architecture support?

W hat language would vou like your resources in?

|English [United States] [4PPWZEMU.DLL + |

< Back | Mest > | Einizh | Cancel |

Figure 3: EX32A — AppWizard step 1 of 6.

MFC AppWizard - Step 2 of &

" Header files anly

" Databaze view without file support

" Databaze view with file support

[f you include a databasze view, you must zelect a
data zource.

[

Mo data source iz selected.

< Back | Mest = | FEinizh Cancel

Figure 4: EX32A — AppWizard step 2 of 6.

Click the Mini-Server option in the AppWizard Step 3 dialog shown here.

MFC AppWizard - 5tep 3 of &

What compound document support wauld pou like to

Application include?

" Mone

" Container

" Full-gerver

Server cannot run g " Bath container and server

standalone

[Active document server
-

Would you like support for compound files?

Ready

* Yesz, please
" Mo, thank you

“Wwhat ather support would vou like ta include?

[Autormation
v Achiveld Controls

< Back | Mest > | Einizh | Cancel |

Figure 5: EX32A — AppWizard step 3 of 6.

MFC AppWizard - Step 4 of &

Application

ALY Edit Yiew Window Help
- LI :
E::::‘,;'"!i“ W Initial status bar
Prist Setwp . W Printing and print preview
Exit [Contest-zensitive Help
[v 3D contrals
[MAPI [Meszaging AF1)
Ready

[‘Windows Sockets
Haoww do you want your toolbars ta look?

Editing Control: IRttord

F Check Box @ Radic Button
D Radic Button

{« Mormal

" Internet Explorer ReB ars

Haws rmany filez would pou like on wour recent file lizt?

4 _:I Advanced...
< Back | Mest = | FEinizh | Cancel |

Figure 6: EX32A — AppWizard step 4 of 6.

Advanced Options

Document Template Strings | WWindow Shylez |

Mon-lozalized stringz

File extenzion: File type |0

E=32a.0 ocument

Localized stringz

Languange: kd ain frame caption:
English [United States] |EH32E|

Do type name: Eilter narme:

Ex32a |

File new name [short File type name [long
name]: name]:

|E:-:32a |E:-:32a Document

Cloze

Figure 7: EX32A - the default localized strings.

MFC AppWizard - 5tep 5 of &

% Microsoft Developer Studio
File Edit ¥Wiew Insert Build Help

Project

B Froject.cpp " Wwindows Explorer

A4 TODO:

-

e e Would you like bo generate zource file comments?
i ToDa:

* Yes, please
" Mo, thank pou
Haow would you like to uge the MFC libran?

* Az ashared DLL
" Az a statically linked lbrar

< Back | Mest > | Einizh Cancel

Figure 8: EX32A — AppWizard step 5 of 6.

MFC AppWizard - 5tep 6 of &

Appiwizard creates the following classes for pou;

CE=32aview
CEx32aspp
Ck ainFrame
CEx3zaloc
‘CE Sryrltern
ClnPlaceFrame

Clazz name: Header file:
|EE:-:32aSrwItem |Srvr|tem.h
Baze class: Implementation file:

| |S rerltem. cpp

< Back |

| Einizh | Cancel |

Figure 9: EX32A — AppWizard step 6 of 6.

Mew Project Information

3

Appvwfizard will create a new skeleton project with the following specifications:
Application type of ex3d2a: -

Single Document Interface Application targeting:

Wind2

Clagzes o be created:

Apphcation: CEx32abpp in exd2ah and ex32a.cpp

Frame: ChainFrame in b ainFrm b and MainFrm.cpp

Document: CEx32aloc in exdzaloc.h and exdZaloc.cpp

Wiews: CEx32aView in ex32aView h and ex32aliew. cpp

Inplace Frame: ClhPlaceFrame in [pFrame.b and IpFrame.cpp

Server [tem: CEx32aSrvrltem in Srvrltern.h and Srerltem.cpp
Features:

+ Initial toolbar in main frame

+ Initial ztatus bar in main frame

+ Printing and Print Preview support in wiew

+ 30 Controls

+ Uzez zhared DLL implementation [MFC42. DLL]

+ OLE Mini-Server support enabled

+ 0LE Compound File suppaort enabled w
Froject Directon:
F:hmfcprojecthexiZa

Cancel

Figure 10: EX32A project summary.

Examine the generated files. You've got the familiar application, document, main frame, and view files, but you've
got two new files too as shown in the following Table and Figures.

Header Implementation | Class MFC Base Class
Srvrltem.h | Srvrltem.cpp CEx32aSrvriltem | COleServerltem
IpFrame.h | IpFrame.cpp CInPlaceFrame | COlelPFrameWnd
Table 1.
+-®% CEx32aboc ”

s CEm32aSrvrltem
i Azzerbyalid)
i CEx32aSrrltem(CE#32aloc *pContainerD oc)
i “CEx32aSmviltemn()
@ Dump(COumpContest fdc)
i GetDocument()
OnDraw(COC *pDC, CSize &r5ize]
i OnGEetExtentDVASPECT dwhrawbsepect, CSize krS5ize]
(l?' Sernalize[Carchive far]
+- ™8 CEx32aView
—.-™8% ClrPlaceFrame
i Azzerbyalid)
& ClnFlaceframe(]
i “ClnPlaceFrame(]
@ Dump(COumpContest fdc)
(l?' OnCreate[LPCREATESTRUCT IpCreateStruct]
OnCreateControlB ars[CFrameiw/nd “piwfndFrame, CFrameis'nd “plwdndDoc)
i PreCreate’indow[CREATESTRUCT #ics)
ﬁ?@ m_dropT arget
ﬁ?@ m_twhidF esizel ar
ﬁ?@ r_twinid ToolB ar
+-- ™% ChainFrame
+--[7 Globals i
£ >

B8 Clazgyfiem ‘ g Fiesu:uuru:e‘v’iew‘ |E] Fileiew ‘

Figure 11: Generated classes for EX32A viewed through ClassView.

Whorkzpace 'exdda’ 1 project(s)
- ex3?a files
-1-4=3 Source Files
3 exdda.cpp
Eﬂ exd2a.c
3 exd2aloc.cpp
3 exd2aview. cpp
3 |pFrame.cpp
3 k ainFrm.cpp
3 Srerltem.cpp
ngﬂdhmﬁpp
423 Header Files
% exd2a.h
% exd2aloc.h
% ex32aview b
% IpFrame.h
E]Mahﬁmh
% Resource.h
E]SwMgmh
=] Stddfxh

Figure 12: Generated files for EX32A seen through FileView.

Add a text member to the document class. Add the following public data member in the class declaration in
ex32aDoc.h:

CString m_strText;

Add Member, Variable

Yariable Tope:
|E5tring
Cancel |
Yariable Mame:
|m_$trT et
Arccess

* Public " Protected " Private

Figure 13:Adding m_strText member variable.

<« Implementation
public:
CString m_=strText
wirtual ~CEx3Zaloc():
f¥ifdef _DEBUG

Listing 1.

Set the string's initial value to “Initial default text” inthe document's OnNewDocument() member
function.

m_strText = "Initial default text";

BOOL CEx3Zaloc: : OnNewDocument ()
1
m_=trText = "Initial default text":

if {1C0leServerloc: OnHewDocument ())
return FALSE:

Listing 2.

Add a dialog to modify the text. Insert a new dialog template with an edit control, and then use ClassWizard to
generate a CTextDialog class derived from CDialog. Just use the default IDs.

_Iil
M Di
39 ex3?a resources = Rialon EJ
+--[7 Accelerator R :
k.
3 Dialog :::ﬁ:::::::::::::::::::[:::::::::

IDD_:‘-‘-.BEILITBEIK b ca s ee e e s em e e el Cancel .

R [ety e SO OSSR
[Menu c
(21 String T able
(23 Toolbar
(L3 Wersion

T - E

Edit Properties %
44 B Gereal | Styles | Extended Styles |

v “isible [Group [~ Help D
[Disabled v Tab stop

Figure 14: Adding dialog and Edit control.

..H..E.E ClassWizard

kMeszage Maps kember Varnables | Altomation | Activer Events | Clazz [nfo |

endza _:! | CaboutDlg _Ll
F:hmfcprojecthesdsa 3.Ch0
Object |0

Adding a Class

CAboutD g
I APP AEO) 1DD_DIALOGT iz a new resource. Since it iz a kK
|D:,.-_*.,F'F':E><|T dialog rezource you probably want to create a -
ID_CAMCEL | tew class forit You can alzo select an existing B |
ID_EDIT_COR class
ID_EDIT_CLN
ID_EDIT_PAS
tember functid
% Create a new clazs
W DoDatak
™ Select an existing clazs
D ezcription:

Project; Class hame: &dd Class.. - !

:3-]:1 Funehor

Edit Code |

x|

Figure 15: Adding new class dialog prompt.

Mew Class
— Clazs information 0K I
Mame: IET extDialog

Cancel |

File name: |T extDialog. cpp

Change... |
Baze class: IEDiang ;I
=l

Dialog 10 |IDD_DIALOG

— Automation
% Mone

" Automation

e Createable by twpe (L IEHBE&.TE:-:tDiah:Ig

Figure 16: Adding CTextDialog class and its information.

Don't forget to include the dialog class header in ex32aDoc.cpp.

#include "stdaf=x. h"
#include "exida. h"

#include "exidZaloc . h”
#include "Srvrltem. h"
#include "TextDialog.h'|

#ifdef _DEBUG
Listing 3.

Also, use ClassWizard to add a CString member variable named m_strText for the edit control.

Mezzage Maps Member Varablez] Avtomation] Activel Events] Clazs Info]

Project: Clazz hame: fdd Clags.. *

i exdda _:j

] CTextDialog __1]

Contral [0

F:h her32abTextDialog b, § - —
Add Member Variable HEw

IDCAMCEL b ember wariable name: ITI
IDOK Irn_strT et
Cancel ‘ .
Categony:
i\-’alue _:J
Variable type:
| C5tring =

D escrption:

D ezcription:

CString with length walidation

‘ Cancel

Figure 17: Adding m_strText member variable to IDC_EDIT1 of CTextDialog class.

Add a new menu command in both the embedded and in-place menus. Add a Modify menu command in both the

IDR_SRVR_EMBEDDED and 1DR_SRVR_INPLACE menus. To insert this menu command on the

IDR_SRVR_EMBEDDED menu, use the resource editor to add an EX32A-EMBED menu item on the top level, and
then add a Modify option on the submenu for this item. Next add an EX32A-INPLACE menu item on the top level

of the IDR_SRVR_INPLACE menu and add a Modify option on the EX32A- INPLACE submenu.

To associate both Modify options with one OnMod i Fy () function; use 1D_MODIFY as the 1D for the Modify
option of both the IDR_SRVR_EMBEDDED and IDR_SRVR_ INPLACE menus. Then use ClassWizard to map both

Modify options to the OnMod i Fy () function in the document class.

£ ex3?a resources

+

+

+

+

+

(2 Accelerator
(22 Dialog
£ lcon

£ Menu
& IDR_MAINFRAME

5 |IDR_SAYR_EMBEDDED
& IDR_SRVR_INPLACE
[22 String T able
(22 Toolbar

(23 Version

al=

£ ex3?a resources

+

+

+

+

+

(L3 Accelerator
(27 Dialog

EX324-EMBED View Help {”

File Edit

Menu Item Properties IE
44 B Geneal | Extended Styles |
ID: |ID_MODIFY | Captior: |&Modify
[Separator | Popup [Inactive Break: |Mone -
[Checked | Grayed [Help
Prampt: |Te:-ct rnodification test
Figure 18: Adding new menu and its item to 1DR_SRVR_EMBEDDED.
Edit Wiew
Menu Item Properties IEI

£ lcon

£ Menu
E IDR_MAINFRAME

E IDR_SAWR_EMBEDDED
5| IDR_SAYA_INPLALCE |
[2 String Table
(23 Toolbar
(23 Wersion

= ? General | Eutended Styles |
1D: |ID_MODIFY | Laption: |&Modify
[Separator [Pop-up [Ipactive Break: |N|:une -
[Checked [Grayed [Help
Prompt: |Te:-:t rnodification test

Figure 19: Adding new menu and its item to IDR_SRVR__INPLACE.

MFC ClassWizard

tezzage Maps tember Yariables I ALtamation | Activer Events | Clazz Info |

Project: Clazz name: Add Clazs.. vl
iEHSEa _:j]EEHSEaDDc _:_i o dd Furci

hon...
F:\mfcprojecthex32atex32alloc. h, 4. Aex32aher32al oc. cpp m

Object |0 beszages: Delete Function
ID_FILE_SAVE - ;

ID FILE UPDATE = UPDATE_COMMAMD _LI Edit Cade |
D MODIFY]

[D_ME=T_PaME ;
ID_FREY PANE Add Member Function

ID_VIEW_STATUS_BAR
ID_VIEW_TOOLBAR

] l
tember functions: lgt odify iy I
Y OnGetEmbedded temn

YW OnMewDocument
Y Serialize

tember function name

(60 i

teszage; COMMAND
Object [D: ID_MODIFY

D e=zcription; Handle a command [from menu, accel, crmd button]

k. Cance

Figure 20: Adding command handler to ID_MODIFY of CEx32aDoc class.

Code the ID_MODIFY command handler as shown here;

void CEx32aDoc::OnModify()

{

// TODO: Add your command handler code here
CTextDialog dlg;

dlg.m_strText = m_strText;

it (dlg.-DoModal() == 1DOK)

{
m_strText = dlg.m_strText;
// Trigger CEx32aView::OnDraw
UpdateAl IViews(NULL);
// Trigger CEx32aSrvritem::OnDraw
UpdateAll ltems(NULL);
SetModifiedFlag();

}

< CExdZaloc commands

woid CEx3ZaDoc: :OnModifw()

1

S TODD: Add wour command handler code here

CTextDialog dlg;

dlg. m_strText = m_strText:

if (dlg.DoModal({) == IDCKE) {
n_strText = dlg.m_dgtrTe=t;
Tpdatedl lViews(HULL): ~ Trigger CEx3iZaView:: OnDraw
Tpdateillltems(HULL); v Trigger CEx3ZaSrvrltem: : OnDraw
SetModifiedFlag():

Listing 4.

Override the view's OnPrepareDC() function. Use ClassWizard to generate the function.

MFC ClassWizard

Mezzage Maps | tember Y ariables | ALtamation | Activex Events | Clazz Info |

Project: Clazs name: Add Class.. ~
Endda j

| CEx32aiew ~|

F:h Aew32ahendZzaview h, Fh hern32ahendZaView cpp g
Object D Messages: Delete Function

CE#3-2ay . Ornlnitiallpdate -
ID_APP_ABOUT 3 Ok otif 0
ID_APP_EXIT = OnPrepareDC
ID_CAMCEL_EDIT_SRAWR OnPreparePrinting g
ID_EDIT_COPY OnFrint
ID_EDIT_CUT OnSecrall
ID_EDIT_PASTE hd OnScrollBy hd
b ember functions:
W OnCancelE ditSrer OM_ID_CAMCEL_EDIT_SRWR:CORMMAMND ~
Yoo OnDraw
YW OnEndPrinting
OnFrepareDC
Y OnPreparePrinting v
D ezcription; Called befare drawing or printing to adjust attributes of the device
] Cancel

Figure 21: Overriding the view's OnPrepareDC() function.
Then replace any existing code with the following line.
pDC->SetMapMode (MM_HIMETRIC) ;

< CEx3dZaView message handlers
wvoid CEx3dZaView: OnPrepareDC{CDC* pDC, CPrintInfo®* plnfo)

S TODD: Add wour specialized code here and-sor call the base class
pDC—:>SetHapiode (MM HIMETEIC) (|

Listing 5.

Edit the view's OnDraw() function. The following code in ex32aView.cpp draws a 2-cm circle centered in the
client rectangle, with the text wordwrapped in the window.

void CEx32aView: :OnDraw(CDC* pDC)

CEx32abDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

CFont font;

font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, O,
ANSI1_CHARSET, OUT _DEFAULT_PRECIS,
CLIP_DEFAULT PRECIS, DEFAULT QUALITY,
DEFAULT_PITCH | FF_SWISS, "Arial™);

}

CFont* pFont = pDC->SelectObject(&font);

CRect rectClient;

GetClientRect(rectClient);

CSize sizeClient = rectClient.Size();

pDC->DPtoHIMETRIC(&sizeClient);

CRect rectEllipse(sizeClient.cx / 2 - 1000,
-sizeClient.cy / 2 + 1000,
sizeClient.cx / 2 + 1000,
-sizeClient.cy / 2 1000);

pDC->Ellipse(rectEllipse);

pDC->TextOut(0, O, pDoc->m_strText);

pDC->SelectObject(pFont);

S CEx3dZaView drawing

vold CEx3ZaView: OnDraw(CDC* phic)

1

CEx3Zaloc#*® pDoc = GetlDocument():

ASSERT _VALID(pDoc) :

CFont font;

font . CreateFont{-500, 0, 0, 0., 400, FAILSE, FALSE, 0.
ANSI_CHARSET, OUT_DEFAULT_FRECIS,
CLIP DEFAULT PRECIS, DEFAULT QUATLITY.
DEFAULT _FITCH | FF_SWISS, "Arial"):

CFont#* pFont = pDC-:SelectObject(é&font);

CRect rectClient:

GetClientRect(rectClient);

CSize =zizeClient = rectClient Size():

pDC—>DPtocHIHETRIC (&=izellient)

CRect rectEllip=e(=sizeClient . cx ~ 2 — 1000,
—=zizellient .cy ~ 2 + 1000,
zizeClient .cx ~ 2 + 1000,
—=izelClient .cv ~ 2 — 1000%;
pDC—:Ellipse{rectEllip=e):
pDC—:TextOut (0, 0, pDoc—:m_=trText):
pDC—:>SelectObject (pFont) ;
Listing 6.

Edit the server item's OnDraw() function. The following code in the Srvritem.cpp file tries to draw the same
circle drawn in the view's OnDraw() function. You'll learn what a server item is shortly.

BOOL CEx32aSrvritem: :OnDraw(CDC* pDC, CSize& rSize)

{

// Remove this if you use rSize
UNREFERENCED_PARAMETER(rSize);

CEx32aDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

// TODO: set mapping mode and extent

// (The extent is usually the same as the size returned from
// OnGetExtent)

pDC->SetMapMode (MM_ANISOTROPIC);

pDC->SetWindowOrg(0, 0);

pDC->SetWindowExt(3000, -3000);

CFont font;

font.CreateFont(-500, 0, 0, O, 400, FALSE, FALSE, O,
ANSI_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH | FF_SWISS, "Arial');

CFont* pFont = pDC->SelectObject(&font);

CRect rectEllipse(CRect(500, -500, 2500, -2500));
pDC->Ellipse(rectEllipse);

pDC->TextOut(0, O, pDoc->m_strText);
pDC->SelectObject(pFont);

return TRUE;
3

BOOL CEx3ZaSrvrltem: : OnDraw(CDC* pDC, CSizeét rSize)
1

¢ Remowve thi= if vou use rSize

UNREFEREHCED PARAMETER{rSize):

CEx3ZalDoc* pDoc = GetDocument():
ASSERT VALID(pDoc):

S TODD: ==t mapping mode and extent

#« (The extent 1= usually the =ame a= the =ize returned from
S DnGetExtent)

pDC—>SetHapMode (MM ANTSOTROEIC)

pDC—:SetWindowOrg(0, 03:

pDC—:SetWindowE=xt (3000, —3000%;

CFont font:

font . CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0.
ANSI _CHARSET, OUT_DEFAULT PRECIS,
CLTP DEFAULT FRECIS, DEFAULT QUALITY.
DEFAULT _PITCH | FF_SWISS. “"Arial"):

CFont#*® pFont = pDC—:SelectObject{éfont):

CRect rectEllipse(CRect (500, =500, 2500, -25003%3:

pDC—:Ellipse{rectEllip=e);

pDC—:TextOut (0, 0. pDoc—:m_strText):

pDC—:52lectObject (pFont) ;

return TRUE:

Listing 7.

Edit the document's Serial ize() function. The framework takes care of loading and saving the document's data
from and to an OLE stream named Contents that is attached to the object's main storage. You simply write
normal serialization code, as shown here:

void CEx32aDoc::Serialize(CArchive& ar)

{

it (ar.IsStoring())
{

ar << m_strText;
by
else
{

ar >> m_strText;
by

<+ CExdZaloc serialization
vold CEx3Zaloc: :Serialize(CArchived ar)

if {ar. IsStoring())

1

ar << m_strTe=xt:
h
el=ze
{

ar »» m_=trText:
b

1
Listing 8.

There is also a CEx32aSrvrltem: :Serial ize function that delegates to the document Serialize()
function.

Build and register the EX32A application. If the program is run standalone, the following prompt will be displayed.

exdZa [‘5—(|

L] "_'.‘ This server can only be run from a container application.
[

Figure 22: EX32A program output.

You must run the application directly once to update the Registry.

Test the EX32A application. You need a container program that supports in-place activation. Use Microsoft Excel or
a later version. Choose the container's Insert Object menu item. If this option does not appear on the Insert menu,
it might appear on the Edit menu instead. The steps are shown below.

E3 Microsoft Excel - Book1

|§_le File Edit Wiew | Insert | Format Tools Data Window

AN=A" RERET R R 2 = -4
mEE i seMPEEME:N
Fig - Columins I

A | B Worksheet E
[H_H Chart...

Svmbal...

Paqe Break

S| Function...

Marme »

_d Comment

Picture »

2:5 Diagram...

| oOhiect ...

== ==
0 b | | | S| e O e DD | —

% Hypetlink, .. Crrl+k

Figure 23: Inserting EX32A object into Excel worksheet.

Then select Ex32a Document from the list. Click the OK button.

X

Object

Create Mew | Create from File

Object bvpe:
Dart Zip Control
e 28 Document

|3

Ex32a Document

Media Clip 3
Mediaview 1.41k Control

Microsaft Graph Chart

Microsaft Help 2.0 Conkents Conkral

Microsoft Help 2,0 Index Contral ¥ [] Display as icon
Resul
b Inserks a new Ex32a Docurnent object
Em inko your document,
[O,] [Cancel

Figure 24: Selecting Ex32a Document object.

You debug an embedded component the same way you debug an Automation EXE component. See the sidebar,
"Debugging an EXE Component Program”, for more information.

When you first insert the EX32A object, you'll see a hatched border, which indicates that the object is in-place
active. The bounding rectangle is 3-by-3-cm square, with a 2-cm circle in the center, as illustrated here. Notice that
the component's IDR_SRVR_INPLACE menu is visible.

=S

Microsoft Excel - Ex32a in Book1

~JEile Edit ‘Wiew Window Help - =] x|
4

A | B [¢ [b | E [Z
i ¢
2 -
3 Initizl default text
4
- 1
B ’ "
7
o]
=] =
11 N
M 4 » »Sheetl { Sheetz £ She|< |
Read:

Figure 25: EX32A object in Excel worksheet.

If you click elsewhere in the container's window (Excel worksheet), the object becomes inactive, and it's shown like
this.

E3 Microsoft Excel - Book |Z||E|r5__<|
@_1 File Edit Wiew Insert Format Tools Data Window Help

P Sl (39S [Ga@B -9 -8 5 -3

MmN [P B H S
EB - Jﬁ,
A | B [¢ | b | E | F

1

2

i Initial cdefault t

L

5

7

B —

g

10

Figure 26: The EX32A object in inactive mode.

In the first case, you saw the output of the view's OnDraw() function; in the second case, you saw the output of the
server item's OnDraw() function. The circles are the same, but the text is formatted differently because the server
(component) item code is drawing on a metafile device context.

If you use the resize handles to extend the height of the object (click once on the object to see the resize handles;
don't double-click), you'll stretch the circle and the font will get bigger, as shown below in the first figure. If you
reactivate the object by double-clicking on it, it's reformatted as shown in the second figure that follows.

E3 Microsoft Excel - Book1 (version 1).xls [Reco... |Z||E|[z|

] Ele Edt Wiew Insert Format Tools Data Window

i Help Adaobe POF A x

iNnEHRIG9- e R g

_i'@!imabllli‘l.np @'|—E|_E|Jj|é:;]| 7
Object 1 - & =EMBED{"Ex32a. Document” ")

A | B | ¢ [b [E [=

o

nitial default 1

Cr

W 4 » wlSheetl { Sheetz f Sheet [| 5]
Ready

Figure 27: Resizing the object.

E3 Microsoft Excel - Ex32a in Book1 (version ... E'@'E'
] Ele Edit Wiew EX32A-INFLACE ‘Window Help = x|

Initizl default text

M 4 » M} Sheetl /Sheet2 / She|< »
Read:

Figure 28: Reactivate the object after resizing it.

Click elsewhere in the container's window, single-right-click on the object, and then choose Ex32a Object from the
menu. Choose Open from the submenu. This starts the component program in embedded mode rather than in in-
place mode, as shown here.

Cr

nitial default

Cuk

Copy

(ki o<

Paste

| Ex32a Object . Edit

Shiow Pickure Toolbar open

Grouping k Convert, ..

§ Crder 3

Assign Macra. ..

% Format Ohiject, ..

Figure 29: Opening the object in an embedded mode.

~+ Ex32a in Book1 (versi... |:||E|[z|
Wiew Help

= & ¥
Initial default text

Figure 30: Object in embedded mode. Notice the top menu.

- Ex32a in Book1 (versi... [= |[8][X]
File Edit SaEENN Yiew Help
D E.F’ radifsy % ‘@
Initial default text

Text modification test

Figure 31: Using Modify menu in embedded mode.

Dialog

Cancel

tl X

Inzert new test here:

|Testing---N e text

Figure 32: Modifying the text.

1+ Ex32a in Book1 (versi... [= |[B)fX]

File Edit EX328-EMBED ‘iew Help

= S %
esting-—-Mew text

Ready

Figure 33: New text in action.
Notice that the component's IDR_SRVR_EMBEDDED menu is visible.

Continue on next module...part 2

End part 1
Further reading and digging:

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward
compatible with 6.0 class library

MSDN Library

DCOM at MSDN.

COM+ at MSDN.

COM at MSDN.

Windows data type.

Win32 programming Tutorial.

. The best of C/C++, MFC, Windows and other related books.

0. Unicode and Multibyte character set: Story and program examples.

N

BOO~No O ~W

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

