Another ATL Tutorial Using Visual C++ .NET

Program examples compiled using Visual Studio/C++ .Net 2003 compiler on Windows XP Pro machine with
Service Pack 2. Topics and sub topics for this tutorial are listed below. Don’t forget to read Tenouk’s small
disclaimer. The supplementary note for this tutorial is .NET.

ATL is designed to simplify the process of creating efficient, flexible, lightweight controls. This tutorial leads you
through the creation of an ActiveX control, demonstrating many ATL and COM fundamentals. This tutorial does
not use attributes.

By following this tutorial, you will learn how to add a control to an ATL project that draws a circle and a filled
polygon. You will then add a property to indicate how many sides the polygon will have and create drawing code
for updating the control when the property changes. The control will then be displayed on a Web page using some
VBScript to make it respond to events.

The tutorial is divided into seven steps. You should perform each step in order as later steps depend on previously
completed tasks. Before you begin, you should confirm that you have privileges required to register an ActiveX
component on your particular computer. This is usually only a concern if you are running Visual Studio .NET over a
Terminal Services connection.

. Step 1: Creating the Project.

. Step 2: Adding a Control to Your Project.

= Step 3. Adding a Property to Your Control.

= Step 4: Changing Your Control's Drawing Code.
. Step 5: Adding an Event.

. Step 6: Adding a Property Page.

. Step 7: Putting Your Control on a Web Page.

Step 1: Creating the Project
This tutorial walks you step-by-step through a non-attributed ATL project that creates an ActiveX object that
displays a polygon. The object includes options for allowing the user to change the number of sides making up the
polygon, and code to refresh the display.
To create the initial ATL project using the ATL Project Wizard

1. In the Visual Studio.NET development environment, click New on the File menu, and then click Project.

2. Click the Visual C++ Projects folder and select ATL Project.
3. Type Polygon as the project name:

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/NET.html
http://www.tenouk.com/visualcplusmfc/atlattrbutestutorial31.html

Mew Project

Project Types:

[wisual Basic Projects

[wisual C# Projects

[visual J# Projects
+-4=3] Wisual C++ Projects

[setup and Deployment Projects
+-{_7] Other Projects

(£ wisual Studio Solutions

& project that uses the Active Template Library.

oo o
Templates: eojy
#2. A5P.MET Web Service A
el ATL Project F
il ATL Server Project

S ATL Server ‘Web Service

bt Class Library {MET) B
A Console Application {MNET)

|| Custom Wizard

Empty Project (MET)

ol Extended Stored Procedure Dl b

Mame: | Palygon

Location: | F:mfcproject

j Erowse, .,

Mews Solution Mame: | Polygon

*|ess

Iv Create direckory For Solukion

Project will be created at FiimfcprojectiPolygontPolygaon,

o |

Cancel | Help |

e

Figure 1: Visual C++ Net, new ATL project.

The location for the source code will usually default to My Documents\Visual Studio Projects, and a new
folder will be created automatically. You can change the directory if needed. This tutorial use F:\mfcproject
as a location.

Click OK and the ATL Project Wizard opens.
Click Application Settings to see the options available:

ATL Project Wizard - Polygon

Application Settings
Specify the application bvpe and Feature support For the project.

[Attributed

Setver bvpe!
{" Drynamic-link library (OLL)
(" Executable (EXE)
" Service (EXE)

Application Settings

Additional options:
[Allows merging of prosyiskub code

[Support MFC
[Suppaort COM+ 1.0
[

Finish Cancel Help

Figure 2: ATL Project Wizard — Application Settings page.

6. As you are creating a control, and a control must be an in-process server, leave the Server type as a DLL.
7. 1In this tutorial, you will not be using attributes, so ensure that the Attributed check box is not selected.
8. Leave the other options at their default values, and click Finish.

The ATL Project Wizard will create the project by generating several files. You can view these files in Solution
Explorer by expanding the Polygon object. The files are listed below.

Solution Explorer - Polvgon

@ Solution ‘Palygon' (2 projects)
-
[5] References
-~ 3 Source Files
@ skdafx.cpp
@ Palygon.cpp
Palygaon.idl
Palyaon.def
£3) Header Files
skdafx.h
Resource.h
-~ 3] Resource Files
&8 Palygon.rc
Palygon.rgs
ReadMe, bxt
-l 3 Generated Files
@ Palygon_j.c
- PaolygonPs
[=5] References
(L Source Files
Paolygonps.def
-l 3 Generated Files
@ Palygon_j.c
@ Palygon_p.c

&9 didata.c
_@SDI... |§Cla... ol res. @Sea... |

Figure 3: Polygon files generated by Visual C++ .Net wizard seen through Solution Explorer.

File Description
Contains the implementation of DI IMain(), DI 1CanUnloadNow(),
DIlIGetClassObject(), DIIRegisterServer(), and

Pol . - . . R,
OEon-CPp DIlUnregisterServer (). Also contains the object map, which is a list of
the ATL objects in your project. This is initially blank.
This module-definition file provides the linker with information about the
Polygon.def .
exports required by your DLL.
. The interface definition language file, which describes the interfaces specific to
Polygon.idl

your objects.

Polygon.rgs This registry script contains information for registering your program's DLL.
The resource file, which initially contains the version information and a string
containing the project name.

Resource.h The header file for the resource file.

This module definition file provides the linker with information about the
Polygonps.def | exports required by the proxy and stub code that support calls across
apartments. For details, see COM+ Apartment Models.

Polygon.rc

stdafx.cpp The file that will #include the ATL implementation files.
stdafx.h The file that will #include the ATL header files.
Table 1.

In the next step, you will add a control to your project.

Step 2: Adding a Control

In this step, you will add a control to your project, build it, and test it on a Web page.
To add an object to an ATL project

1. In Class View, right-click the Polygon project.
2. Point to Add on the shortcut menu, and click Add Class.

!E Solution 'Pokygon' (2 projects)
3| B Buid
B @ pebuid
..... Clean
=i Project Only
= & Project Dependencies. ..
..... Project Build Order. ..
.....
Add F[ET] Add Mew Tkem...
_____ & add Reference. ., Add Existing Ikem...
""" |=| Add web Reference.,. # Mew Folder
..... B
=] Set as StartUp Project |¥Q Add Class...
. Debug 3 ’;‘g add Resource. .,

Figure 4: Adding class to the ATL project.

The Add Class dialog box appears. The different object categories are listed in the tree structure on the
left:

Add Class - Polygon

I

oo o
Cateqories: Templates: BE)5
=] visual C++ %55 ATL Simple Object
D MET £ ATL Contral
- ATL ATL OLEDE Consumer
(0w A ATL Dialog
(3 MFC i A TL Server Web Service
I:l Generic

ey fdd ATL Support Ta MFC

ES|ATL Property Page

iG] A TL Performance Monitar Object
I ATL OLEDE Pravider

rﬂ-_m ATL Active Server Page Componenk
EIATL COM+ 1,0 Component

Adds an ATL AckiveX conkral,

I |

CIpen Cancel | Help |

Figure 5: The Add Class dialog, adding a new class to Polygon project.

3. Expand the tree structure and click the ATL folder.
4. From the list of templates on the right, select ATL Control. Click Open. The ATL Control Wizard will
open, and you can configure the control:

ATL Control Wizard - Polygon

wWelcome to the ATL Control Wizard

This wizard adds a user interface object ko vour project that supports the interfaces For all
potential conkainers.,

C++
Short name: b File:
Cptions |P|:|I';.-'Ct|| |P|:|I~;.-'CI:I.I'| J
b Class; .cop File;
|CF'|:|I':.fCI:I |Pn:nl',.fCtI.n:|:||:| J
ST [rame of new class that will be created, |
[Aktribated
Stock Propetties
COM
Coclass: Type:
PakyCt PokyCH Class
Interface: Progll:
|IF‘|:|I';.-'CI:I |PDIygDn.PDI';.-'CI:I

Finish | Cancel Help

Figure 6: ATL Control Wizard, Names page.

5. Type PolyCtl as the short name and note that the other fields are automatically completed. Do not click
Finish yet, because you need to make some changes.

The ATL Control Wizard's Names page contains the following fields:

Field Contents

Short The name you entered for the control.

name

Class The C++ class name created to implement the control.

.h file The file created to contain the definition of the C++ class.

.cpp file | The file created to contain the implementation of the C++ class.
CoClass | The name of the component class for this control.
The name of the interface on which the control will implement its

Interface custom methods and properties.
Type A description for the control.
The readable name that can be used to look up the CLSID of the
ProgID
control.
Table 2.

You need to make several additional settings in the ATL Control Wizard.
To enable support for rich error information and connection points

1. Click Options to open the Options page.
2. Select the Connection points check box. This will create support for an outgoing interface in the IDL file.

Options

wour conkral,

ATL Control Wizard - Polygon

Specify control tyvpe, threading model, inkerface bype, aggregation and additional support Far

Man Contraol bype: Threading model:
Mames
f* Standard control (™ Single
Options " Composite contral {e" Apartment
Interfaces { DHTML control Interface:
[Minimal contral ¢ Dual
Appearance " Cuskom
Aggregation:
Stock Propetties f+ Yes B
" Mo Suppork:
 only W
[Licensed
Finish Cancel Help

Figure 7: ATL Control Wizard, Options page.

You can also make the control insertable, which means it can be embedded into applications that support
embedded objects, such as Excel or Word.

To make the control insertable

1. Click Appearance to open the Appearance page.
2. Select the Insertable check box, which by default will be cleared.

ATL Control Wizard - Polygon

Appearance

Specify any user interface Features For wour object,

Man Wiew stakus:
Names
v COpague
Opions Iv Salid background

b Add contral based on;

Ckher:
[v Maormalized 0

[windowed only
v Insertable

|{nane}
Appearance
Miscellaneaus skakus:

Stack Properties [Inwisible at run time

[Acts like button
[Acts like label

=

Finish Cancel

Help

Figure 8: ATL Control Wizard, Appearance page.

The polygon displayed by the object will have a solid fill color, so you need to add a Fill Color stock property.

To add a Fill Color stock property and create the control

1. Click Stock Properties to open the Stock Properties page.

2. Under Not supported, scroll down the list of possible stock properties. Double-click Fill Color to move it

to the Supported list:

Stock Properties

Mames
Options
Interfaces
Appearance

Stock Properties

Specify stock properties that wour control will support.,

ATL Control Wizard - Polygon

Specify stock properties that wvour control will support, |

Mot supported: Supported:
Border Width Al Fill Color
b
<<
Foreground Color -
HiwM
[[Mouse Poinker i
Finish Cancel

Figure 9: ATL Control Wizard, Stock Properties page.

3. This completes the options for the control. Click Finish.

As the wizard created the control, several code changes and file additions occurred. The following files were

created:
File Description
PolyCtl.h Contains most of the implementation of the C++ class CPolyCtl.
PolyCtl.cpp Contains the remaining parts of CPolyCtl.
PolyCtl.rgs A text file that contains the registry script used to register the control.
PolyCtl.htm A Web page containing a reference to the newly created control.

Table 3.

The wizard also performed the following code changes:

* Added an #include statement to the stdafx.h and stdafx.cpp files to include the ATL files necessary
for supporting controls.

= Changed Polygon.idl to include details of the new control.
* Added the new control to the object map in Polygon.cpp.

Now you can build the control to see it in action.

Building and Testing the Control

To build and test the control

4. On the Build menu, click Build Polygon.

@9 Polygon - Microsoft Visual C++ [design] - PolyCtl.h

File Edit Wiew Project | Build | Debug Tools window

g -t - = Build Salutian 7
Rebuild Solution

Clean Solution
Solution Explorer - Polvgon =

||ﬂ| Build Palygon
@ Solution 'Pokygon' (2 projed Rebuild Palygon
= Polygon Clean Polygon
[£3] References
- 3 Source Files Batch Build...
@ stdafx.cpp Configuration Manager. .,

@ Polygon.cpp

Polygon.idl

Figure 10: Building Polygon project.

5. Once the control finishes building, double-click PolyCtl.htm in Solution Explorer. The HTML Web page
containing the control will be displayed. You should see a rectangle and the text ATL 7.0 : PolyCtl. This is
your control.

Solukion Explorer - Polygan Pl CEL b —'-}D::llh_;r_ﬂptians-r'h Palygon.idl | PokeCHocpp PolyCtlhi 9 B X

E— A
PalyCtl b P
-l 3 Resource Files
£ Palygon.rc
Palygon.rgs

PalyCkl rgs
PalyCH . brip ATL 7.0 : PolyCtl

ReadMe, bxt
- 5 Generated Files

@ Paolygon_j.c
PalyCEL bt
- PalygonPs

[(5] References 3

(L Source Files

Polygonps . def [l HTML

-l 3 Generated Files

@ Paolygon_j.c w el LA
= s |Build >

¢
@s.. [T |Er. (s || T Dong —--m-ooooomommoomomoos &

Figure 11: Polygon project output.

Note: When completing this tutorial, if you receive an error message where the DLL file cannot be created, close
the PolyCtl.htm file and the ActiveX Control Test container and build the solution again. If you still cannot create
the DLL, reboot the computer or log off (if you are using Terminal Services).

Next, you will add a custom property to the control.

Step 3: Adding a Property to the Control

1PolyCtl is the interface that contains the control's custom methods and properties, and you will add a property to
it.

To add a property using the Add Property Wizard

1. Right-click IPolyCtl in Class View (expand the Polygon branch to find it).
2. On the shortcut menu, click Add, and then click Add Property. The Add Property Wizard will appear.

Class Yiew - Polygon PalviZtLh | _IPolyCHEvents_CP.h | Polyg
SR
- Polygon
+--=4 Global Functions and Variables
+-E Macros and Constants
+- ¢ CPalyCt
+ QI; CPalygoniModule
+ QI; CProcy_IPalyCHEvents <T = ATL 7.0 PolyCtl
]l
+-+ F @ GoTo Definition

A Palvd < Browse Definition
+-zfp

= gt Quick Find Symbol

=
T g 1 add b 4 Add Method...
+
Inlli Copy. @ Add Property...
TINa '

Sort Alphabetically

K
Sork By Type
¥a

G

Sork By Access

{% Group By Type

=2 Properties

Figure 12: Adding property to project.

3. In the drop-down list of property types, select SHORT.
4. Type Sides as the Property name:

Add Property Wizard - Polygon

Welcome to the Add Property Wizard

This wizard adds a property to wour interface,

Properky bvpe: Property name:
| SHORT | [ides]

1DL Attributes

Specify any IDL attributes For this property,

Funickion bype:
[w Get funckion v Puk Funckion

{* PropPut (" PropPutRef

Parameker tyvpe: Parameter name:

| =

[

Finish Cancel | Help

Figure 13: Add Property Wizard, Names page.
5. Click Finish to finish adding the property.

When you add the property to the interface, MIDL (the program that compiles .idl files) defines a Get method for
retrieving its value and a Put method for setting a new value. The methods are named by prepending put_ and
get_ to the property name.

The Add Property Wizard adds the necessary lines to the .idl file. It also adds the Get and Put function
prototypes to the class definition in PolyCtl.h and adds an empty implementation to PolyCtl.cpp. You can check
this by opening PolyCtl.cpp and looking for the functions get_Sides() and put_Sides().

Although you now have skeleton functions to set and retrieve the property, it needs a place to be stored. You will
create a variable to store the property and update the functions accordingly.

To create a variable to store the property, and update the put and get methods

1. From Solution Explorer, open PolyCtl.h and add the following line at the end of the class definition, after
the definition of m_clrFillColor:

short m_nSides;

'

OLE COLOR m clrFillcColor:
shaort rn_nSides:l
= wold OnFillColorChanged()
i
ATLTRACE (_T("OnFillCDlDrChanged‘-. n™"i);

Listing 1.

2. Set the default value of m_nSides. Make the default shape a triangle by adding a line to the constructor in
PolyCtl.h:

cpolyctl)

m _nSides = 3;

}

i
public:

=) CPolyCtli)
{

rn_nS idez = 3 .:|

DECLARE OLEMISC 3TATUS (OLEMISC F
Listing 2.

3. Implement the Gett and Put methods. The get_Sides() and put_Sides() function declarations
have been added to PolyCtl.h. Add the following code to PolyCtl.cpp to complete both methods:

STDMETHODIMP CPolyCtl::get_Sides(short *pVval)

*pVal = m_nSides;

return S_OK;
3}
STDMETHODIMP CPolyCtl: :put_Sides(short newval)
{
it (newval > 2 && newval < 101)
{
m_nSides = newVal;
return S_OK;
}
else

return Error(_T("'Shape must have between 3 and 100 sides'));

E STDMETHODIMP CPolwyCtl::get Sides (SHORT® pWal)
i
A ToDo: Add vour implementation code here
*pWal = m n3ides:
return I OK;

E STDMETHODIMP CPolyCrl::put 3ides (SHORT newVal)
i
A ToDo: Add vour implementation code here
=l if (newWal > 2 &£ newWal <« 101)
i
I n3ides = newval:
return I OK;
- ¥
el=e
return Error(T("Shape mwust have hetween 3 and 100 sides™)):

Listing 3.

The get_Sides() method returns the current value of the Sides property through the pVal pointer. In the
put_Sides() method, the code ensures the user is setting the Sides property to an acceptable value. The
minimum must be 2, and because an array of points will be used for each side, 100 is a reasonable limit for a
maximum value.

You now have a property called Sides. In the next step, you will change the drawing code to use it.

Step 4: Changing the Drawing Code

By default, the control's drawing code displays a square and the text ATL 7.0 : PolyCtl. In this step, you will
change the code to display something more interesting. The following tasks are involved:

= Modifying the Header File.

= Modifying the OnDraw() Function.

= Adding a Method to Calculate the Polygon Points.
= Initializing the Fill Color.

Modifying the Header File

Start by adding support for the math functions Sin and cos, which will be used calculate the polygon points, and
by creating an array to store positions.

To modify the header file
4. Addthe line #include <math.h> to the top of PolyCtl.h:

#include <math.h>
#include “resource.h" // main symbols

=/F PolyCtl.h : Declaration of the CPolyCtl
fpragma once

#include <math.h4

#include "resource.h" A/ main symbols
#include <atlectl.h>

#include "Polvgon.h™

finclude " ITPolyCtlEvents CP.h"

Listing 4.

5. Once the polygon points are calculated, they will be stored in an array of type POINT, so add the array to
the end of the class definition in PolyCtl.h:

OLE_COLOR m_clrFillColor;
short m_nSides;
POINT m_arrPoint[100];

OLE COLOR m clrFillColor:
short w_n3ides;
POINT m_arrPoint[100] |
= vwold OnFillColorChangedi()
i
ATLTRACE(T("CnFillColorChangedin™)):

Listing 5.
Modifying the OnDraw() Method

Now you should modify the OnDraw() method in PolyCtl.h. The code you will add creates a new pen and brush
with which to draw your polygon, and then calls the EF lipse () and Polygon() Win32 API functions to
perform the actual drawing.

To modify the OnDraw() function

1. Replace the existing OnDraw() method in PolyCtl.h with the following code:

HRESULT CPolyCtl::OnDraw(ATL_DRAWINFO& di)

{
RECT& rc = *(RECT*)di.prcBounds;
HDC hdc = di.hdcDraw;
COLORREF colFore;
HBRUSH hOldBrush, hBrush;
HPEN hOldPen, hPen;

// Translate m_colFore into a COLORREF type
OleTranslateColor(m _clrFillColor, NULL, &colFore);

// Create and select the colors to draw the circle
hPen = (HPEN)GetStockObject(BLACK PEN);

hOldPen = (HPEN)SelectObject(hdc, hPen);

hBrush = (HBRUSH)GetStockObject(WHITE_BRUSH);
hOldBrush = (HBRUSH)SelectObject(hdc, hBrush);

Ellipse(hdc, rc.left, rc.top, rc.right, rc.bottom);

// Create and select the brush that
// will be used to fill the polygon
hBrush = CreateSolidBrush(colFore);
SelectObject(hdc, hBrush);

CalcPoints(rc);
Polygon(hdc, &m arrPoint[0], m _nSides);

// Select back the old pen and
// brush and delete the brush we created

SelectObject(hdc, hOldPen);
SelectObject(hdc, hOldBrush);

DeleteObject(hBrush);
return S_OK;
}
ff IPolyCtl
public:
= HREZULT OnDraw(ATL DRAWINFO&L di)
i
BECTE roc = *[RECT*)di.procEBounds:
HOC hde = di.hdcDraw:
COLORREF colFore:
HERUZH holdBrush, hBrush:
HFEN holdPen, hPen:

£/ Translate m colFore into & COLORREF type
OleTranslateColor (w_clrFillColor, MNULL, &colFore):

ff Create and select the colors to draw the circle

hPen = (HPEN) GetZtockChject (ELACE PEN):

holdPen = [(HPEN) SelectChiject (hdo, hPen):

hRrn=h = (HRRITSH! fet St ackth-baect (THTTFE RRITSH -
Listing ©.

Adding a Method to Calculate the Polygon Points

Add a method, called CalcPoints(), that will calculate the coordinates of the points that make up the perimeter
of the polygon. These calculations will be based on the RECT variable that is passed into the function.

To add the CalcPoints() method

1. Add the declaration of CalcPoints() to the IPolyCtl public section of the CPolyCtl class in
PolyCtl.h:

void CalcPoints(const RECT& rc);

The last part of the public section of the CPolyCtl class will look like this:

void FinalRelease()

{

}

STDMETHOD(get_Sides) (short* pval);
STDMETHOD(put_Sides) (short newval);
void CalcPoints(const RECT& rc);

é wold FinalBelease()

i

- *

STDHETHOD (get_Sides) (SHORTT pWal):
STDHETHOD (put_3ides) (SHORT newVal);
wold CalePoints(const RECTE rc]ﬂ

Listing 7.

2. Add this implementation of the CalcPoints() function to the end of PolyCtl.cpp:

void CPolyCtl::CalcPoints(const RECT& rc)

{
const double pi = 3.14159265358979;
POINT ptCenter;
double dblRadiusx = (rc.right - rc.left) / 2;
double dblRadiusy = (rc.bottom - rc.top) 7/ 2;
double dblAngle = 3 * pi / 2; // Start at the top
double dbIDiff = 2 * pi / m_nSides; // Angle each side will make
ptCenter.x = (rc.left + rc.right) 7/ 2;
ptCenter.y = (rc.top + rc.bottom) / 2;
// Calculate the points for each side
for (int i = 0; 1 < m_nSides; i++)
{
m_arrPoint[i].-x = (long)(dblRadiusx * cos(dblAngle) + ptCenter.x
+ 0.5);
m_arrPoint[i].y = (long)(dblRadiusy * sin(dblAngle) + ptCenter.y
+ 0.5);
dblAngle += dblIDiff;
by
}

Fwoid CPolyCtl::CalcPoints(const RECTEL ro)
i
const double pi = 3.141592653583979;
FPOINT ptCenter:

double dblingle = 3 ¢ pi / 2:
double dbhlDiff

2 * pi / m nSides;

A Caleculate the points for each side
= for (int 1 = 0; 1 < m n3ides; i+4]
i

I arrPoint[i] .y
dblingle += dblDiff;

Listing 8.
Initializing the Fill Color
Initialize m_clrFil1Color with a default color.

To initialize the fill color

ptCenter.x = (re.left + ro.right) / 2;
ptCenter.y = [(ro.top + ro.hottom) f 2;

m arrPoint[i] .x = (long) (dblRadiusx
[long) (dblRadiusy

double dblRadiusx = (ro.right - ro.left) /2@
double dblRadiusy = (ro.bottom - ro.top) F 2@

A4 S3tart at the top
£ Angle each side will make

* pos(dblingle) + ptCenter.x + 0.5);
* gin(dhblingle) + ptCenter.y + 0.5);

1. Use green as the default color by adding this line to the CPolyCtl constructor in PolyCtl.h:

m_clrFillColor = RGB(0O, OxFF, 0);

The constructor now looks like this:

CPolyCtl ()

m_nSides = 3;
m _clrFillColor = RGB(0O, OxFF, 0);
}

public:

= CPolyCtli)
i
m ni3ides = 3;
m =lrFillColor = RGE(O, OxFF, D]:l

Listing 9.
Building and Testing the Control
Rebuild the control. Make sure the PolyCtl.htm file is closed if it is still open, and then click Build Polygon on the
Build menu. You could view the control once again from the PolyCtl.htm page, but this time use the ActiveX
Control Test Container. If you fail to rebuild Polygon, save your solution, close Visual Studio, then delete Debug
directory under the Polygon directory. Reopen Visual Studio and Polygon solution. Rebuild Polygon.

To use the ActiveX Control Test Container

1. On the Tools menu, click ActiveX Control Test Container.

Tools | Window Help

g; Debug Processes... Chkrl+Al+P

8 Connect to Device,.,
-

Conneck to Database. ..

AddfRemove Toolboyx Ikems. ..
Add-in Manager. ..
Build Comment Web Pages...

Macros »

Ackiver Control Tesk Container

Create GUID

Dakfuscakar Carmrmunity Edition

Error Lookup

Figure 14: Testing ATL object in ActiveX Control Test Container.

2. In Test Container, on the Edit menu, click Insert New Control.

I Untitled - ActiveX Control Test Container |: E|[z|

File Ms® Container Control Wiew Options Tools Help

O SRR TN

Insert Mew Contral, .

Insert Conkrol From Stream, .,
Insert Conkrol From Skorage, ..

Insert new conkrol

Figure 15: Inserting new control, Polygon to ActiveX Control Test Container.

3. Locate your control, which will be called PolyCtl Class, and click OK. You will see a green triangle
within a circle.

Insert Control

PCHProgrezzBar Class
PCHT oaolB ar Class

Pegaszuz Imag=press Control w5.0

[*

Cancel

PhatoPanel Clazs
FPalCH Class

Preview Clazs
Frogiiew Clazsz

Rat Control ol ted Cat . |
Recarding Contral Implemented Categories. ..
RefE dit.Chrl b i _

¥ | 3 Bequired Categaries. .. |

f:\mfcprojectypolygontpolpgo.. \Polpgon. dil I lgnaore required categories

Figure 16: Selecting PolyCtl, an ATL control.

i Untitled - ActiveX Control Test Co... |._||E £|
File Edit Conkainer Control View Options Tools
Help

DEHE $BE oF BD s |
JHunMach:l ;I

For Help, press F1 fickive

Figure 17: Polygon, an ATL control in action.

Try changing the number of sides by following the next procedure. To modify properties on a dual interface from
within Test Container, use Invoke () Methods.

To modify a control's property from within the Test Container

1. In Test Container, click Invoke Methods on the Control menu. The Invoke Method dialog box is
displayed:

- [olx

(i Untitled - ActiveX Control Test Container

File Edit Container Control Yiew Opbions Tools Help
DS 48

}
| Aun Man:ru:u:;

Invoke Methods

Method Mame:
| sides (PropPut)]

Parameters:

Invoke

i

LCloze

Paramneter | Walue | Type |
A

[Property Yalug] YT |2

Farameter W alue; Parameter Type:

B YT_I2 |

Return W alue:

E sception Dezcription

Exception Source:

| Erception Help

For Help, press F1 |Ackive [windawless [[:

Figure 18: Invoking the Polygon’s method.

2. Select the PropPut version of the Sides property from the Method Name drop-down list box.
3. Type 5 in the Parameter Value box, click Set Value, and click Invoke.

Note that the control does not change. Although you changed the number of sides internally by setting the
m_nSides variable, this did not cause the control to repaint. If you switch to another application and then switch
back to Test Container, you will find that the control has repainted and has the correct number of sides.

To correct this problem, add a call to the FireViewChange() function, defined in 1ViewObjectExImpl,
after you set the number of sides. If the control is running in its own window, FireViewChange () will call the
Inval idateRect() method directly. If the control is running windowless, the Inval idateRect() method
will be called on the container's site interface. This forces the control to repaint itself.

To add a call to FireViewChange()

1. Update PolyCtl.cpp by adding the call to FireViewChange() to the put_Sides method. When you
have finished, the put_Sides method should look like this:

STDMETHODIMP CPolyCtl: :put_Sides(short newval)

{
if (newval > 2 && newval < 101)
{
m_nSides = newvVal;
FireViewChange();
return S_OK;
}

else

return Error(_T('Shape must have between 3 and 100 sides'));

}
E STDMETHODIMP CPolyCtl::put 3ides (SHORT newVal)
{
AF ToDho: Add yvour implementation code here
= if (newVal > 2 && newvVal < 101)
{
I niides = newval:
FireUiewChange[]ﬂ
return 3_OK:
- B
else
recurn Error (| T("3hape mwust have between 3 and 100 sides™));
B

Listing 10.

After adding FireViewChange(), rebuild and try the control again in the ActiveX Control Test Container.
This time when you change the number of sides and click Invoke, you should see the control change immediately.
In the next step, you will add an event.

| Untitled - ActiveX Control Test... |._||E||£|
File Edit Container Control YWiew Options Tools

Help
DEd +BREE o B s
JHunMach:l ;I

For Help, press F1 Bk

Figure 19: Polygon, an ATL control in action.
Step 5: Adding an Event

In this step, you will add a Clickln and a ClickOut event to your ATL control. You will fire the Clickln

event if the user clicks within the polygon and fire Cl i ckOut if the user clicks outside. The tasks to add an event
are as follows:

= Adding the ClicklIn and ClickOut Methods.

= Generating the Type Library.
* Implementing the Connection Point Interfaces.

Adding the Clickin and ClickOut Methods

When you created the ATL control in step 2, you selected the Connection points check box. This created the
__IPolyCtlEvents interface in the Polygon.idl file. Note that the interface name starts with an underscore. This
is a convention to indicate that the interface is an internal interface. Thus, programs that allow you to browse COM
objects can choose not to display the interface to the user. Also note that selecting Connection points added the
following line in the Polygon.idl file to indicate that _ IPolyCtlEvents is the default source interface:

[default, source] dispinterface _I1PolyCtlEvents;

coclass PolyCrLl
i

[default] interface IPolyCtl:

[default, source] dispinterface IPolyCtlEvents:
b

Listing 11.
The source attribute indicates that the control is the source of the notifications, so it will call this interface on the
container.
Now add the ClicklIn and Cl ickOut methods to the _ IPolyCtlEvents interface.
To add the Clickin and ClickOut methods

1. InClass View, expand Polygon and PolygonL.ib to display _1PolyCtlEvents.
2. Right-click _1PolyCtlEvents. On the shortcut menu, click Add, and then click Add Method.

=+ PolyvgonLib DEORELT1ES
*’ﬁ; PakyCH methods:
3 "stdalez, Hb" i:
w:::l b
PalyganPs S GoTo Definition uuid (GALSL]
% Browse Definition helpstring
, _—]
#¢ Quick Find Symbal eEACer ke
| Add 3 m?’s Add Method. ..
Copy =1 Add Property. ..
%‘I, Sork Alphabetically Y
Sort By Tvpe
;}?:-l Sort By Access
{% Group By Type
Propetties
- — —

Figure 20: Adding methods to Polygon.

Select a Return Type of void.

Enter ClicklIn in the Method name box.
Under Parameter attributes, select the in box.
Select a Parameter type of LONG.

Type X as the Parameter name, and click Add.

N kW

Add Method Wizard - Polygon

wWelcome to the Add Method Wizard

This wizard adds a method to vour interface.

Return type: Method name:
| wiid j |ClickIn
Parameter atkributes:

[n [B
Parameter bvpe: Pararneter name:

| < |
_ Benove |

in] LOMG Remove

Finish Cancel Help

Figure 21: Adding Cl ickln method through Add Method Wizard.

8. Next, repeat step 5 to 8, select the in box, enter a Parameter type LONG and Parameter name of y, and
click the Add button.

9. Click Finish.

10. Repeat the steps above to define a Cl 1 ckOut method with the same LONG parameters X and y, the same
Parameter attributes and the same void return type.

Add Method Wizard - Polygon

wWelcome to the Add Method Wizard

This wizard adds a method to vour interface.

Return type: Method name:
| void v| |clickout
Parameter atkributes:

[n [B
Parameter bvpe: Pararneter name:

| < |
_ Benove |

in] LOMG Remove

Finish Cancel Help

Figure 22: Adding Cl ickOut method through Add Method Wizard.

Check the Polygon.idl file to see that the code was added to the _IPolyCtlEvents dispinterface. The
_IPolyCtlEvents dispinterface in your Polygon.idl file should now look like this:

dispinterface _IPolyCtlEvents
{

properties:

methods:

[1d(1), helpstring(“method ClickIn™)] void ClickIn([in]JLONG x, [in] LONG y);
[1d(2), helpstring(“'method ClickOut™)] void ClickOut([in] LONG x, [in] LONG y);

dispinterface IPolyCtlEvents
i
properties:
mwethaods:
[id(1), helpstring("method ClickIn™)] woid ClickIni[in] LONG X,
[in] LONG) :
[1d{2), helpstring("wethod ClickOut™)] woid Clicklut([in] LONG x,
[[in] LowG v);

Listing 12.
The ClicklIn and ClickOut methods take the X and Y coordinates of the clicked point as parameters.

Generating the Type Library

Generate the type library at this point, because the Connection Point Wizard will use it to obtain the information it
needs to construct a connection point interface and a connection point container interface for your control.

To generate the type library

= Rebuild your project or,
= Right-click the Polygon.idl file in Solution Explorer and click Compile on the shortcut menu.

- Polygon ~
[:5] References
- 3 Source Files

@ PolyZt. cpp
@ Palygon.cpp
j Polygon, def
¥

Qpen
Open wWith...

Compile |

B skdaf & Cut

- =3 Resource Copy
Paly
Paly }(Remove

R Palyg Properties
l_}l DAl

Figure 23: Compiling the IDL file.

This will create the Polygon.tlb file, which is your type library. The Polygon.tlb file is not visible from Solution
Explorer, because it is a binary file and cannot be viewed or edited directly.

& F:\mfcproject\Polygon\Polygon\Debug L E|[Z|
File Edit Yiew Faworites Tools Help 1',’
S) P, .
e Back. _/l l.@ 7 Search (T Folders
Address |3 Fr\mfepraject\PalygoniPolygoniDebug Vl 50
A Mame Size | Type Dake b
File and Folder Tasks ¥ L dFolygon.tb SKE Type Library 515120
&) BuildLog, him 4KE HTM File S{18/20
other Places [w70, pob Q16 KB Intermediate file 5/18/20
— 2 we70.idb 03 KB Inkermediate file 5/1g/z0
2 Polygon_j.obj 6 KB Intermediate filz 5/1a8/20
F'u:ul}.-'gu:un.res SKE Compiled Resource ... Sf13/20 b
w4 | >
—

Figure 24: The generated TLB (type library) file.
Implementing the Connection Point Interfaces

Implement a connection point interface and a connection point container interface for your control. In COM, events
are implemented through the mechanism of connection points. To receive events from a COM object, a container
establishes an advisory connection to the connection point that the COM object implements. Because a COM object
can have multiple connection points, the COM object also implements a connection point container interface.
Through this interface, the container can determine which connection points are supported.

The interface that implements a connection point is called IConnectionPoint, and the interface that
implements a connection point container is called IConnectionPointContainer.

To help implement 1ConnectionPoint, you will use the Implement Connection Point Wizard. This wizard
generates the IConnectionPoint interface by reading your type library and implementing a function for each
event that can be fired.

To use the Implement Connection Point Wizard

1. InClass View, right-click your control's implementation class CPolyCtl.
2. On the shortcut menu, click Add, and then click Add Connection Point.

--Z4 Polygon importlik ("=t
+ _" Global Functions and Yariables [
+-= Macros and Constants wuid (7801
: Zg m Go To Definition] U ETb et
: ig ;:PF‘;;:- _fi Ercfwse.DeFinitiDn dispinterface
)3 Palyq ¢4 Quick Find Symbal i
a': F| Add J | "*. Implement Interface. .,
+ g 1 Copy & Add Function...
+ PolygorF & | sort Alphabetically » Add Variable...
Sort By Type %) Add Connection Paint...
E;;. Sark By Access unid (GALS.
_[% Group By Type] helpatring
Properties coclass Polyct

Figure 25: Adding Connection Point to ATL control.

3. Select IPolyCtlEvents from the Source Interfaces list and double-click it to add it to the
Implement connection points column. Click Finish. A proxy class for the connection point will be
generated, in this case, CProxy_I1PolyCtlEvents.

Implement Connection Point Wizand - Polygon

Welcome to the Implement Connection Point Wizard

This wizard implements a connection point For wour class,

Implement connection paink Framm: Available bvpe libraries:
* Project © Registry File |Polygonlib<1.0= |
Source Interfaces: Implement connection points:

[~ o]

.
o

Finish Cancel Help

Figure 26: Selecting and adding a Connection Point.

If you look at the generated _IPolyCtlEvents_CP.h file in Solution Explorer, you will see that it has a class called
CProxy_I1PolyCtlEvents that derives from 1ConnectionPointiImpl. _IPolyCtlEvents_CP.h also
defines the two methods Fire_ClickIn() and Fire_ClickOut(), which take the two coordinate
parameters. You call these methods when you want to fire an event from your control.

The wizard also added CProxy_PolyEvents and IConnectionPointContainerimpl to your control's
multiple inheritance list. The wizard also exposed ConnectionPointContainer for you by adding
appropriate entries to the COM map.

You are finished implementing the code to support events. Now, add some code to fire the events at the appropriate
moment. Remember, you are going to fire a Clickln or ClickOut event when the user clicks the left mouse
button in the control. To find out when the user clicks the button, add a handler for the W_LBUTTONDOWN
message.

To add a handler for the WM_LBUTTONDOWN message

1. InClass View, right-click the CPOlyCtl class and click Properties on the shortcut menu.
2. In the Properties window, click the Messages icon and then click WM_LBUTTONDOWN from the list on the
left.

Properties

| CPolyCH VCCodeClass |
B EIEA=IK
e .

(Mame) CPolyiCH

(Mame)
Sets/returns the name of the object,

_F‘rcupe... @ Dvna... |G Favor.

Figure 27: Adding WM_LBUTTONDOWN, a Windows message handler through Properties window.

3. From the drop-down list that appears, click <Add> OnLButtonDown. The OnLButtonDown() handler
declaration will be added to PolyCtl.h, and the handler implementation will be added to PolyCtl.cpp.

Properties L
| CPolyCtl YCCodeClass j
= | &
o | 81 & @
WM _LBUTTOMNDELCLE -

Wk _|_ BUTTOMDO W N

<Add = OnLButtonDown

Il|'I'|'Ir‘\'l1_l T T
Wh_MOLSEWHEEL
Wh_MOYE
WH_PAINT
Wh_REUTTONDELCLK

LLIA DD 1T TrT Ryl LIR

WH_LBUTTONDOWN

Indicates when left mouse bukbon is
pressed

_F‘rl:upe... @ Dvna.. |G Favor..

Figure 28: Selecting and adding WM_LBUTTONDOWN.

Next, modify the handler.

To modify the OnLButtonDown() method

Change the code which comprises the OnLButtonDown () method in PolyCtl.cpp (deleting any code placed by
the wizard) so that it looks like this:

LRESULT CPolyCtl::OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM IParam, BOOL&
bHandled)

HRGN hRgn;

WORD xPos
WORD yPos

LOWORD(IParam); // horizontal position of cursor
HIWORD(IParam); // vertical position of cursor

CalcPoints(m_rcPos);

// Create a region from our list of points
hRgn = CreatePolygonRgn(&m_arrPoint[0], m_nSides, WINDING);

// 1T the clicked point is in our polygon then fire the Clickln
// event otherwise we fire the ClickOut event
if (PtinRegion(hRgn, xPos, yPos))
Fire_ClickIn(xPos, yPos);
else
Fire_ClickOut(xPos, yPos);

// Delete the region that we created
DeleteObject(hRgn);
return O;

}

LRESULT CPolyCtl::OnLButtonbown (UINT uMsg, WPARLM wParsam,
=] LPARAM 1Parsm, EOOLS bHandled)
{
A TODD: Add wour message handler code here and/or call default

HEGH hBEgn:
WORD xPo= = LOWORD (1Param): F horizontal position of cursor
WORD wPos = HIWORD (1Param): /f/ wertical position of cursor

CalcPoints(m roPos):

Af Create a region from our list of points
hRgn = CreatePolygonBgni&m arrPoint[0], m hiides, WINDING):

= £ If the clicked point i= in our polygon then fire the ClickIn
- A4 ewvent otherwise we fire the Clickiut ewvent
if [(PtInFegion(hBRgn, =Pos, yFPos))
Fire ClickIn(xPo=s, yPo=s):
else
Fire ClickoOut (xPos, yPos):

f£f Delete the region that we created
DeleteChiject (hBogn) »
return 0O;

Listing 13.

This code makes use of the points calculated in the OnDraw() function to create a region that detects the user's
mouse clicks with the call to PtInRegion().

The uMsg parameter is the 1D of the Windows message being handled. This allows you to have one function that
handles a range of messages. The wParam and the Param parameters are the standard values for the message
being handled. The parameter bHandled allows you to specify whether the function handled the message or not.
By default, the value is set to TRUE to indicate that the function handled the message, but you can set it to FALSE.
This will cause ATL to continue looking for another message handler function to send the message to.

Building and Testing the Control
Now try out your events. Build the control and start the ActiveX Control Test Container again. This time, view the

event log window. To route events to the output window, click Logging from the Options menu and select Log to
output window.

Logging Options

" Mo lagging

.................................

{* Log bo output window
" Log to debugger window

" Laog to file

Figure 29: Setting the Logging Options of the ActiveX Control Test Container.

Insert the control and try clicking in the window. Note that Clickln is fired if you click within the filled polygon,
and ClickOut is fired when you click outside of it.

“i Untitled - ActiveX Control Test Container |._ E|r>__(|

File Edit Container Control Wiew Options Tools Help
W=y = =t BRF R
Run Mau:ru:-:| j

PolyvCt]l Class: ClickOut {=z=1831%1{v=186} ~
FolvyCt]l Class: ClickOut {=z=181%{w=1861} =1
FolvyCt]l Clas=s: ClickIn {==1473}{wv=1321}

PolyCt]l Class: ClickIn {==14731{y=132} L

(£

For Help, press F1

Figure 30: Polygon in action.
Next, you will add a property page.
Step 6: Adding a Property Page

Property pages are implemented as separate COM objects, which allow them to be shared if required. In this step,
you will do the following tasks to add a property page to the control:

= Creating the Property Page Resource.
= Adding Code to Create and Manage the Property Page.
= Adding the Property Page to the Control.

Creating the Property Page Resource

To add a property page to your control, use the ATL Add Class Wizard.

To add a Property Page

1. In Solution Explorer, right-click Polygon.
2. On the shortcut menu, click Add, and then click Add Class.
Class Yiew - Palygon PalyZtLh | _IPolyCHEvents_CP.h | Polygor
% v T @ CPolyCH
SRE2IPolygon e -
+-=@p Global Biild
+1-Z= Macros Rebuild [CPolyCtl::onLEu
+ alg CPalyC
+ Qg CPolyg Clean
-2 CProx Project Cinly ,
4o TPk "TODO o Add wour m
+-+Z Palygar PN hRgn:
D xPos = LOWORD |
+ PalygonPs Provect O denci
raject Dependencies. .. \D yPos = HIWOED |
Project Build Order... lcPoints (m_rcPos)
| Add b |[|’1‘.; fidd Class. .
Set as StartUp Project “# Add Resource..,
S Debug 3
ed =0 Bfa, _ If the clicked p
- i Save Polygon event otherwise
Properties]
ﬁj &dd Solukion bo Source Cantral,. (PtInFegion (hRgn
A . Fire ClickIn(xPo
Z \I, Sort Alphabetically - -
Sort By Type Fire ClickOut (xP
;L?;'l Sork By Access
3 Delete the regio
{% Group By Type leteChject (hRgn)
Properties
Figure 31: Adding a new class for ATL control’s property page.
3. From the list of templates, select ATL Property Page and click Open.

Add Class - Polygon

*E

(-]] o
Cateqories: Templates: BE)5
=[] wisual C++ %55 ATL Simple Object
[MET %5 ATL Contral
-2 ATL Bl 4TL CLEDE Consumer
(3 mrc A ATL Dialog
(3 Generic i A TL Server Web Service

ey fdd ATL Support Ta MFC
=(ATL Propetty Page
iG] A TL Performance Monitar Object
I ATL OLEDE Pravider

rﬂ-_m ATL Active Server Page Componenk
EIATL COM+ 1,0 Component

Adds an ATL property page object,

I |

CIpen Cancel | Help |

Figure 32: Adding an ATL Property Page.

4. When the ATL Property Page Wizard appears, enter PolyProp as the Short name:

ATL Property Page Wizard - Polygon

Welcome to the ATL Property Page Wizard

This wizard adds an object that implements a property page.

C++
Short name: b File:
|P|:|I~;.-'F‘r|:||:| |P|:|I~;.-'F'r|:||:-.h J
Class: .cop File:
|CF‘-:|I';.fF'r-:||:| |F'|:|IyP'r|:||:u.|:p|:n J

[Attributed

oM |Generated code will use attributes, |
Coclass: Type:
|Pn:nl';.:'F'rn:||:| |Pn:nl',.:'F'rn:||:- Class
ProglD:

|P|:|I':.ﬂ;||:|n.F‘|:|I';.fPr|:|p

Finish Cancel Help

Figure 33: ATL Property Page Wizard, Names page.

1. Click Strings to open the Strings page and enter &Polygon as the Title:

ATL Property Page Wizard - Polygon

Strings
Specify title, doc string, and help file For vour object.

Title:
|&P-:|I';.ﬂ;||:|n

Do skring:

Strings ¥our Help String

Help File:

Finish Cancel Help

Figure 34: ATL Property Page Wizard, Strings page.
The Title of the property page is the string that appears in the tab for that page. The Doc string is a
description that a property frame uses to put in a status line or tool tip. Note that the standard property
frame currently does not use this string, so you can leave it with the default contents. You will not going to
generate a Help file at the moment, so delete the entry in that text box.

2. Click Finish, and the property page object will be created.

The following three files are created:

File Description

PolyProp.h Contains the C++ class CPolyProp, which implements the property page.
PolyProp.cpp | Includes the PolyProp.h file.

PolyProp.rgs The registry script that registers the property page object.

Table 4.

The following code changes are also made:

= The new property page is added to the object entry map in Polygon.cpp.

= The PolyProp class is added to the Polygon.idl file.

* The new registry script file PolyProp.rgs is added to the project resource.

= A dialog box template is added to the project resource for the property page.

= The property strings that you specified are added to the resource string table.
Now add the fields that you want to appear on the property page.
To add fields to the Property Page

1. In Solution Explorer, double-click the Polygon.rc resource file. This will open Resource View.

2. In Resource View, expand the Dialog node and double-click IDD_POLYPROP. Note that the dialog box
that appears is empty except for a label that tells you to insert your controls here.

3. Select that label and change it to read Sides: by altering the Caption text in the Properties window and
resizing the label box:

Properties

| IDC_STATIC1 (Text Control) IStatEdt |

| 4 [@] #

FY

Align Text Left

Border False

Capkion Sides:

Center Image False

Client Edge False

End Ellipsis False

Modal Frame False

Mo Prefix False j

Caption

Specifies the text displaved by the contral,

Fropert... | @b 0vnami. . Favorites

Figure 35: Modifying the Static control property.

4. Drag an Edit control from the Toolbox to the right of the label:

I]..|I||||I||||I||||I||||I||||I||||I||||I||||I

] n]
Sides: m|Sample edit box n
]]]

Figure 36: Property page template, adding an Edit control.

5. Finally, change the ID of the Edit control to IDC_SIDES using the Properties window.

Properties

| IDC_EDIT1 (Edit Control) IEdBoxEdito |

4= 7

Read Cnly False ﬂ

Wisible True

Wank Rekurn False
=

Group False

IDC_SIDES| v |

Tabstop True

-

ID

specifies the identifier of the contral,

I Properk. .. 9 Crenami. . Favarites

Figure 37: Modifying the Edit control property.
This completes the process of creating the property page resource.
Adding Code to Create and Manage the Property Page

Now that you have created the property page resource, you need to write the implementation code. First, enable the
CPolyProp class to set the number of sides in your object when the Apply button is pressed.

To modify the Apply function to set the number of sides
Change the Apply () function in PolyProp.h as follows:

STDMETHOD(Apply) (void)

{
USES_CONVERSION;
ATLTRACE(_T("CPolyProp: :Apply\n'));
for (UINT 1 = 0; 1 < m_nObjects; i++)

{
CComQIPtr<IPolyCtl, &1ID_IPolyCtl> pPoly(m_ppUnk[i]);
short nSides = (short)GetDIgltemInt(IDC_SIDES);
if FAILED(pPoly->put_Sides(nSides))
CComPtr<IErroriInfo> pError;
CComBSTR strError;
GetErroriInfo(0, &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError), _T("Error™), MB_ICONEXCLAMATION);
return E_FAIL;
3}
}

m_bDirty = FALSE;
return S _OK;

STDMETHOD (Lpplwy) (woid)
1
U3ES CONWERZION:
ATLTRACE(_T("CPDlyPer::Appl?ﬁn"]]:
for (UINT i = 0; i < m_nObjects; i++]
1
CComQIPtr<IPolyCel, &ITD TPolyCtl:> pPoly(m ppUnk[i]]):
short n3ides = (short)GetDlgltemInt (IDC _STIDES) :
if FAILED (pFoly->put Sides (n3ides))
1
CComPtr<IErrorInfo> pError:
CComB3TR strError:
cetErrorInfo (0, &spError);
pError->Getlescription(&strError) !
MessageBox (OLEZT (strError), T("Error™), MB ICONEXCLALMATICHN) :
return E FLTL:

H
m hbhirty = FALZE:
keturn 2 OKE:

Listing 14.

A property page can have more than one client attached to it at a time, so the Apply () function loops around and
calls put_Sides() on each client with the value retrieved from the edit box. You are using the CComQIPtr
class, which performs the QueryInterface() on each object to obtain the IPoOlyCtl interface from the
IUnknown interface (stored in the m_ppUnk array).

The code now checks that setting the Sides property actually worked. If it fails, the code displays a message box
displaying error details from the IError Info interface. Typically, a container asks an object for the
ISupportErrorinfo interface and calls InterfaceSupportsErroriInfo() first, to determine whether
the object supports setting error information. You can skip this task.

CComPtr helps you by automatically handling the reference counting, so you do not need to call Release () on
the interface. CCOmMBSTR helps you with BSTR processing, so you do not have to perform the final
SysFreeString() call. You also use one of the various string conversion classes, so you can convert the BSTR
if necessary (this is why the USES__CONVERSION macro is at the start of the function).

You also need to set the property page's dirty flag to indicate that the Apply button should be enabled. This occurs
when the user changes the value in the Sides edit box.

To handle the Apply button

1. InClass View, right-click CPolyProp and click Properties on the shortcut menu.
2. In the Properties window, click the Events icon.

Propetties

| CPolyProp YCCodeClass ﬂ
EREE-K
E FY

(Marne)

CPolvProp

(Mame)
Seks/returns the name of the object,

i Propert... 9 Crnami. . Favoribes

Figure 38: An event Properties page.

W

Expand the IDC_SIDES node in the event list.
4. Select EN_CHANGE, and from the drop-down menu to the right, click <Add> OnEnChangeSides. The
OnEnChangeSides() handler declaration will be added to Polyprop.h, and the handler implementation

to Polyprop.cpp.
Propetties a1 X
|EPuIyPrup WCCodeClass j
=4 B[Z]m e
=

B IDC_SIDES {Object)
EM_ALIGM_LTR_EC
EM_ALIGM_RTL_EC
EM_CHAMNGE

< Add = OnEnChangesides

EN_l | L L))
EN_KILLFOCLIS |
ER_MARTERT ~|

EM_CHANGE

Indicates the display is updated after kext
changes

1 Propert... 9 Cwnami. .. Favarites

Figure 39: Adding an event to CPolyProp class.

}
LRESULT CnEnChangeSides (WORD / *wlotifyCode*/, WORD J/*wID*/,
HUND /*hWndCtl*/, BOOL& /*hHandled*/);

Listing 15.

LEESULT CPolyProp::OnEnChange3ides (WORD /#ulotifvCaode*/,
FORD FrwIh*/, HUND /*hiUndCtl*/, BOOL& /*hHandled*/)

=

J]{

= fAf Tobho: If this is & RICHEDIT control, the control will not

Af Zend this notification unless ywou override the __super::onlnithialog()
A function and call CRichEditcCtrl () .3etEventMaski()

£/ with the ENM CHANGE flag ORed into the mask.

- A4 ToDO: Add wour control notification handler code here

return 0;

Listing 16.
Next, you will modify the handler.
To modify the OnEnChangeSides() method

Add the following code in Polyprop.cpp to the OnEnChangeSides () method (deleting any code that the wizard
put there):

LRESULT CPolyProp: :OnEnChangeSides(WORD /*wNotifyCode*/,
WORD /*wlD*/, HWND /*hWndCtl*/, BOOL& /*bHandled*/)

SetDirty(TRUE);
return O;

}

LEEIULT CPolyProp::0OnEnChange3ides (WORD /#ulotifvCode®/,
= WORD /#wID¥/, HUND /*hWndCtl+®/, BOOLE& /*hHandled®/)
i
GetDirty (TRUE) ;
return O;

Listing 17.

OnEnChangeSides() will be called when a WM_COMMAND message is sent with the EN_CHANGE notification
for the IDC_SIDES control. OnEnChangeSides() then calls SetDirty() and passes TRUE to indicate the
property page is now dirty and the Apply button should be enabled.

Adding the Property Page to the Control
The ATL Add Class Wizard and the ATL Property Page Wizard do not add the property page to your control for
you automatically, because there could be multiple controls in your project. You will need to add an entry to the
control's property map.
To add the property page
Open PolyCtl.h and add this line to the property map:
PROP_ENTRY(*'Sides™, 1, CLSID_PolyProp)
The control's property map now looks like this:
BEGIN_PROP_MAP(CPolyCtl)

PROP_DATA ENTRY(" _cx'", m_sizeExtent.cx, VT_Ul4)
PROP_DATA_ENTRY("_cy', m_sizeExtent.cy, VT_Ul4)

PROP_ENTRY("'FillColor™, DISPID_FILLCOLOR, CLSID_StockColorPage)
PROP_ENTRY(*'Sides™, 1, CLSID PolyProp)
// Example entries
// PROP_ENTRY("'Property Description', dispid, clsid)
// PROP_PAGE(CLSID_StockCollorPage)
END_PROP_MAP()

BEGIN PROFP MAP(CPolyCtl)
FROP DATA ENTRY (" cx", m sizeExtent.cx, VT UI4)
FPROP DATA ENTRY (" cy", m sizeExtent.cy, VT TI4)
FROP _EMTRY ("FillColor™, DISFPID FILLCOLOR, CLSID StockColorPage)
FROP_EMTEY ("3idez", 1, CLSID_PDlyPerﬂ

=] Ff Example entries

&S PROFP EMTRY ("Property Description®, dispid, cl=id)]
o r FROP_PAGE (CL3ID ZFtockColorPage)
END PROP MAP()

Listing 18.

You could have added a PROP_PAGE macro with the CLSID of your property page, but if you use the
PROP_ENTRY macro as shown, the Sides property value is also saved when the control is saved.

The three parameters to the macro are the property description, the DISPID of the property, and the CLSID of the
property page that has the property on it. This is useful if, for example, you load the control into Visual Basic and
set the number of Sides at design time. Because the number of Sides is saved, when you reload your Visual Basic
project, the number of Sides will be restored.

Building and Testing the Control

Now build that control and insert it into ActiveX Control Test Container. In Test Container, on the Edit menu,
click PolyCtl Class Object. The property page appears; click the Polygon tab. (If you clean your solution before re-
building, you need to re-insert the PolyCtl Class object using Edit Insert New Control menu).

The Apply button is initially disabled. Start typing a value in the Sides box and the Apply button will become
enabled. After you have finished entering the value, click the Apply button. The control display changes, and the
Apply button is again disabled. Try entering an invalid value. You will see a message box containing the error
description that you set from the put Sides function.

i Untitled - ActiveX Control Test (]
View Opt

Conkainer Contraol

Copy

Select Al
Delete
Delete Al

Insert Mew Conkral, .,
Insert Control From Stream...
Insert Conkrol From Skorage. ..

Bring ko Fronk
Send ko Back,

Properties. ..

PolyCtl Class Object

Figure 40: Invoking Polygon’s property page in ActiveX Control Test Container.

i Untitled - ActiveX Contral Test Container

File Edit Container Control Wiew Cphions Tools Help
JDEWE|JEEE'@|-'|EIEF|I<:|? JFIunMau:ru:r_ |
= m

PolyCtl Class Properties

Color Polygon I E:-:tendedl

Sides: ﬁ

] 4 I Cancel Epply Help

For Help, press F1

Figure 41: Changing Sides’s value through property page.
Next, you will put your control on a Web page.
Step 7: Putting the Control on a Web Page
Your control is now finished. To see your control work in a real-world situation, put it on a Web page. An HTML

file that contains the control was created when you defined your control. Open the PolyCtl.htm file from Solution
Explorer and you can see your control on a Web page.

FaolyZt.h PolyCetlhtm 94 x

(£

(@ vesn J @ |

Figure 42: Polygon, an ATL control in web page.

In this step, you will script the Web page to respond to events. You will also modify the control to let Internet
Explorer know that the control is safe for scripting.

Scripting the Web Page
The control does not do anything yet, so change the Web page to respond to the events that you send.
To script the Web page

Open PolyCtl.htm and select HTML view. Add the lines in bold to the HTML code that makes up the page.

0d Design l: HTML |

Figure 43: The HTML view.

<HTML>
<HEAD>
<TITLE>ATL 3.0 test page for object PolyCtl</TITLE>
</HEAD>
<BODY>
<OBJECT ID="PolyCtl" <
CLASSID="CLSID:4CBBC676-507F-11D0-B98B-000000000000"">
>
</OBJECT>
<SCRIPT LANGUAGE="VBScript'>
<l--
Sub PolyCtl_ClickIn(x, y)
PolyCtl .Sides = PolyCtl_Sides + 1
End Sub
Sub PolyCtl_ClickOut(x, Yy)
PolyCtl _Sides = PolyCtl_Sides - 1
End Sub
-——>
</SCRIPT>
</BODY>
</HTML>

PalyZEL R PolyCeLhtn®

Client Objects & Events ﬂ ||:N|:| Events)

<HTHML:>
<HELD=
<TITLE*ATL 7.0 tesat page for object PolyCtl</TITLE:»
</HELD>
<BODY>
<OBJECT id="PaolyCtl™ data="data:application/x-olechie
zlassid="CL3ID: GAASAFFA-ODAD-421D-032C-E6FDO493 40
</ OBJECT>
SHCRIPT LANGUAGE="VEIcript'™:

—

k-

Sulh PolyCtl ClickInix,
PolyCtl.3ides
End 3ub
Sub PolyCtl Clickout (x,
PolyZtl.Sides
End Zuhb
-
</ SCRIPT>
</ BODYT>
</HTHL >

7]
PolyCtl.3idezs + 1

7]
PolyCZtl.Sides -

1

\ |

o

Figure 44: Adding VBScript codes to the HTML.

You have added some VBScript code that gets the Sides property from the control and increases the number of
sides by one if you click inside the control. If you click outside the control, you reduce the number of sides by one.

Indicating that the Control Is Safe for Scripting

You can view the Web page with the control in Internet Explorer or, more conveniently, use the Web browser view
built into Visual C++ NET. To see your control in the Web browser view, right-click PolyCtl.htm, and click View

in Browser.

PolyCtlL.htm Fil§ 3%
R EEE

@ Palygon_i.c

£

Read
PolygonPs
[s5] Refer
D Sourc
a G3ener

£4 4|

h5al... | 22 0

Properties

_'T Qpen

Cpen With, ..

View in Browser

s< i8]

Cuk

Copy

Femove

Properties

Figure 45: Viewing the ATL control in Browser.

PalyCELh | PalyCH Bt Browse - ATL F...r object PolyCtl 1 X

Cwkpuk o X

Figure 46: Polygon, an ATL control seen in Browser.

Based on your current Internet Explorer security settings, you may receive a Security Alert dialog box stating that
the control may not be safe to script and could potentially do damage. You can try single click inside the green
polygon. The following Security alert dialog box will be displayed.

Internet Explorer, b_<|

ri@ An Activer control on this page might be unzafe o
?. interact with other parts of the page. Do pou warnt to
* allow thiz interaction?

Yes] d Ho |

Figure 47: Internet Explorer Security Alert dialog.

Just click Yes. Then click again inside the green polygon. Finally, click outside the polygon (inside the circle). Can
you see the action?

Other typical example, if you had a control that displayed a file but also had a Delete method that deleted a file, it
would be safe if you just viewed it on a page. It would be not safe to script, however, because someone could call
the Delete method.

Security Note: For this tutorial, you can change your security settings in Internet Explorer to run ActiveX controls
that are not marked as safe. In Control Panel, click Internet Properties and click Security to change the
appropriate settings. When you have completed the tutorial, change your security settings back to their original state.
You can programmatically alert Internet Explorer that it does not need to display the Security Alert dialog box for
this particular control. You can do this with the 10b jectSafety interface, and ATL supplies an implementation
of this interface in the class 10bjectSafetyImpl. To add the interface to your control, add
I0bjectSafetylImpl to your list of inherited classes and add an entry for it in your COM map.

To add I0bjectSafetylImpl to the control

1. Add the following line to the end of the list of inherited classes in PolyCtl.h and add a comma to the
previous line:

public I10bjectSafetylmpl<CPolyCtl, INTERFACESAFE_FOR_UNTRUSTED_CALLER>

pubrlic CComCoClass<CPolyCtl, &CL3ID PolyCrol>,

pubrlic CComControl<CPolyCLl>,

public ICkhjectiafetylmpl<CPolyCtl, INTERFACESAFE FOR UNTRUITED CALLERX
1
public:

= CPolyCtl ()
Listing 19.
2. Add the following line to the COM map in PolyCtl.h:

COM_INTERFACE_ENTRY (10bjectSafety)

et Bl B

COM_INTERFACE ENTREY |[IFrovideClassInfo)
COM_INTERFACE ENTRY (IProvideClassInfoZ)
COM_INTERFACE_ENTRY [IChjectSafety|

END COM MALF ()

Listing 20.
Building and Testing the Control
Build the control. Once the build has finished, open PolyCtl.htm in browser view again. This time, the Web page
should be displayed directly without the Safety Alert dialog box. Click inside the polygon; the number of sides

increases by one. Click outside the polygon (in the circle) to reduce the number of sides. If you try to reduce the
number of sides below three, you will see the error message that you set. Here is the control after one click:

Paly kLR | PalyPraop.h | PalyProp.cpp | PalyCH 4 B X

N4

| Output 2 X

Figure 48: Polygon in IE Browser without the Security Alert dialog prompt.

If you fail to build or re-build the control with the following error, close your Visual Studio/C++ .Net and delete the
Debug directory in the polygon project directory. Then re-open Polygon and re-build.

cannot open file "Debug/Polygon.dll*
This concludes the ATL tutorial.

End

Further reading and digging:

—_—

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward
compatible with 6.0 class library

MSDN Library

DCOM at MSDN.

COM+ at MSDN.

COM at MSDN.

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

0 Unicode and Multibyte character set: Story and program examples.

»

SOPNA AW

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

