ATL and ActiveX Controls

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2.
Topics and sub topics for this tutorial are listed below. Don’t forget to read Tenouk’s small disclaimer. The
supplementary note for this tutorial is control class.

Index:

ActiveX Controls

Using ATL to Write a Control

The Myatldicesvr Program From Scratch
The Story

ATL's Control Architecture
CComControl

CComControlBase

CWindowlImpl and CWindowImplBase

ATL Windowing

ATL Message Maps

Developing the Control

Deciding What to Draw

Responding to Window Messages
Adding Properties and Property Pages
Property Pages

Property Persistence

Bidirectional Communication (Events)
Using the Control

Conclusion

If you've finished reading about COM and ATL and still wonder how COM fits into your day-to-day programming
activities, you're not alone. Figuring out how to use COM in real life isn't always obvious at first glance. After all, a
whole lot of extra code must be typed in just to get a COM object up and running. However, there's a very real
application of COM right under your nose, ActiveX Controls. ActiveX controls are small gadgets (usually Ul-
oriented) written around the Component Object Model.

In Module 28, you examined COM classes created by using ATL. In this module, you'll learn how to write a certain
kind of COM class, an ActiveX control. You had a chance to work with ActiveX Controls from the client side in
Module 18. Now it's time to write your own. There are several steps involved in creating an ActiveX control using
ATL, including:

= Deciding what to draw.

= Developing incoming interfaces for the control.

= Developing outgoing interfaces (events) for the control.

= Implementing a persistence mechanism for the control.

= Providing a user interface for manipulating the control's properties.

This module covers all these steps. Soon, you'll be able to use ATL to create ActiveX controls that you (or other
developers) can use within other programs. The next two modules will present ActiveX control program examples
compiled using Visual C++ Net.

ActiveX Controls

Even today, there's some confusion as to what really constitutes an ActiveX control. In 1994, Microsoft tacked some
new interfaces onto its Object Linking and Embedding protocol, packaged them within DLLs, and called them OLE
Controls. Originally, OLE Controls implemented nearly the entire OLE Document embedding protocol. In
addition, OLE Controls supported the following:

= Dynamic invocation (Automation).
= Property pages (so the user could modify the control's properties).

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/ccomcontrol.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc28.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc18.html

. Outbound callback interfaces (event sets).
= Connections (a standard way to for clients and controls to hook up the event callbacks).

When the Internet became a predominant factor in Microsoft's marketing plans, Microsoft announced its intention to
plant ActiveX Controls on Web pages. At that point, the size of these components became an issue. Microsoft took
its OLE Control specification, changed the name from OLE Controls to ActiveX Controls, and stated that all the
features listed above were optional. This means that under the new ActiveX Control definition, a control's only
requirement is that it be based on COM and that it implements 1Unknown. Of course, for a control to be useful it
really needs to implement most of the features listed above. So in the end, ActiveX Controls and OLE Controls refer
to more or less the same animal.

Developers have been able to use MFC to create ActiveX controls since mid-1994. However, one of the downsides
of using MFC to create ActiveX controls is that the controls become bound to MFC. Sometimes you want your
controls to be smaller or to work even if the end user doesn't have the MFC DLLs on his or her system. In addition,
using MFC to create ActiveX controls forces you into making certain design decisions. For example, if you decide
to use MFC to write an ActiveX control, you more or less lock yourself out of using dual interfaces (unless you feel
like writing a lot of extra code). Using MFC to create ActiveX controls also means the control and its property pages
need to use IDispatch to communicate among themselves.

To avoid the problems described so far, developers can now use ATL to create ActiveX controls. ATL now includes
the facilities to create full-fledged ActiveX controls, complete with every feature an ActiveX control should have.
These features include incoming interfaces, persistent properties, property pages, and connection points. If you've
ever written an ActiveX control using MFC, you'll see how much more flexible using ATL can be.

Using ATL to Write a Control

Although creating an ActiveX control using ATL is actually a pretty straightforward process, using ATL ends up
being a bit more burdensome than using MFC. That's because ATL doesn't include all of MFC's amenities. For
example, ATL doesn't include device context wrappers. When you draw on a device context, you need to use the
raw device context handle. In addition, ClassWizard doesn't understand ATL-based source code, so when you want
your control to handle messages, you end up using the "TypingWizard". That is, you end up typing the message
maps in by hand.

Despite these issues, creating an ActiveX control using ATL is a whole lot easier than creating one from scratch.
Also, using ATL gives you a certain amount of flexibility you don't get when you use MFC. For example, while
adding dual interfaces to your control is a tedious process with MFC, you get them for free when you use ATL. The
ATL COM Object Wizard also makes adding more COM classes (even non-control classes) to your project very
easy, while adding new controls to an MFC-based DLL is a bit more difficult.

For this module's example, we'll represent a small pair of dice as an ATL-based ActiveX control. The dice control
will illustrate the most important facets of ActiveX Controls, including control rendering, incoming interfaces,
properties, property pages, and events.

The Myatldicesvr Program From Scratch

Before we dig into the story, let build an ATL program from scratch. As usual, launch AppWizard by clicking File
New menu of the Visual C++. Then, just follow the shown steps.

Filez Projectz] Wiorkspaces] Other Documents]

A ATL COM Appiwizard | 'win32 Static Library Project name:

¢ | Cluster Resource Type Wizard]mj.latldiu:est

g Cuztom Appiwfizard .

D atabaze Project Loatior:

8 D e S tudio Add-in Wizard |F:"-.MF|:F"H CUECT \rnyatldiceszwr ___J
' Extended Stored Proc 'wizard

n | S4F Estension Wizard

=1 Makefile f* Create new workspace

B bAFC Activer Controfafizard A

8] MFC Appiwfizard (dll] r

&S MFC Appiafizard [exe]

@“‘Eﬁ Mew D atabaze Wizard I —J
T§ Utility Project

8] \win32 Application

jWinSE Conzole Application Elatfl:u.rms:

[Wina2 Dynamie-Link Library ‘W'”32

% 2

k. | Cancel ‘

Figure 1: Myatldicesvr - Visual C++ new ATL COM AppWizard project dialog.

ATL COM AppWizard - Step 1 of 1

Thiz “Wizard creates an ATL project without any

B=5 AT s initial COM objects. After completing this ‘Wizard,
o e Set az A uze the Mew ATL Object command from
| — Clazs\iew to zpecify the type of object you would
Sl Mew Cla: like to add to thiz project.
B L E g NewaTL
4 I I -
- 4 Mew Fald Server Tope
i e
{v Docking t* Dynamic Link Library [DLL
Hide " Erecutable [EXE]
Fropertie £ Service [EXE]

[Allow merging of proxy/stub code

+
T
+

[Suppart MFC

[Support MTS

< Back | | Einizh | Cancel

Figure 2: ATL COM AppWizard step 1 of 1.

Mew Project Information

ATL COM Appiafizard will create a new skeleton project with the following
gpecifications:

X]

COM project mpatidicesyr.dzp

COM Server name: mypatldiceswr. dil

DLL initialization code in mpatidicesywr. cpp
IDL source in myatldicesyridl

ProxwStub makefile in myatidiceswrps. mk

Froject Directon:
F:AFCPROJECT hrmpatidicesyr

Cancel

Figure 3: Myatldicesvr project summary.

Add new ATL object.

L3

« myatldicesyr - Microsoft Visual C++

File Edit “iew | Insert Project Build Tools

3 | = ‘ Mew Class, .,

Resource,., Chrl+R

- 25 myatldi ——
(et ittt Mew ATL Obieck, ..
Bl e AT O

Figure 4: Adding new ATL object.

Select Controls in Category list and Full Control in Objects list. Then click the Next button.

ATL Object Wizard

LCategaory Objects

Objects % ﬂ - ~

Mizcelaneous = _
Data Access Full Cantral Lite Contral - Property Page

"
- - =
= i ==

Compozite HTML Contral Lite Compozite
Contral Control

—

o)
|

'

Hest > Cancel |

Figure 5: ATL object wizard, adding Full Control object.

Type in myatldiceob as object name, others will be automatically provided. You can change as needed.

ATL Dbject Wizard Properties

Names l Aftnbutes] Mizcellansous] Stock Properties]

C++ COk

Short Name: |mvatidicech ‘ Collass: [myatidiceot

Clasz [Crpatidicech Interface: |Im_l,latlu:|i|:ecul:|
H File: {myatidicent.h Type: |myatidiceab Class
.CEP File: |muatldicech.cpp Prog (D |Myatldicewr.myatldi

k. | Cancel

Figure 6: Myatldicesvr’s object name.

Tick the Support Connection Points for Attributes.

ATL Object Wizard Properties

Mames Attibutes Miscellaneuus] Stock Properties

Threading todel |nterface Aggregatian

" Single + Dual * ‘Yes

{s Apartment " Custam " Na

. " Only

~
[Support 1SuppartE marl rfa [Free Threaded Marshaler
[v iSupport Connection Poinks

k. | Cancel

Figure 7: Adding the Support Connection Point attribute to ATL object.

Just accept the default for Miscellaneous.

ATL Object Wizard Properties

Add contral based on;

[v Solid Background J
Mizc Statusz

[Irewizible at runtime [Acts ke button [Acts like label

Other
[v Mormalize DC [Windowed Only
[Inzertable

k. | Cancel

Figure 8: Accepting default miscellaneous options.

We select the Background Color for the Stock Properties.

ATL Object Wizard Properties

Names] .ﬁ.ttributes] Mizcellaneows Stock Properties

Stock Properties

Hat supported: Supported:
Appearance |

Auto Size =
Backaground Style = i
Barder Color

Border Shyle

Barder Vizible B
Border \Width
Caotion N <4

Background Color

| Cancel

Figure 9: Adding background of the Stock Properties.

Start creating bitmaps for white, blue and red colors. Use the Copy and Paste menu under the Edit to speed up your
work :-).

*«. myatldicesyr - Microsoft ¥isual C++ - [myatldicesyr.rc - IDB_DICESG |

Elﬁile Edit Miew Inserk Project Build Image Tools ‘Window Help
3 = EE % i BT | Sl |server can'
| =l =l e
2l =
-3 mpatldicesvr resources
+-[_0 "REGISTRY"
--4=3] Bitmap
] 1IDE_DICEN
| IDE_DICE2
| IDE_DICE3
| 1IDE_DICE4
| IDE_DICES
4] IDE_DICER
@ IDB_MvyATLDICEOE

+1--[Z7] String Table
+--[Z7] Wersion

Figure 10: Adding white dice bitmaps.

=il

£ myatldicesvr resources

+--[_] "REGISTRY"

=423 Bitmap
IDE_BLUEDICET
IDB_BLUEDICE2
IDB_BLUEDICES
IDB_BLUEDICE4
IDB_BLUEDICES
IDE_BLUEDICER
| IDE_DICEN
] IDE_DICE 2

Figure 11: Adding blue dice bitmaps.

Jﬂ.

£ myatldicesvr resources

+-[Z1 "REGISTRY"

—--4=3) Bitmap
IDE_BELLIEDICET
IDE_BLUEDICE?
IDE_BLUEDICE 3
IDE_BLUEDICE 4
IDE_BLUEDICES
IDE_BLUEDICER
IDE_DICET
IDB_DICE2
IDB_DICE3
IDB_DICE4
IDB_DICES
IDB_DICER
IDB_M¥ATLDICEDR
IDE_REDDICE1
IDE_REDDICE2
IDE_REDDICE3
IDE_REDDICE4
IDE_REDDICES
IDE_REDDICEE

Figure 12: Adding red dice bitmaps.
Now we can start the coding part. Put codes in myatldiceob.h. Firstly add the MAX_DIEFACES constant.

#define MAX_DIEFACES 6

#ifndef _ MYATLDICEOE H_
#define _ MYATIDICEOE_H_

#include "resource h"
#include <atlctl ke

#define MAX DIEFACES &

G
Listing 1.

Using ClassView, add LoadBitmaps () function to Cmyatldiceob class as shown below.

BOOL LoadBitmaps();

= - myatldicesvr classes tifnde
+-=2 |myatldicechE vents fdefin
+- ™ CDiceM ainPropPage i
. #inclu
+- ™8 [Goto Definition
] &dd Member Funckion. .
=@ Add Member Yariable. ..

add Windows Message Handler, ..

Implement Interface. ..
Implement Connection Point. ..
E References...
i-. Derived Classes, .,
.-F Base Classes...
Add ko Gallery
5 Mew Folder...

Group by Access

v Docking Yiew
Hide:

Properties

£

Figure 13: Adding functions and variables to Cmyatldiceob class.

Add Member Function

Function Type:
|BDDL

Cancel

i

Function Declaration:
|LDadBitmaps[]

Aooess
{* Public " Protected " Private

[Static: [Mirbual

Figure 14: Adding LoadBitmap() function.

Add the HBITMAP m_dieBitmaps[MAX_DIEFACES] array variable.

Add Member Variable

Yariable Tope:
|HE!ITM.-’-'«F'

Cancel

i

Yanable Mame:
|m_|:|ieB itrnaps[tas_DIEFACES)

Access
+ Public " Protected " Private

Figure 15: Adding an array variable.
Using ClassView, add the following member functions.

void ShowFirstDieFace(ATL_DRAWINFO& di);
void ShowSecondDieFace(ATL_DRAWINFO& di);

Add Member Function

Function Type:
|w:ni|:|

Cancel |
Function Declaration:
|ShnwFirstDieFace[ﬂT L_DRaWINFOE di)

Access
* Public " Protected " Private

[Static: [Wirkual

Figure 16: Adding ShowFirstDieFace() member function.

Add Member Function

Function Type:

|w:|i|:|

Cancel |
Function Declaration:
|Shu:-w5 econdDieF ace[ATL_DRAWIMFOE di

Access
* Public " Protected " Private

[Static [Yirtual

Figure 17: Adding ShowSecondDieFace() function to Cmyatldiceob class.
Using ClassView, add the following member variables.
short m_nDiceColor;

short m_nTimesToRoll;
short m_nTimesRolled;

Add Member Variable

Yariable Type:
|shu:urt
Cancel |
Yanable Mame:
|h1_nDiu:eD:uI-:ur
Access

+ Public " Protected " Private

Figure 18: Adding member variables to Cmyatldiceob class.
Add the following member variables.

unsigned short m_nFirstDieValue;
unsigned short m_nSecondDieValue;

Add Member Variable

Yariable Tope:

|unsigned ghort
Cancel

i

Yanable Mame:
|h1_nFirstDie‘-.-’aIue

Access
+ Public " Protected " Private

Figure 19: Adding member variable, m_nFirstDieValue to Cmyatldiceob class.

Add Member Variable

Yariable Tope:

Cancel

_EIK
|unsigned ghort |

Wariable Mame:
|h1_n5 econdDiey alue

Access
+ Public " Protected " Private

Figure 20: Adding member variable, m_nSecondDieValue to Cmyatldiceob class.

The following are the previously added member functions and variables. Take note that, the codes have been
relocated just after the END_MSG_MAP().

~+ LEESULT HotifvHandler(int idCtrl. LFHHHDE

un=ighed short m_nSecondDiseValue;
un=igned short m_nFirstDieValue;

short m_nTimesREolled:

zhort m_nTimesToRoll

short m_nDiceColor:

vold ShowSecondDieFace(ATL_DEAWINEFO& did;
vold ShowFirstDieFace(ATL_DEAWINEOQ: did;
HEITHAF m_dieBitmaps[HAX_DIEFACES]

BOOL LoadBitmap=():

S IViewlbjectEx
Listing 2.
Add the Cmyatldiceob() codes. These codes are variables initialization.
Cmyatldiceob()
m_bWindowOnly = TRUE;
LoadBitmaps();
srand((unsigned)time(NULL));
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX DIEFACES)) + 1;
m_nTimesToRol

|
m_nTimesRolled
m_nDiceColor =

= 15;

= O;
0;

}

public:
Cmyatldiceoh()
1

m_bWindowOnly = TRUE:

LoadBitmap=():

grand((unsighed)time(HITLL)) ;

m_nFirstDieValus = (rand() &% (MAX DIEFACES)) + 1:
mn_nSecondDieValue = (rand() % (HAX DIEFACES)) + 1:

15;
0:

m_nTimesToRoll
m_hnTimesEolled
m_nDiceColor =

=oonon

Listing 3.
Add the #include directive for time related function.

#include "time.h"

#ifndef _ MYATIDICEOE_H_
#define _ MYATIDICEOE_H_

#include "resource. h"
#include <atlctl ke
#include "time h'

#define MAX DIEFACES &

Listing 4.

Edit the OnDraw(). Take note that, here, you will find that the location of the OnDraw() and a few other
functions declared and defined in myatldiceob.h (default if using ClassView) while in the story part of this Tutorial,
the functions declared in myatldiceob.h and defined in myatldiceob.cpp.

HRESULT OnDraw(ATL_DRAWINFO& di)

RECT& rc = *(RECT*)di.prcBounds;
ShowFirstDieFace(di);
ShowSecondDieFace(di);

return S_OK;

}

< Imyatldiceob
public:

HRESULT OnDraw({ATL_DREAWINFOE di)
RECTé&: ro = *#(RECT#)1di . prcBounds:
ShowFirstDieFace(di):
ShowSecondDieFace(di);

keturn S CK:
h

OLE COLOE m_clrBaclkColor;
h

#endif -~ MYATIDICEOE_H_

Listing 5.

Add WM_TIMER (OnTimer()) Windows message handler using ClassView to Cmyatldiceob class.

- - myatldicesvyr claszes

=2 |myatidicencbE vents
¥
=3 |y Go ko Definition

+-[_7 Glo &dd Member Funckion, ..
add Member Variable. .,

‘ ‘ S LRBSUL

add Windows Message Handler ...

Implement Interface. ..
Implement Connection Point.. .
E References. .,
‘-. Derived Classes...
.-F Base Classes, ..
Add to Gallery
[Mew Folder. .,

Group by Access

v Docking Yiew
Hide

Properties

Figure 21: Adding WM_T IMER Windows message handler to Cmyatldiceob class.

Mew Windows Message and Event Handlers for class Cmyatldiceob E'

Mew windows meszages/events:

Exizting mezsage/event handlers:

WiM_REMDERALLFORMATS A

"W TIMER

ok

Witd_REMDERFORMAT
Wwid_SETCURSOR
Wi_SETFOCUS

Wt _SETTINGCHANGE
Wi_SHOW MR DOW
Wwitd_SIZE
“Witd_SIZECLIPBOARD
Wi_SIZING
Witd_SPOOLERSTATUS
Wwibd_STSCHAR
Wik_SYSCOLORCHAMNGE
Witd_SYSCOMMAND
Wid_SYSDEADCHAR
Wit _SYSEEYDOWN
Wid_STSKEYUP

Wi _TCARD

Caricel
Add Handler
Add and Edit

Edit E xizting

LS

Clazz or object to handle:

Wit TIMECHANGE

Wi _VEEYTOITEM

Wit _WSCROLL
witd_WSCROLLCLIFEQARD
Wi _WINDOWPOSCHAMGED
Wt _wWINDOWPOSCHANGING

Filter far mezsages available to class:
W | Window j

Wb _TIMER [OnTimer] : Indicates imeout interval for a timer has elapzed

Figure 22: Adding WM_T IMECHANGE Windows message handler.
Add the OnTimer () code.

LRESULT OnTimer(UINT uMsg, WPARAM wParam, LPARAM IParam, BOOL& bHandled)
{
// TODO : Add Code for message handler.
// Call DefWindowProc if necessary.
if(n_nTimesRolled > 15)
{
m_nTimesRolled = O;
KillTimer(1);
} else {
m_nFirstDieValue =
m_nSecondDieValue =
FireViewChange();
m_nTimesRol led++;

(rand() % (MAX_DIEFACES)) + 1;
(rand() % (MAX_DIEFACES)) + 1;

}
bHandled = TRUE;

return O;

LEESULT OnTimer(UINT uM=g. WPARAM wParam. LPARAM 1Param. BOOL& bBHandled)

1

S TODD 0 Add Code for message handler. Call DefWindowProc 1f necessary.
if(m_nTimesRolled > 153

{
m_nTimesREolled = 0:
EillTimexr(1l):

} else {

m_nFirstDieValue = (randi) & (MAX DIEFACESY) + 1:
n_nSecondDieValus = (randi) % (MAX DIEFACESY) + 1:
FireViewChange():
m_nTimesEolled++;

T
bHandled = TRUE:
return 0;

¥

Listing ©.

Add other implementation codes in myatldiceob.cpp for LoadBitmaps(), ShowFirstDieFace() and
ShowSecondDieFace().

BOOL Cmyatldiceob: :LoadBitmaps()

{

int i;
BOOL bSuccess = TRUE;
int nlD = IDB_DICE1;

for(i=0; 1<MAX_DIEFACES; i++)
DeleteObject(m _dieBitmaps[i]);

m_dieBitmaps[i] = LoadBitmap(_Module.m_hilnst, MAKEINTRESOURCE(nID+1));
if(Im_dieBitmaps[il])

{
: -MessageBox(NULL,
"Failed to load bitmaps",
NULL,
MB_0OK);
bSuccess = FALSE;
}

}
OutputDebugString('Got to the LoadBitmaps functions\n™);

return bSuccess;

BOOL Cmvatldiceob: :LoadBitmap=()
1

int 1i:

BOOL bESuccess = TRUE:

int nID = IDE_DICE]:

for(i=0; i<MAX DIEFACES; i++)

Deletelbject(n_dieBitmap=[1]):;
n_dieBitmaps[1] = LoadBitmap{_ HModule.m_hlInst, HAEKEINTRESCOURCE(nID+1i3):
if({ Im_dieBitmap=[1])
{
. MessageBox (HULL,
"Failed to load bitmap=".
HULL,
HE_OK) ;
bSuccess = FALSE:
h

CutputDebugString "Got to the LoadBitmaps functionssn"):
return bSuccess;

b
Listing 7.
void Cmyatldiceob: :ShowFirstDieFace(ATL_DRAWINFO &di)
BITMAP bmInfo;
GetObject(m _dieBitmaps[m _nFirstDieValue-1],
sizeof(bmInfo), &bminfo);
SIZE size;

size.cx
size.cy

bmInfo.bmWidth;
bmInfo.bmHeight;

HDC hMemDC;
hMemDC = CreateCompatibleDC(di.hdcDraw);

HBITMAP hOldBitmap;
HBITMAP hbm = m_dieBitmaps[m_nFirstDieValue-1];
hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

if (hOldBitmap == NULL)
return; // destructors will clean up

BitBlt(di.hdcDraw,
di.prcBounds->left+1,
di.prcBounds->top+1,
size.cx,
size.cy,
hMemDC, O,

0,
SRCCOPY) ;

SelectObject(di.hdcDraw, hOldBitmap);
DeleteDC(hMemDC);

vold Cmyatldiceoh: ShowFirstDieFace(ATL_DEAWINFD &did

!
BITHAF bmInfo:

GetObject(n_dieBitmaps[n_nFirstDieValus-1].
zizeof (bmInfo). &bmInfo):

SIZE =ize:

EmInfo bmWidth:
bmInfo.bmHeight

=izZe . CX
=ize.cy

HDC hMemDC:
hMenDC = CreateCompatiblelC{di hdcDraw):

HEITHAP hOldBitmap:
HBITHAF hbm = m_dieBitmaps[m_nFirstDiseValue-1]:
hOldBitmap = (HEBITHAP)SelectCbject (hMemDZ. hbm):

if (hOldBitmap == HULL)
return; S destructors will clean up

BitBlt{di hdcDraw.
di . prcBounds-:left+1.
di prcBounds-:top+l.
=lZe . CH.
=1lEEe.CV.
hMemDC, 0.
0.
SRCCOPY) ;

SelectObject{di hdcDraw, hOldBitmap):
DeleteDC(hMenDC) :

Listing 8.

void Cmyatldiceob: :ShowSecondDieFace(ATL_DRAWINFO &di)

{
BITMAP bmiInfo;

GetObject(m _dieBitmaps[m nFirstDieValue-1],
sizeof(bmInfo), &bminfo);

SIZE size;

size.cXx
size.cy

bmInfo.bmWidth;
bmInfo.bmHeight;

HDC hMemDC;
hMemDC = CreateCompatibleDC(di.hdcDraw);

HBITMAP hOldBitmap;
HBITMAP hbm = m_dieBitmaps[m_nSecondDieValue-1];
hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

it (hOldBitmap == NULL)
return; // destructors will clean up

BitBlt(di.hdcDraw,
di.prcBounds->left+size.cx + 2,
di.prcBounds->top+1,
size.cx,
size.cy,
hMemDC, O,

0,
SRCCOPY) ;

}

SelectObject(di.hdcDraw, hOldBitmap);
DeleteDC(hMemDC);

wold Cmyatldiceob: ShowSecondDieFace{ ATL _DRAWINEFC &did

{

BITHAP bmInfo:
GetObject (m_dieBitmap=s[m_nFirstDieValuse-1].
zizeof (bnlInfo),. &bmInfo):

SIZE =1ze:
zize.cx = bmlInfo. bmWidth;
zize.cv = bnInfo.bmHeight:
HDC hMemDC

hMenDZ = CreateCompatibleDCi{di. hdcDraw):

HEITHAF hOldBitmap:
HBITHAFP hbm = m_dieBitmaps[m_nSecondDieValuse-1];
holdBitmap = (HEBITHAP)SelectObject (hMemDC, hbm);

if (hOldBitmap == HULL)
return; < destructors will clean up

BitBlt({di. hdcDraw.
di . prcBounds-:left+size.cx + 2.
di . prcBounds-:top+l.
zize. CH.
=ZiEe . OV,
hMemDZ, 0O,
a.
SRCCOFY) ;

SelectObject (di hdcDraw, hOldBitmap):
DeleteDC{ hMemDC) ;

Listing 9.

Add the Rol IDice() method using ClassView to Imyatldiceob interface.

- - myatldicesvyr classes

=2 |myatidiceobEvents
+- ™8 Crpatldicech

A,
+-[Gl 50 ko Definition
add Method. ..
Add Property, .,
[Mew Folder,.,

v Docking Yiew
Hide:

Properties

Figure 23: Adding method to Imyatldiceob interface.

Add Method to Interface

Beturn Type: k. |
| __J Cancel |
bethod Hame:

[RolDice : :
Parameters

Implementation;

[id[1]. helpstringl“method RollDice"]]
HRESULT Ralllice():

Figure 24: Adding Rol IDice() method to Imyatldiceob interface.

& Imwatldiceoh
public:
STOHETHOD(EollDice) () ;

HEESULT OnDraw(ATL_DEREAT
!

Listing 10.
Add the RolIDice() code.
STDMETHODIMP Cmyatldiceob::RollDice()
// TODO: Add your implementation code here
SetTimer(l, 250);
return S_OK;
}

STDHETHODIMEF Cmvatldiceob: REollDice()
S TODD: Add wour implementation code here
SetTimer{l., 2503:
return 5 0K
Listing 11.

Add WM_LBUTTONDBLCLK Windows message to Cmyatldiceob class using ClassView.

Mew Windows Message and Event Handlers for class Cmyatldiceob E|E|

Mew windows meszages/events: Exizting mezsage/event handlers: 0.

Wik KILLFOCUS Wi LBTTOMDELCLE.

Wwikd_LBUTTOMDOWHN Wwibd_TIMER Cancel
Wwh_LBUTTOMUP

Wwikd_MBUTTONDEBLCLE

wid_MELTTONDOWN Add Handler
Wikd_MBUTTOMUP '
Wwihd_MDIACTIVATE Add and Edit
Wwihd_MEASUREITEM -—

Wwikd_MEMUCHAR Edit Exizting
Wwikd_MEMUSELECT
Wwihd_MOUSEACTIMATE
Wwikd_MOUSEROWVE
Wwihd_tOUSEWHEEL
Wwikd_MOVE
mm:m&ﬁgﬁmw LClazs or object to handle:
Wwikd_MCCALCSIZE
Wwih_MCCREATE
Wh_MCDESTROY
Wwid_MCHITTEST
Wwihd_MCLBUTTOMDEBLCLE,
Em:” E::EHHSEBEWN Filter far mezsages available to class:

Wid_MWCMBUTTOMDELCLE ™ |Winu:|u:uw ﬂ

Wb _LBUTTOMDELCLE, [OnLButtonDbIClk] : Indicates double-click of left mousze button

Figure 25: Add WM_LBUTTONDBLCLK Windows message to Cmyatldiceob class.
Then, add the code.

LRESULT OnLButtonDbICIK(UINT uMsg, WPARAM wParam, LPARAM IParam, BOOL&
bHandled)

// TODO : Add Code for message handler. Call DefWindowProc if
necessary.

RollDice();

bHandled = TRUE;

return O;

LEESULT OnlBEuttonDbB1Clk(UINT uM=g. WPARAM wParam.
LPARAH 1Param. BOCL:A: bHandled)

{
S TODD ¢ Add Code for message handler .
<+ all DefWindowProc if necessary.
FollDice():
bHandled = TRUE:
return 0

h

Listing 12.

Build and run using container or use the ActiveX Control Test Container as shown below. Complete steps to build
a dialog based program to test this dice control can be found HERE.

http://www.tenouk.com/visualcplusmfc/mfcatltest29.html

Tools Window Help

Source Browser. .. AlL+F12

,}1 Register Control
A YWisual Component Manager
A Error Lookup

Control Test Container
A% OLEJCOM Object Yiewsr
A Spy++
A MFC Tracer
A Installshield Wizard

Cuskomize. ..
Opkions. ..

3
o Macro,..

Record Quick Macro Crrl+Shift+R,
Play Quick Macro Ckrl+Shift+P

Figure 26: Using ActiveX Control Test Container to test our control.

"I Untitled - ActiveX Conirol Test Container |Z||E|@

File M&s(® Container Conktrol View Ophions Tools Help

O iR

Insert Mew Contral. ..

Insert Control From Stream...
Insert Control From Storage. ..

Insert new conkrol

Figure 27: Inserting ActiveX control for testing.

Insert Control

M zie Control ~ ok
MSHCSALog Control .

MSODBCLog Cantral

MSREdit Clazs Cancel

MSwebDWD Class
b ultiFieldR angeE ditar Clazs

myatldicenb Clazs
Meth eeting Application y |

NumberByr Class Implemented Cateqaries. ..

Clnfol1 Control - -
Olelnstall Class w Bequired Categaries. .. |

FAMFCPRO~TAMYAT . AMYATLD~1.0LL | lagnore required categaories

Figure 28: Selecting myatldiceob control for testing.

"Li Untitled - ActiveX Control Test Container |'._|[z|
File Edit Container Control Mjew ©Options Tools Help

D »B L 5 D F 10 %

Run Macro: | j

myatldiceob Class: DiceRolled {z=6}{v=51}
myatldicech Class: DiceRolled {==2}{w=21}
myatldiceoch Cla==s: Doubles {n=21}

For Help, press F1 Active Windowed

Figure 29: myatldiceob in ActiveX Control Test Container.
Add other functionalities. Add the following properties for get and put functions to Imyatldiceob interface.

DiceColor(Q
TimesToRoll ()

- - myatldicesvyr classes

=3 |myatidicecbEvents
+- ™8 Crpatldicech
P
+ [Glol Goto Definition

add Method, .,

J:l.ljlj Er'l:l IZIEr't':.". oo
[Mews Faolder...

v Docking Yiew
Hide:

Propetties

Figure 30: Adding properties for get and put functions to Imyatldiceob interface.

Add Property to Interface

e Lz
| J Cancel |
Froperty Tvpe:

|shn:|rt j Attributes. .. |
Property Mame:

|Di|:el:|:|||:ur|

Parameters:

Function Type
[+ Get Function
v Put Function
(* PropPut " PropPutRef

|rmplementation:

[propget. id[2]. helpsting[' property DiceColor']]
HRESULT DiceColor[out, retval] zhart “phfal);

[propput, id[2], helpztringl'property DiceCalar''])
HRESULT DiceCaolor[in] shart newt'al);

Figure 31: Adding DiceColor () property for get and put functions to Imyatldiceob interface.

Betum Type:

Property Tope:

J Cancel

[short

Property Mame:

Pl

_:J Attributes. .

|TimesT oFioll

Parameters:

Function Tupe

v Get Function

[+ Put Function
{* PropPut

Implementation;

" PropPutBef

[propget, id[3), helpzting(property TimesT oFall']]
HRESULT TimezT oRall{fout, retval] shaort *phal);

[propput, id[3], helpstinglproperty TimesT oFall']]
HRESULT TimesT oRaoll[in] short newidal);

Figure 32: Adding TimesToRol 1 () property for get and put functions to Imyatldiceob interface.

You can verify the previous step in myatldiceob.h file as shown below.

¢ Imwatldiceoh

public:

STDOMETHOD{ get_TimesToFolli{<#[out, retval]#*®s short *pVal):
STDHETHOD{put_TimesToRoll){-*[in]#*- short newVal):
STOMETHOD{ get_DiceColor)i{-*[out. retwval]*s short *pVal):
STOMETHOD put_DiceColor)(~-#[in]*” short newVal):
STOHETHOD(EollDice) () ;

And also in myatldicesvr.idl file.

interface Invatldicech

1

[propput .

[propget.

[1d(1).

[propget.,

HEESULT

[propput.

HEESULT

[propget.

HEESULT

[propput .

| HRESULT

Listing 13.

IDi=spatch

1d (DISPID BACKCOLOR)]

HEESULT BaclkColor([in]OLE_COLORE clr):

id(DISPID BACKCOLOR)]

HEESULT BackColor{[out.retwval JOLE_COLOR#*® pclr):

helpstring{ "method FollDice")] HRESULT RollDicel):

1id{2), helpstring{"property DiceColor")]
DiceColor([out, retwal] short *pVal):

id({2)., help=tring("property DiceColor")]
DiceColori{[in] short newVal):

id({3), helpstring("property Times=ToREoll")]
TimesToREoll{ [out, retwval] short *=pVal);

1d{3). helpstring{"property TimesToREoll")]
TimesToFolli[in] short newVal):

Listing 14.

Add codes to the previously added handlers in myatldiceob.cpp file.
STDMETHODIMP Cmyatldiceob::get DiceColor(short *pval)

// TODO: Add your implementation code here
*pVal = m_nDiceColor;
return S_OK;

}

STDMETHODIMP Cmyatldiceob: :put_DiceColor(short newVal)
{
// TODO: Add your implementation code here
m_nDiceColor = newval;
LoadBitmaps();
FireViewChange();
return S_OK;

}

STDMETHODIMP Cmyatldiceob::get_TimesToRoll(short *pVval)
{

// TODO: Add your implementation code here

*pVal = m_nTimesToRoll;

return S_OK;

}

STDMETHODIMP Cmyatldiceob: :put_TimesToRoll(short newval)
{
// TODO: Add your implementation code here
m_nTimesToRoll = newval;
return S_OK;

}

STDHETHODIME Cmvatldiceob: get_DiceColorizhort *#pWal)
{

S TODD: Add wour implementation code here

#pVal = n_nDiceColor;

return 5 0K
h

STDHETHODIME Cmvatldiceob: put_DiceColor{zhort newWal)
1
A4 TODD: Add wour implementation code here
n_nDiceColor = newval:
LoadBitmap=();
FireViewChange():
return 5 0K
h

STDHETHODIME Cmvatldiceob: get_TimesToREolli{zhort *#pWal)
S TODD: Add wour implementation code here
#pVal = m_nTimesToRoll:

return 5 0K
h

STOMETHODIME Cmvatldiceobh: :put_TimesToRoll({short newVal)
A4 TODD: Add wour implementation code here

n_nTime=ToRoll = newWVal:
return S5_0K;

Listing 15.

Add methods to _ ImyatldiceobEvents interface. These methods are visible in myatldicesvr.idl file only.
Then, they will be visible to the myatldiceob class through the Implement Connection Point.

void Doubles(short n)
void SnakeEyes()
void DiceRolled(short x, short y)

oll
- - myatldicesvyr classes | ‘ I
_ImyatldicenbE et
+-- ™8 Crpatldicech Go ko Definition
=2 Impatidicech Add Method. ..
+--[_7] Globals -

add Property, .,
[Mew Falder. ..

v Docking Yiew
Hide

Properties

Figure 33: Adding methods to _ ImyatldiceobEvents interface.

Add Method to Interface

et Tope
|-..a.:.i.:| j

Cancel |
i ethod M ame:
|D|:nu|:u|es Attributes. . |
Parameters:
|sh|:|rtn

|rmplementation:

[id1], helpstring[*'method Doubles"]
wvoid D oubles(zhart n);

Figure 34: Adding Doubles() methods to _ ImyatldiceobEvents interface.

Add Method to Interface

Beturn Type: ok |
|V|:|i|:| j

Cancel |
bethod Hame:
|SnakeE_l,les| Attributes. .. |
Parameters:

Implementation;

[id[2]. helpstringl“‘methiod SnakeE ves']
void SnakeE pes():

Figure 35: Adding SnakeEyes() methods to _ ImyatldiceobEvents interface.

Add Method to Interface

e e
|'-.f|:|i|:| j

Cancel |
b ethod Hame:
|DiceHDIIed Attributes. .. |
Parameters:

|shu:urt w, shork »

Implementation;

[id[3]. helpstringl“‘methiod DiceR olled™]]
woid DiceR olled(zhort &, shark w);

Figure 36: Adding DiceRol led() methods to _ ImyatldiceobEvents interface.

Add the Implement Connection Point functionality to Cmyatldiceob class for the previously created methods.

- - myatldicesvr claszes #ifnde
=2 |myatidicecbE vents #¥defim
B8 CDicet ainPropPage

+

#inclw
=2 |y G0 ko Definition
(1 Gla &dd Member Funckion, ..
Add Member Yariable. ..
add Windows Message Handler. ..

F] - [F] - [F] [

Implement Interface. ..

Implement Connection Point. .

E References...
i-. Derived Classes. .
.-F Base Classes...
add to Gallery
[Mew Folder...

Group by Access

v Docking Yiew
Hide:

Properties

Figure 37: Adding Implement Connection Point functionality to Cmyatldiceob class.

Implement Connection Point

MYATLDICESYRLb l
Cancel
Eile name: |mj,latld|n::eswEF'.h Browse. .. Add Typeli...

Interfaces

_ImpatldiceobE vents

Figure 38: Selecting _ ImyatldiceobEvents event interface.
Edit the LoadBitmap() function by adding the switch statement to select different dice color.

BOOL Cmyatldiceob: :LoadBitmaps()
€ o

int i;

BOOL bSuccess = TRUE;

int nlD = IDB_DICE1;

switch(m_nDiceColor)
{
case O:
niD = IDB DICE1;
break;

case 1:
niD = IDB_BLUEDICEL;
break;

case 2:
niD = IDB_REDDICEL;
break;

}

for(i=0; §<MAX_DIEFACES; i++)
{
DeleteObject(m _dieBitmaps[i]);
m_dieBitmaps[i] = LoadBitmap(_Module.m_hiInst, MAKEINTRESOURCE(nID+1));
if(Im_dieBitmaps[il])
{
: :MessageBox(NULL,
"Failed to load bitmaps",
NULL,
MB_OK);
bSuccess = FALSE;
}
}
OutputDebugString(*'Got to the LoadBitmaps functions\n™);
return bSuccess;

}

< Cmyatldiceob

BOOL Cmyatldiceobh: :LoadBitmap=()
{

int 1i;

BOOL bBSucces=s = TRUE:

int nID = IDE_DICE]:

switchim_nliceColor)

{

caze 0:
nll = IDE _DICE];
breal::

cazs 1:
nID = IDE_ELUEDICE]:
breal:;

case 2

nIl = IDE_REDDICE]:
breal::

¥
for{i=0; 1<MAX DIEFACES. 1++)

Listing 16.
Edit the Rol IDice() function.

STDMETHODIMP Cmyatldiceob::RollDice()

// TODO: Add your implementation code here
iz I1sWindow(m_hwWwnd))

SetTimer(l, 250);

return S_OK;
}
STODMETHODIME Cmvatldiceobh: :EollDice()
1
A0 TODD: Add wour implementation code here
if(: IsWindowi{m_hWnd))
1
SetTimeri{l, 2503:
return S5 _0K:
1

Listing 17.
Edit OnTimer () function to reflect our new functionality.

LRESULT OnTimer(UINT uMsg, WPARAM wParam, LPARAM IParam, BOOL& bHandled)
{

// TODO : Add Code for message handler.

// Call DefWindowProc if necessary.

if(n_nTimesRolled > m_nTimesToRoll)

{
m_nTimesRolled = 0O;
KillTimer(1);
Fire DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
if(m_nFirstDievValue == m_nSecondDieValue)
{
Fire_Doubles(m_nFirstDieValue);
by
if(m_nFirstDievalue == 1 && m_nSecondDievValue == 1)
{
Fire_SnakeEyes();
}
}
else
{
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
FireViewChange();
m_nTimesRol led++;
}
bHandled = TRUE;
return O;

}

Adding a property page so that user can easily use/change our control properties. Add new ATL object by selecting

the Insert New ATL Object.

*«. myatldicesvr - Microsoft Visual C++ - [i

[+] File Edit “iew | Insert Project Build Tools
3 | = E ﬁ Mew Class, .,

| Crmpatidice Resource,., Chrl+R

-8 myatldice:

File As Text...
-4 Source -
W) vy ATL Object., ..
+ Ly lh =

Figure 39: Inserting new ATL object.

Select Controls in Category list and Property Page in Objects list. Then click the Next button

ATL Object Wizard

LCategory Objects

Objects Q

Mizcellaneous
Data Access Full Contral Lite Control (i a={INEETRE

— 1 —
—=c oo —xc
- - E_F - -

Compozite HTKL Contral Lite Composzite
Control Control

W

Mest » Cancel |

Figure 40: Selecting Property Object for control’s property page.

Type in a meaningful name such as DiceMainPropPage as shown below in the Short Name field.

ATL Object Wizard Properties

Hames l Aftributes] Strings]
v COM

Short Name: | DiceMainPropPag CoClass: |DiceMainPropPage

LClass: |CDiceMainPropPa Interface: |
H File: |DiceMainPropPage Type: |Din:eh-1ainP'erF'age
.CPFP File: |DiceMainPropPage Prag D |Myatldicesvr.DiceMa

Qk | Cancel

Figure 41: Entering new ATL object’s name.

Just accept the default setting for Attributes page.

ATL Object Wizard Properties

Mames Atbibutes l Strings]

Threading Model Interface Aggregation
" Single ' Dual * ‘ez
' " Custom " Ma
" Only
[[Free Threaded Marshaler

[Support Connection Points

Qk | Cancel

Figure 42: Accepting the defaults option of the Attributes.

Type in meaningful strings for Strings page and click the OK button.

ATL Object Wizard Properties

Mames] Attibutes Stings

Doc String:

|Di|:e

Helpfile:
|Dicehlp

Qk | Cancel

Figure 43: Entering some strings for our control’s property page.

Add Static text, Combo box and Edit control to the blank 1DD_DICEMAINPROPPAGE template. Use
IDC_COLOR and IDC_TIMESTOROLL as their IDs respectively. Leave others as default.

al=

£ myatldicesvr resources
+- 7] "REGISTRN"

+--_7] Bitmap

=425 Dialog

o MANPROPPAGE] | |22 TimesTo fogg 10210
[String Table Jool D Ralk

S Colar s

+

L3 Version

+

Ed}

Combo Box Properties

i ? General | D ata | Styles | Estended Stulez |

vl DC COLOR
v izible [Group [HelpID
[Dizabled [v Tab stop

Figure 44: Adding Static text, Combo box and Edit control to the blank property page template.

cooo i Times To [E gt A
SRR o 1+ e

Ed}

Combo Box Properties

—{a ? General gData | Styles | Extended Stlez |

Enter it
listhox |Blue
itemz: Fed

Figure 45: Combo box, IDC_COLOR property.

SESREREE-SEEN R RS RSES
I P,

TImESTDIEdIt
CliRel o — oo

()

Edit Properties
A ? General | Styles | Extended Stlez |

ID: IDC_TIMESTOROLL |

[v izible [Group [HelpID
| Dizabled [+ Tab stop

Figure 46: Edit control’s property.

Add Windows message handlers as shown in the following Table using ClassView to CDiceMainPropPage
class.

ID/Class Windows message | Functions

I1DC_COLOR CBN_SELENDOK OnColorChange()
IDC_TIMESTOROLL EN_CHANGE OnTimesToRol IChange()
CDiceMainPropPage | W_INITDIALOG | -

Table 1.

= - myatldicesyr claszes

=3 |mpatidicecbEvents D:ul

+

5
+- ™8 Crpatldic a0 ko Definition
+- 15 CProwy_Ir 30 To Dialog Editar
> [ryatldi
:) I_I":-TigaI;CE &dd Member Funckion, .

&dd Member Yariable. ..

add Windows Message Handler ., ..

Implerment Interface. ..
Implement Connection Point., .,
E References. .,
i-. Derived Classes, .,
!.F Base Classes, ..
add ko Gallery
[Mew Falder. ..

Group by Access

v Docking Yiew
Hide:

Propetties

r

Figure 47: Adding Windows message handlers to CDiceMainPropPage class.

Mew Windows Message and Event Handlers for class CDiceMainPro... E|rg|

Mew windows meszages/events: Exizting mezsage/event handlers: ak,

witd_CAPTURECHAMGED - [NITDIALOG
wWh_CHAR] Cancel
wid_CHARTOITEM
witd_CLOSE
witd_COMPAREITEM
bl _COMNTESTMEML
Wwitd_COPYDATA,
wid_CREATE —
wihi DELETEITEM Edit Existing
wih_DESTROY
witd_DRAWITEM
witd HSCROLL
witd_KEYD 0w
witd_KEYUP
witd_KILLFOCUS o ot o bl
‘wit_LBLTTOMDBLCLE =355 O DLIECE 10 Randle.
Wbd_LBUTTOMDOWHM CDiceM ainPropPage
wid_LEUTTOMUP \DC_COLOR

bl _MEASIIREITEM IDC_TIMESTOROLL
witd_MOUSEMOVE

witd_tOUSEWHEEL

Add Handler

&dd and Edit

LS

ﬁm—gﬂﬁﬁ- Filter far mezsages available to class:
wiM_REUTTONDELCLE v | |Dialog |

Wk _IMITDIALOG [DnlnitDialog) : Sent to a dialog box before the dialog bowx iz dizplayed

Figure 48: Adding W_INITDIALOG handler to CDiceMainPropPage class.

Hew \Windows meszages/events:

E xizting mezzage/event handlers:

CEM_CLOSEUP
CEM_DBLCLEK
CEN_DROPDOWH
CEM_EDITCHANGE
CEM_EDITUPDATE
CEM_ERRSPACE
CEM_KILLFOCUS
CBM_SELCHAMGE
CBM_SELEMDCAMNCEL
CEM SELEMDOE
CBM_SETFOCUS

Add Member Function

tember function name:

Ok, |
Cancel |
Add Handler |
Add and Edit |

| OrCalarChanae)

Mezzage; CBM_SELENDOFK
Object [D: IDC_COLOR

k. I
Cancel |

Filter far megzages available to class:

E2

I[ll alog

CEM_SELEMDOE : Indizates the user's selection iz valid

Figure 49: Adding CBN_SELENDOK handler to CDiceMainPropPage class.

Mew Windows Message and Event Handlers for class CDiceMainPro... |E| x|

EM CHANGE
EM_ERRSFACE
EM_HSCROLL
EM_KILLFOCUS
EM_M&xTERT
EM_SETFOCUS
EM_LUPDATE
EM_SCROLL

MHew \Windows messages/events:

Esizting mezsage/event handlers:

Add Member Function

kember funchon name:

|0nTimesT oRallChangs

bezzage: EM_CHAMGE
Object ID: IDC_TIMESTOROLL

|ILJL LULURF

Filter far mezzages available to clazs:

|[I| 3loi ;I

CEM_SELEMDOFK [OnColorChange] : Indicates the uzer's zelection iz walid

Figure 50: Adding EN_CHANGE handler to CDiceMainPropPage class.
Before we forget, add the following property entries to myatldiceob.h file manually.

PROP_ENTRY(*'DiceColor™, 2, CLSID DiceMainPropPage)
PROP_ENTRY("TimesToRoll"™, 3, CLSID DiceMainPropPage)

BEGIH_FPROP HAP(Cmyatldiceoh)
FROP_DATA ENTEY(" cx". m_sizeExtent cx. VI_UI4)
FROP_DATA ENTEY(" cv". m_sizeExtent oy, VI_UI4)
FROP_ENTRY("BackColox". DISPID_BACECOLOE. CLSID StockColorPage)
FROP_EHTEY("DiceColor", 2. CLSID_DiceMainFPropFPages)
FROE_EHTEY({ "TimesToRoll", 3. CLSID DicelainPropPage)|
< BEmample entries
¢ PROP_EHTREY("Froperty Description” . dispid. cl=id)
<« PROP_PAGE{CLSID StoclkColorPage)
END_FPRCP_HMAFP()

Listing 18.
Edit the Apply () method in DiceMainPropPage.h file.

STDMETHOD (Apply) (void)

ATLTRACE(_T('CDiceMainPropPage: :Apply\n'));

for (UINT i1 = 0; 1 < m_nObjects; i++)

{
USES_CONVERSION;
ATLTRACE(_T(''CDiceMainPropPage: :Apply\n'));
for (UINT 1 = 0; 1 < m_nObjects; i++)

{
CComQIPtr<IATLDiceObj, &I11D_IATLDiceObj> pATLDiceObj(m_ppUnk[i]);
HWND hWndComboBox = GetDIgltem(1DC_COLOR);
short nColor = (short)::SendMessage(hWwndComboBox,
CB_GETCURSEL,
0, 0);
if(nColor >= 0 && nColor <= 2) {
it FAILED(pATLDiceObj->put_DiceColor(nColor))
{
CComPtr<IErrorinfo> pError;
CComBSTR StrError;
GetErrorinfo(0, &pError);
pPError->GetDescription(&strError);
MessageBox(OLE2T(strError),
_T(C'Error™),
MB_1CONEXCLAMATION);
return E_FAIL;

}

¥
short nTimesToRoll = (short)GetDIgltemint(IDC_TIMESTOROLL);

it FAILED(pATLDiceObj->put_TimesToRoll(nTimesToRoll))

CComPtr<IErrorinfo> pError;

CComBSTR StrError;
GetErroriInfo(0, &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError), T("Error'™),
MB_ICONEXCLAMATION) ;

return E_FAIL;

bDirty = FALSE;

return S_OK;

3
m_bDirty = FALSE;
return S_OK;

3

Add the handlers’ codes.
LRESULT OniInitDialog(UINT uMsg, WPARAM wParam, LPARAM IParam, BOOL& bHandled)

// TODO : Add Code for message handler. Call DefWindowProc if
necessary.
HWND hWndComboBox = GetDIgltem(1DC_COLOR);
: :SendMessage (hWndComboBox ,
CB_ADDSTRING,
0, (LPARAM)"White'™);
: :SendMessage (hWndComboBox,
CB_ADDSTRING,
0, (LPARAM)"Blue™);
: :SendMessage (hWndComboBox ,
CB_ADDSTRING,
0, (LPARAM)"'Red');
bHandled = TRUE;
return O;

LRESULT OnColorChange(WORD wNotifyCode, WORD wlD, HWND hWndCtl, BOOL&
bHandled)

// TODO : Add Code for control notification handler.

SetDirty(TRUE);
return O;
}
LRESULT OnTimesToRolIChange(WORD wNotifyCode, WORD wlD, HWND hWndCtl, BOOL&
bHandled)
{
// TODO : Add Code for control notification handler.
SetDirty(TRUE);
return O;
}

Manually add the Show() and SetObjects() methods. Take note that if you use different interface name for
the ATL object name for example, you have to change the related codes accordingly.

STDMETHOD(Show) (UINT nCmdShow)
{

HRESULT hr;

USES_CONVERSION;

if(nCmdShow == SW_SHOW |] nCmdShow == SW_SHOWNORMAL)
{

for (UINT i@ = 0; 1 < m_nObjects; i++)

CComQIPtr<Imyatldiceob, &1ID_Imyatldiceob> pmyatldiceob(m_ppUnk[i]);
short nColor = O;

if FAILED(pmyatldiceob->get DiceColor(&nColor))
{

CComPtr<IErrorinfo> pError;

CComBSTR strError;
GetErrorinfo(0, &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError), T("Error™),
MB_1CONEXCLAMATION) ;

return E_FAIL;

by
HWND hWndComboBox = GetDIgltem(1DC_COLOR);
: :SendMessage (hWndComboBox ,

CB_SETCURSEL,

nColor, 0);

short nTimesToRoll = 0;
ifT FAILED(pmyatldiceob->get TimesToRoll(&nTimesToRoll))
{
CComPtr<IErrorinfo> pError;
CComBSTR strError;
GetErrorinfo(0, &pError);
pPError->GetDescription(&strError);
MessageBox(OLE2T(strError), _T('Error™),
MB_ICONEXCLAMATION);
return E_FAIL;

}

}
}
m_bDirty = FALSE;

SetDIgltemInt(IDC_TIMESTOROLL, nTimesToRoll, FALSE);

hr = IPropertyPagelmpl<CDiceMainPropPage>: :Show(nCmdShow) ;
return hr;

by
STDMETHOD(SetObjects) (ULONG nObjects, lUnknown** ppUnk)

HRESULT hr = IPropertyPagelmpl<CDiceMainPropPage>::SetObjects(nObjects,

ppUNK) ;
return hr;
3

Build and make sure there is no error. Try using the dice control in Visual C++ dialog based program or Visual
Basic form. The following shows the dice control using the ActiveX Control Test Container. Double click the dice
or in the square area. Here, we cannot see/use the property page.

http://www.tenouk.com/visualcplusmfc/mfcatltest29.html

i Untitled - ActiveX Control Test Container EE]E|
File Edit Container Conktrol Wiew Options Tools Help

D& H EEIRYSIEIEARE:
HunMach:| j

= w n

m |

n n |

myatldiceoch Class: Property Change: BackColor &
myatldiceoch Class: DiceRolled {=z=2}{wv==21}
mnyatldiceob Class: Doubles {n=2}
myatldiceoch Cla=s: DiceRolled {x=1}{w=1%}
mnvatldiceob Class: Doubles {n=1}
myatldicech Clazs: SnakeEves

£ >
For Help, press F1 Ackive Siir

Figure 51: myatldicesvr in ActiveX Control Test Container.
The Story

As always, the easiest way to create a COM server in ATL is to use the ATL COM Object Wizard. To use the
ATL COM Object Wizard, select New from the File menu. Select the Project tab in the New dialog, and highlight
the ATL COM AppWizard item. Name the project something clever like myatldicesvr. As you step through
AppWizard, just leave the defaults checked. Doing so will ensure that the server you create is a DLL. Once the DLL
server has been created, perform the following steps:

Select New ATL Obiject from the Insert menu to insert a new ATL object into the project.

In the ATL Object Wizard, select Controls from the Category list and then select Full Control from the Objects
list.

Click Next to open the ATL Object Wizard Properties dialog. In the Short Name text box on the Names tab, give
the control some clever name (like myatldiceob). The dialog box should look similar to Figure 52.

ATL Object Wizard Properties

Mames l.ﬁ.ttributes] Miscellaneuus] Stock, P'ru:uperties]

C++ COk

Short Mame: |myatidicech ‘ Collass: [myatidicec

Llass! |Crpatidicech Interface: ||""'-"'E"tl':“'3‘3':'|:|
H File: [rpatidicet.h Type: |myatidiceot Class
CFF File: [myatidicesbepp || ProgID: [Myatidicesvr. myatid

k. | Cancel

Figure 52: The ATL Object Wizard Properties dialog box.

Select the Attributes tab. Here's where you configure the control. For example, you can:

Designate the threading model for the control.

Decide whether the main interface is a dual or custom interface.

Indicate whether your control supports aggregation.

Choose whether you want to use COM exceptions and connection points in your control.

eSS

To make your life easier for now, select Support Connection Points. This will save you some typing later on.
Leave everything else as the default value. Figure 53 shows what the Attributes tab on the ATL Object Wizard
Properties dialog box looks like now.

Select the Miscellaneous tab. Here you have the option of applying some miscellaneous traits to your control. For
example, you can give the control behaviors based on regular Microsoft Windows controls such as buttons and edit
controls. You might also select other options for your control, such as having your control appear invisible at
runtime or giving your control an opaque background. Figure 54 shows the available options.

ATL Object Wizard Properties

Mames Atbibutes Miscellaneuus] Stock Properties

Threading Model Interface Aggregation

" Single ' Dual o Yes

o Apartment ™ Custam Mo

. " Orly

~
[Support 1SupportE morl nfa [Free Threaded Marshaler
[v iSupport Connection Points

Qk | Cancel

Figure 53: The Attributes tab on the ATL Object Wizard Properties dialog box.

ATL Object Wizard Properties

Names] Aftributes Miscelaneaus l Stock Properties

Wiew Status Add control based on:

[v Solid Background | j

Mizc Statusz
[Irewizible at runtime [Acts ke button [Acts like label

Other
[v Mormalize DC [Windowed Only
[Inzertable

k. | Cancel

Figure 54: The Miscellaneous control properties tab on the ATL Object Wizard Properties dialog box.

Finally, select the Stock Properties tab if you want to give your control some stock properties. Stock properties are
those properties that you might expect any control to have, including background colors, border colors, foreground
colors, and a caption. Figure 55 shows the Stock Properties tab.

ATL Object Wizard Properties

Names] .ﬁ.ttributes] Mizcellaneows Stock Properties

Stack Properties
Mot supported: Supported:
Appearance A
Auto Size =
Background Style

Border Color

Border Style

Z
Barder Vizible Fr
hd <4

Backaground Calar

Border Width
Caohion

| Cancel

Figure 55: The Stock Properties tab on the ATL Object Wizard Properties dialog box.

When you've finished selecting the attributes for the control, click OK.

The ATL Object Wizard adds a header file and a source file defining the new control. In addition, the ATL Object
Wizard sets aside space in the IDL file to hold the control's main interface and assigns a GUID to the interface.
Here's the C++ definition of the control produced by the ATL Object Wizard (myatldiceob.h):

// myatldiceob.h : Declaration of the Cmyatldiceob

#ifndef _ MYATLDICEOB H_
#define _ MYATLDICEOB H_

#include "resource.h" // main symbols
#include <atlctl.h>

L1117 177777777777777777777777777777/777777/777777//777777///77////7/77////7777/
// Cmyatldiceob
class ATL_NO_VTABLE Cmyatldiceob :
public CComObjectRootEx<CComSingleThreadModel>,
public IDispatchlmpl<Imyatldiceob, &11D_Imyatldiceob,
&LIBID_MYATLDICESVRLib>,
public CComControl<Cmyatldiceob>,
public IPersistStreamIinitimpl<Cmyatldiceob>,
public 10leControlImpl<Cmyatldiceob>,
public 10leObjectimpl<Cmyatldiceob>,
public 10lelnPlaceActiveObjectimpl<Cmyatldiceob>,
public 1ViewObjectExImpl<Cmyatldiceob>,
public 10lelnPlaceObjectWindowlessImpl<Cmyatldiceob>,
public IConnectionPointContainerImpl<Cmyatldiceob>,
public lIPersistStoragelmpl<Cmyatldiceob>,
public 1SpecifyPropertyPagesimpl<Cmyatldiceob>,
public IQuickActivatelmpl<Cmyatldiceob>,
public IDataObjectimpl<Cmyatldiceob>,
public IProvideClassinfo2lmpl<&CLSID _myatldiceob,
&DIID__ImyatldiceobEvents, &LIBID_MYATLDICESVRLib>,
public IPropertyNotifySinkCP<Cmyatldiceob>,
public CComCoClass<Cmyatldiceob, &CLSID_myatldiceob>

}:

#endif //__MYATLDICEOB H_

That's a pretty long inheritance list. You've already seen the template implementations of 1Unknown and support
for class objects. They exist in CComOb jectRootEx and CComCoClass. You've also seen how ATL
implements IDispatch within the IDispatchlImpl template. However, for a basic control there are about 11
more interfaces required to make everything work. These interfaces can be categorized into several areas as shown
in the following table.

Category Interface
Interfaces for handling self-
description

IProvideClassInfo2

IPersistStreamlnit
IPersistStorage

IQuickActivate (and some of
I01eObject)

10leControl

Interfaces for handling persistence

Interfaces for handling activation

Interfaces from the original OLE
Control specification
Interfaces from the OLE Document 10leObject

specification
I0lelnPlaceActiveObject

Interfaces for rendering IViewobject - -
I0lelnPlaceObjectWindowless
IDataObject

Interfaces for helping the container -

manage property pages ISpecifyPropertyPages
IPropertyNotifySinkCP

Interfaces for handling connections IConnectionPointContainer

Table 2.

These are by and large boilerplate interfaces, ones that a COM class must implement to qualify as an ActiveX
control. Most of the implementations are standard and vary only slightly (if at all) from one control to the next. The
beauty of ATL is that it implements this standard behavior and gives you programmatic hooks where you can plug
in your custom code. That way, you don't have to burn your eyes out by looking directly at the COM code. You can

live a full and rich life without understanding exactly how these interfaces work. However, if you want to know
more about the internal workings of ActiveX Controls, be sure to check out these books: Inside OLE by Kraig
Brockschmidt (Microsoft Press, 1995), ActiveX Controls Inside Out by Adam Denning (Microsoft Press, 1997), and
Designing and Using ActiveX Controls by Tom Armstrong (IDG Books Worldwide, 1997).

ATL's Control Architecture

From the highest level, an ActiveX control has two aspects to it: its external state (what it renders on the screen) and
its internal state (its properties). Once an ActiveX control is hosted by some sort of container (such as a Microsoft
Visual Basic form or an MFC dialog box), it maintains a symbiotic relationship with that container. The client code
talks to the control through incoming COM interfaces such as IDispatch and OLE Document interfaces like
I0leObject and IDataObject.

The control also has the opportunity to talk back to the client. One method of implementing this two-way
communication is for the client to implement an IDispatch interface to represent the control's event set. The
container maintains a set of properties called ambient properties that the control can use to find out about its host.
For instance, a control can camouflage itself within the container because the container makes the information
stored in these properties available through a specifically named IDispatch interface. The container can
implement an interface named IPropertyNotifySink to find out when the properties within a control might
change. Finally, the container implements 10leClientSite and 10leControlSite as part of the control-
embedding protocol.

The interfaces listed allow the client and the object to exhibit the behaviors expected of an ActiveX control. We'll
tackle some of these interfaces as we go along. The best place to begin looking at ATL-based controls is the
CComControl class and its base classes.

CComControl

You can find the definition of CComControl in Microsoft's ATLCTL . H file under ATL's Include directory.
CComControl is a template class that takes a single class parameter:

template <class T>

class ATL_NO_VTABLE CComControl : public CComControlBase,
public CWindowlImpl<T>

{

¥

CComControl is a rather lightweight class that does little by itself; it derives functionality from
CComControlBase and CWindowImpl. CComControl expects the template parameter to be an ATL-based
COM object derived from CComOb jectRootEx. CComControl requires the template parameter for various
reasons, the primary reason being that from time to time the control class uses the template parameter to call back to
the control's InternalQuerylnterface().

CComControl implements several functions that make it easy for the control to call back to the client. For
example, CComControl implements a function named Fi reOnRequestEdit() to give controls the ability to
tell the client that a specified property is about to change. This function calls back to the client through the client-
implemented interface IPropertyNotifySink. FireOnRequestEdit() notifies all connected
IPropertyNotifySink interfaces that the property specified by a certain DISPID is about to change.
CComControl also implements the FireOnChanged() function. FireOnChanged() is very much like
FireOnRequestEdit() in that it calls back to the client through the IPropertyNotifySink interface. This
function tells the clients of the control (all clients connected to the control through 1PropertyNotifySink) that
a property specified by a certain DISPID has already changed.

In addition to mapping the IPropertyNotifySink interface to some more easily understood functions,
CComControl implements a function named ControlQueryInterface(), which simply forwards on to the
control's lUnknown interface. This is how you can get a control's [Unknown interface from inside the control.
Finally, CComControl implements a function named CreateControlWindow(). The default behavior for
this function is to call CWindowlImpl : :Create. Notice that CComControl also derives from CWindowlImpl. If
you want to, you can override this function to do something other than create a single window. For example, you
might want to create multiple windows for your control.

Most of the real functionality for CComControl exists within those two other classes, CComControlBase and
CWindowlImpl. Let's take a look at those classes now.

CComControlBase

CComControlBase is a much more substantial class than CComControl. To begin with, CComControlBase
maintains all the pointers used by the control to talk back to the client. CComControlBase uses ATL's CComPtr
smart pointer to include member variables that wrap the following interfaces implemented for calling back to the
client:

= A wrapper for I0lelnPlaceSite(m_splnPlaceSite).

= An advise holder for the client's data advise sink (n_spDataAdviseHolder).

= An OLE advise holder for the client's OLE advise sink (m_spOleAdviseHolder).
= A wrapper for IOleClientSite (m_spClientSite).

= A wrapper for lAdviseSink (m_spAdviseSink).

CComControlBase also uses ATL's CComDispatchDriver to wrap the client's dispatch interface for
exposing its ambient properties.

CComControlBase is also where you'll find the member variables that contain the control's sizing and
positioning information: m_sizeNatural, m_sizeExtent, and m_rcPos. The other important data member
within CComControlBase is the control's window handle. Most ActiveX controls are UI gadgets and as such
maintain a window. CWindowImpl and CWindow Imp IBase handle the windowing aspects of an ATL-based
ActiveX control.

CWindowlImpl and CWindowImplBase

CWindowlImpl derives from CWindowImplBase, which in turn derives from CWindow and CMessageMap.
As a template class, CWindowlImpl takes a single parameter upon instantiation. The template parameter is the
control being created. CWindowImpl needs the control type because CWindowImp1 calls back to the control
during window creation. Let's take a closer look at how ATL handles windowing.

ATL Windowing

Just as CComControl is relatively lightweight (most work happens in CComControlBase), CWindowlImpl is
also relatively lightweight. CWindowImpl more or less handles only window creation. In fact, that's the only
function explicitly defined by CWindowImpl. CWindowlImpl : :Create creates a new window based on the
window class information managed by a class named _ ATLWNDCLASSINFO. There's an ASCII character version
and a wide character version.

struct _ATL_WNDCLASSINFOA

{
WNDCLASSEXA m_wc;
LPCSTR m_IpszOrigName;
WNDPROC pWndProc;
LPCSTR m_IpszCursorliD;
BOOL m_bSystemCursor;
ATOM m_atom;
CHAR m_szAutoName[13];
ATOM Register (WNDPROC* p)

{
}

return AtlIModuleRegisterWndClassInfoA(& Module, this, p);
}:
struct _ATL_WNDCLASSINFOW
WNDCLASSEXW m_wc;

LPCWSTR m_1lIpszOrigName;
WNDPROC pWndProc;

LPCWSTR m_1lpszCursorliD;
BOOL m_bSystemCursor;
ATOM m_atom;

WCHAR m_szAutoName[13];
ATOM Register (WNDPROC* p)

{

}
};

return AtlModuleRegisterWndClassinfoW(& Module, this, p);

Then ATL uses typedefs to alias this structure to a single class named CWndClassInfo:

typedef _ATL_WNDCLASSINFOA CWndClasslInfoA;
typedef _ATL_WNDCLASSINFOW CWndClassInfoW;
#ifdef UNICODE

#define CWndClassInfo CWndClassInfoW
#else

#define CWndClassInfo CWndClassInfoA
#endif

CWindowlImpl uses a macro named DECLARE_WND_CLASS to add window class information to a
CWindowlImpl-derived class. DECLARE_WND_CLASS also adds a function named GetWndClassInfo().
Here's the DECLARE_WND_CLASS macro:

#define DECLARE_WND_CLASS(WndClassName) \
static CWndClassInfo& GetWndClassinfo() \

{\
static CWndClassInfo wc = \
{\
{ sizeof(WNDCLASSEX), CS HREDRAW | CS VREDRAW | CS DBLCLKS,\

StartWindowProc, \
0, 0, NULL, NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1), \
NULL, WndClassName, NULL }, \
NULL, NULL, IDC_ARROW, TRUE, O, _T(C"™) \

3\

return wc; \

}

This macro expands to provide a CWndClass Info structure for the control class. Because CWndClassInfo
manages the information for a single window class, each window created through a specific instance of
CWindowImpl will be based on the same window class.

CWindowlImpl derives from CWindowlmplIBaseT. CWindowImplIBaseT derives from
CWindowlImplRoot, which is specialized around the CWindow class and the CControlWinTrai ts classes
like this:

template <class TBase = CWindow, class TWinTraits = CControlWinTraits>
class ATL_NO_VTABLE CWindowlmplBaseT : public CWindowlmplRoot< TBase >

{
public:

}:

CWindowlImplRoot derives from CWindow (by default) and CMessageMap. CWindow Imp IBaseT manages
the window procedure of a CWindow ImpI-derived class. CWindow is a lightweight class that wraps window
handles in the same way (but not as extensively) as MFC's CWnd class. CMessageMap is a tiny class that defines a
single pure virtual function named ProcessWindowMessage (). ATL-based message-mapping machinery
assumes this function is available, so ATL-based classes that want to use message maps need to derive from
CMessageMap. Let's take a quick look at ATL message maps.

ATL Message Maps

The root of ATL's message mapping machinery lies within the CMessageMap class. ATL-based controls expose
message maps by virtue of indirectly deriving from CWindowlImplIBase. In MFC, by contrast, deriving from
CCmdTarget enables message mapping. However, just as in MFC, it's not enough to derive from a class that
supports message maps. The message maps actually have to be there, and those message maps are implemented via
macros.

To implement a message map in an ATL-based control, use message map macros. First ATL's BEGIN_MSG_MAP
macro goes into the control class's header file. BEGIN_MSG_MAP marks the beginning of the default message map.
CWindowlImpl : :WindowProc uses this default message map to process messages sent to the window. The
message map directs messages either to the appropriate handler function or to another message map. ATL defines
another macro named END_MSG_MAP to mark the end of a message map. Between BEGIN_MSG_MAP and
END_MSG_MAP lie some other macros for mapping window messages to member functions in the control. For
example, here's a typical message map you might find in an ATL-based control:

BEGIN_MSG_MAP(CAFullIControl)
CHAIN_MSG_MAP(CComControl<CAFullControl>)
DEFAULT_REFLECTION_HANDLERQ)
MESSAGE_HANDLER(WM_TIMER, OnTimer);
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButton);

END_MSG_MAPQ)

This message map delegates most of the message processing to the control through the CHAIN_MSG_MAP macro
and handles message reflection through the DEFAULT_REFLECT I0ON_HANDLER macro. The message map also
handles two window messages explicitly: WM_TIMER and WM_LBUTTONDOWN. These are standard window
messages that are mapped using the MESSAGE_HANDLER macro. The macros simply produce a table relating
window messages to member functions in the class. In addition to regular messages, message maps are capable of
handling other sorts of events. Here's a rundown of the kinds of macros that can go in a message map.

Macro Description

MESSAGE_HANDLER Maps a Windows message to a handler function.
MESSAGE_RANGE_HANDLER [Maps a contiguous range of Windows messages to a handler function.
Maps a WM_COMMAND message to a handler function, based on the
COMMAND_HANDLER identifier and the notification code of the menu item, control, or
accelerator.

Maps a WM_COMMAND message to a handler function, based on the
identifier of the menu item, control, or accelerator.

Maps a WM_COMMAND message to a handler function, based on the
notification code.

COMMAND RANGE HANDLER Maps. a contiguous range of.WM_COMMAND messages to a handler

- - function, based on the identifier of the menu item, control, or accelerator.

COMMAND_ ID_HANDLER

COMMAND_CODE_HANDLER

NOTIFY HANDLER Maps a WM_NOTI FY message to’a hagdler function, based on the
- notification code and the control identifier.
NOTIFY_ID_HANDLER %aps ;1 WM_NOTIFY message to a handler function, based on the control
identifier.

NOTIFY CODE HANDLER Maps a WM_NOTI FY message to a handler function, based on the
- — notification code.

NOTIEY RANGE HANDLER Maps a contiguous range Qf WM_NOTIFY messages to a handler function,
- - based on the control identifier.

Table 3.

Handling messages within ATL works much the same as in MFC. ATL includes a single window procedure through
which messages are routed. Technically, you can build your controls effectively without understanding everything
about ATL's control architecture. However, this knowledge is sometimes helpful as you develop a control, and it's
even more useful when debugging a control.

Developing the Control

Once the control is inserted into the server, you need to add some code to make the control do something. If you
were to compile and load ATL's default control into a container, the results wouldn't be particularly interesting.
You'd simply see a blank rectangle with the string "ATL 3.0: Myatldiceob." You'll want to add code to
render the control, to represent the internal state of the control, to respond to events, and to generate events to send
back to the container.

Deciding What to Draw

A good place to start working on a control is on its drawing code, you get instant gratification that way. This is a
control that is visually represented by a couple of dice. The easiest way to render to the dice control is to draw
bitmaps representing each of the six possible dice sides and then show the bitmaps on the screen. This implies that
the dice control will maintain some variables to represent its state. For example, the control needs to manage the
bitmaps for representing the dice as well as two numbers representing the first value shown by each die. Here is the
code from MYATLDICEOBJ . H that represents the state of the dice:

#define MAX_DIEFACES 6

HBITMAP m_dieBitmaps[MAX DIEFACES];
unsigned short m_nFirstDieValue;
unsigned short m_nSecondDieValue;

Before diving headfirst into the control's drawing code, you need to do a bit of preliminary work; the bitmaps need
to be loaded. Presumably each die rendered by the dice control will show any one of six dice faces, so the control
needs one bitmap for each face. Figure 56 shows what one of the dice bitmaps looks like.

Figure 56: A bitmap for the dice control.

If you draw the bitmaps one at a time, they'll have sequential identifiers in the resource.h file. Giving the bitmaps
sequential identifiers will make them easier to load. Otherwise, you might need to modify the resource.h file, which
contains the following identifiers:

#define IDB DICEl 207
#define IDB _DICE2 208
#define IDB_DICE3 209
#define IDB_DICE4 210
#define IDB_DICES 211
#define IDB _DICE6 212

Loading bitmaps is fairly straightforward. Cycle through the bitmap array, and load the bitmap resources. When
they're stored in an array like this, grabbing the bitmap out of the array and showing it is much easier than if you
didn't use an array. Here is the function that loads the bitmaps into the array:

BOOL Cmyatldiceob: :LoadBitmaps()
BOOL bSuccess = TRUE;

for(int i=0; i<MAX_DIEFACES; i++)
{
DeleteObject(m_dieBitmaps[i]);
m_dieBitmaps[i] = LoadBitmap(_Module.m_hlInst,
MAKE INTRESOURCE(IDB_DICE1+i));
if(Im_dieBitmaps[i])
{

> “MessageBox(NULL,
"Failed to load bitmaps",
NULL,
MB_OK) ;
bSuccess = FALSE;
3
3
return bSuccess;

}

The best place to call LoadBitmaps() is from within the control's constructor, as shown in the following code.
To simulate a random roll of the dice, set the control's state so that the first and second die values are random
numbers between 0 and 5 (these numbers will be used when the dice control is drawn):

class Cmyatldiceob : // big inheritance list

Cmyatldiceob()
{
LoadBitmaps();
srand((unsigned)time(NULL));
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;

}

Once the bitmaps are loaded, you'll want to render them. The dice control should include a function for showing
each die face based on the current internal state of the dice. Here's where you first encounter ATL's drawing
machinery.

One of the most convenient things about ATL-based controls (and MFC-based controls) is that all the drawing code
happens in one place: within the control's OnDraw() function. OnDraw() is a virtual function of
COleControlBase. Here's OnDraw()'s signature:

virtual HRESULT OnDraw(ATL_DRAWINFO& di);

OnDraw() takes a single parameter: a pointer to an ATL_DRAWINFO structure. Among other things, the
ATL_DRAWINFO structure contains a device context on which to render your control. Here's the ATL_DRAWINFO
structure:

struct ATL_DRAWINFO {
UINT cbSize;
DWORD dwDrawAspect;
LONG lindex;
DVTARGETDEVICE* ptd;
HDC hicTargetDev;
HDC hdcDraw;
LPCRECTL prcBounds; //Rectangle in which to draw
LPCRECTL prcWBounds; //WindowOrg and Ext if metafile
BOOL bOptimize;
BOOL bZoomed;
BOOL bRectlInHimetric;
SIZEL ZoomNum; //ZoomX = ZoomNum.cx/ZoomNum.cy
SIZEL ZoomDen;

};

As you can see, there's a lot more information here than a simple device context. While you can count on the
framework filling it out correctly for you, it's good to know where the information in the structure comes from and
how it fits into the picture.

ActiveX Controls are interesting because they are drawn in two contexts. The first and most obvious context is
when the control is active and it draws within the actual drawing space of the client. The other, less-obvious context
in which controls are drawn is during design time (as when an ActiveX control resides in a Visual Basic form in
design mode). In the first context, ActiveX Controls render themselves to a live screen device context. In the second
context, ActiveX Controls render themselves to a metafile device context.

Many (though not all) ATL-based controls are composed of at least one window. So ActiveX Controls need to
render themselves during the WM_PAINT message. Once the control receives the WM_PAINT message, the message
routing architecture passes control to CComControlBase: :OnPaint. Remember, CComControlBase is one
of the control's base classes. CComControlBase: :OnPaint performs several steps. The function begins by
creating a painting device context (using BeginPaint()). Then OnPaint() creates an ATL_DRAWINFO
structure on the stack and initializes the fields within the structure. OnPaint() sets up ATL_DRAWINFO to show
the entire content (the dwDrawAspect field is set to DVASPECT_CONTENT). OnPaint() also sets the I index
field to _1, sets the drawing device context to the newly created painting device context, and sets up the bounding
rectangle to be the client area of the control's window. Then OnPaint() goes on to call OnDrawAdvanced().
The default OnDrawAdvanced () function prepares a normalized device context for drawing. You can override
this method if you want to use the device context passed by the container without normalizing it. ATL then calls
your control class's OnDraw() method.

The second context in which the OnDraw() function is called is when the control draws on to a metafile. The
control draws itself on to a metafile whenever someone calls 1ViewObjectEx: :Draw. IViewObjectEx is
one of the interfaces implemented by the ActiveX control. ATL implements the 1ViewOb jectEX interface
through the template class 1ViewObjectExImpl. IViewObjectExImpl : :Draw is called whenever the
control needs to take a snapshot of its presentation space for the container to store. In this case, the container creates
a metafile device context and hands it to the control. IViewObjectExImpl puts an ATL_DRAWINFO structure
on the stack and initializes. The bounding rectangle, the index, the drawing aspect, and the device contexts are all
passed in as parameters by the client. The rest of the drawing is the same in this case, the control calls
OnDrawAdvanced(), which in turn calls your version of OnDraw().

Once you're armed with this knowledge, writing functions to render the bitmaps becomes fairly straightforward. To
show the first die face, create a memory-based device context, select the object into the device context, and BitBlt
the memory device context into the real device context. Here's the code:

void Cmyatldiceob: :ShowFirstDieFace(ATL _DRAWINFO& di)

BITMAP bmiInfo;
GetObject(m dieBitmaps[m nFirstDieValue-1], sizeof(bminfo),

&bminfo);
SI1ZE size;
size.cx = bmInfo.bmWidth;
size.cy = bmInfo.bmHeight;

HDC hMemDC;
hMemDC = CreateCompatibleDC(di.hdcDraw);

HBITMAP hOldBitmap;
HBITMAP hbm = m_dieBitmaps[m_nFirstDieValue-1];
hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

it (hOldBitmap == NULL)
return; // destructors will clean up

BitBlt(di.hdcDraw,
di .prcBounds->left+1,
di .prcBounds->top+1,
size.cx,
size.cy,
hMemDC, O,
0,
SRCCOPY) ;

SelectObject(di.hdcDraw, hOldBitmap);
DeleteDC(hMemDC);

Showing the second die face is more or less the same process; just make sure that the dice are represented
separately. For example, you probably want to change the call to BItBIt () so that the two dice bitmaps are shown
side by side.

void Cmyatldiceob: :ShowSecondDieFace(ATL_DRAWINFO& di)

// This code is exactly the same as ShowFirstDieFace
// except the second die is positioned next to the first die.
BitBlt(di.hdcDraw,
di.prcBounds->left+size.cx + 2,
di .prcBounds->top+1,
size.cx,
size.cy,
hMemDC, O,
0, SRCCOPY);
// The rest is the same as in ShowFirstDieFace

}

The last step is to call these two functions whenever the control is asked to render itself, during the control's
OnDraw() function. ShowFirstDieFace() and ShowSecondDieFace () will show the correct bitmap
based on the state of m_nFirstDieValue and m_nSecondDieValue:

HRESULT OnDraw(ATL_DRAWINFO& di)

{
RECT& rc = *(RECT*)di.prcBounds;
ShowFirstDieFace(di);
ShowSecondDieFace(di);
return S_OK;

}

At this point, if you compile and load this control into some ActiveX Control container (like a Visual Basic form or
an MFC-based dialog), you'll see two die faces staring back at you. Now it's time to add some code to enliven the
control and roll the dice.

Responding to Window Messages

Just looking at two dice faces isn't that much fun. You want to make the dice work. A good way to get the dice to
appear to jiggle is to use a timer to generate events and then respond to the timer by showing a new pair of dice
faces. Setting up a Windows timer in the control means adding a function to handle the timer message and adding a
macro to the control's message map. Start by using ClassView to add a handler for WM_T IMER. Right-click on the
Cmyatldiceob symbol in ClassView, and select Add Windows Message Handler from the context menu. This
adds a prototype for the OnTimer () function and an entry into the message map to handle the WM_TIMER
message. Add some code to the OnTimer () function to handle the WM_T IMER message. The OnTimer ()
function should look like the code shown below.

LRESULT Cmyatldiceob: :OnTimer (UINT msg, WPARAM wParam, LPARAM IParam,
BOOL& bHandled)
{

if(m_nTimesRolled > 15)

{

m_nTimesRolled = O;
KillTimer(1);

} else {
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
FireViewChange();
m_nTimesRol led++;

bHandled = TRUE;
return O;

}

This function responds to the timer message by generating two random numbers, setting up the control's state to
reflect these two new numbers, and then asking the control to refresh itself by calling Fi reViewChange().
Notice the function kills the timer as soon as the dice have rolled a certain number of times. Also notice that the
message handler tells the framework that it successfully handled the function by setting the bHand I ed variable to
TRUE.

Notice there's an entry for WM_TIMER in the control's message map. Because WM_T IMER is just a plain vanilla
window message, it's represented with a standard MESSAGE_HANDLER macro as follows:

BEGIN_MSG_MAP(Cmyatldiceob)
CHAIN_MSG_MAP(CComControl<Cmyatldiceob>)
DEFAULT_REFLECTION_HANDLERQ)
MESSAGE_HANDLER(WM_TIMER, OnTimer);

END_MSG_MAPQ)

As you can tell from this message map, the dice control already handles the gamut of Windows messages through
the CHAIN_MSG_MAP macro. However, now the pair of dice has the ability to simulate rolling by responding to the
timer message. Setting a timer causes the control to repaint itself with a new pair of dice numbers every quarter of a
second or so. Of course, there needs to be some way to start the dice rolling. Because this is an ActiveX control, it's
reasonable to allow client code to start rolling the dice via a call to a function in one of its incoming interfaces. Use
ClassView to add a Rol IDice() function to the main interface. Do this by right-clicking on the
IMyatldiceob] interface appearing in ClassView on the left side of the screen and selecting Add Method from
the pop up menu. Then add a Rol IDice() function. Microsoft Visual C++ adds a function named RolIDice()
to your control. Implement Rol IDice() by setting the timer for a reasonably short interval and then returning
S_OK. Add the following code:

STDMETHODIMP Cmyatldiceob::RollDice()

SetTimer(l, 250);
return S_OK;
by

If you load the dice into an ActiveX control container, you'll now be able to browse and call the control's methods
and roll the dice.

In addition to using the incoming interface to roll the dice, the user might reasonably expect to roll the dice by
double-clicking the control. To enable this behavior, just add a message handler to trap the mouse-button-down
message by adding a function to handle a left-mouse double click.

LRESULT Cmyatldiceob: :OnLButtonDbICIick(UINT uMsg,
WPARAM wParam,
LPARAM IParam,
BOOL& bHandled)

{
RollDice();
bHandled = TRUE;
return O;

3

Then be sure you add an entry to the message map to handle the WM_LBUTTONDOWN message:

BEGIN_MSG_MAP(Cmyatldiceob)

/7 ...

// Other message handlers

// ...

MESSAGE_HANDLER(WM_LBUTTONDBLCLK, OnLButtonDblIClick)
END_MSG_MAPQ)

When you load the dice control into a container and double-click on it, you should see the dice roll. Now that you've
added rendering code and given the control the ability to roll, it's time to add some properties.

Adding Properties and Property Pages

You've just seen that ActiveX controls have an external presentation state. The presentation state is the state
reflected when the control draws itself. In addition, most ActiveX controls also have an internal state. The control's
internal state is a set of variables exposed to the outside world via interface functions. These internal variables are
also known as properties.

For example, imagine a simple grid implemented as an ActiveX control. The grid has an external presentation state
and a set of internal variables for describing the state of the grid. The properties of a grid control would probably
include the number of rows in the grid, the number of columns in the grid, the color of the lines composing the grid,
the type of font used, and so forth.

As you saw in Module 28, adding properties to an ATL-based class means adding member variables to the class and
then using ClassWizard to create get and put functions to access these properties. For example, two member
variables that you might add to the dice control include the dice color and the number of times the dice are supposed
to roll before stopping. Those two properties could easily be represented as a pair of short integers as shown here:

class ATL_NO_VTABLE Cmyatldiceob

short m_nDiceColor;
short m_nTimesToRoll;

};

To make these properties accessible to the client, you need to add gett and put functions to the control. Right-
clicking on the interface symbol in ClassView brings up a context menu, giving you a choice to Add Property,
which will present you with the option of adding these functions. Adding DiceColor() and TimesToRol1 ()
properties to the control using ClassView will add four new functions to the control: get_DiceColor (),
put_DiceColor(), get _TimesToRoll(), and put_TimesToRoll(). The get DiceColor()
function should retrieve the state of m_nDiceColor:

STDMETHODIMP Cmyatldiceob::get_DiceColor(short * pval)

*pVal = m_nDiceColor;
return S_OK;
}

To make the control interesting, put_DiceColor () should change the colors of the dice bitmaps and redraw the
control immediately. This example uses red and blue dice as well as the original black and white dice. To make the
control show the new color bitmaps immediately after the client sets the dice color, the put_DiceColor()
function should load the new bitmaps according to new color, and redraw the control:

STDMETHODIMP Cmyatldiceob: :put_DiceColor(short newVval)

{
if(newal < 3 && newval >= 0)
m_nDiceColor = newval;
LoadBitmaps();
FireViewChange();
return S_OK;
by

Of course, this means that LoadBitmaps() needs to load the bitmaps based on the state of m_nDiceColor, so
we need to add the following code to our existing LoadBitmaps() function:

http://www.tenouk.com/visualcplusmfc/visualcplusmfc28.html

BOOL Cmyatldiceob: :LoadBitmaps()
L

int i;

BOOL bSuccess = TRUE;

int nlD = IDB_DICE1;

switch(m_nDiceColor)

{
case 0O:
niD = IDB DICE1;
break;
case 1:
niD = IDB_BLUEDICEL;
break;
case 2:
niD = IDB_REDDICE1;
break;
}
for(i=0; 1<MAX_DIEFACES; i++)
{

DeleteObject(m _dieBitmaps[i]);

m_dieBitmaps[i] = LoadBitmap(Module.m_hlinst,
MAKE INTRESOURCE(nID+i));

if(Im_dieBitmaps[i])

{
: -MessageBox(NULL,
"Failed to load bitmaps",
NULL, MB_OK);
bSuccess = FALSE;

}

}

return bSuccess;

}

Just as the dice color property reflects the color of the dice, the number of times the dice rolls should be reflected by
the state of the TimesToRol I property. The get_TimesToRol 1 () function needs to read the
m_nTimesToRol I member, and the put_TimesToRol I () function needs to modify m_nTimesToRol 1.

Add code shown below.
STDMETHODIMP Cmyatldiceob::get _TimesToRoll(short * pval)

*pVal = m_nTimesToRoll;

return S_OK;
}
STDMETHODIMP Cmyatldiceob: :put_TimesToRol I (short newVval)
{
m_nTimesToRoll = newval;
return S_OK;
}

Finally, instead of hard-coding the number of times the dice rolls, use the m_nTimesToRol I variable to determine
when to kill the timer.

LRESULT Cmyatldiceob: :OnTimer (UINT msg, WPARAM wParam, LPARAM IParam,
BOOL& bHandled)
{

if(n_nTimesRolled > m_nTimesToRoll)

m_nTimesRolled = O;
KillTimer(1);
Fire DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
if(m_nFirstDievValue == m_nSecondDieValue)
Fire Doubles(m_nFirstDieValue);
if(m_nFirstDieValue == 1 && m_nSecondDieValue == 1)
Fire_SnakeEyes();
} else {
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
FireViewChange();
m_nTimesRol led++;
}

bHandled = TRUE;
return O;

}

Now these two properties are exposed to the outside world. When the client code changes the color of the dice, the
control loads a new set of bitmaps and redraws the control with the new dice faces. When the client code changes
the number of times to roll, the dice control uses that information to determine the number of times the dice control
should respond to the WM_T IMER message. So the next question is, "How are these properties accessed by the client
code?" One way is through a control's property pages.

Property Pages

Since ActiveX controls are usually UI gadgets meant to be mixed into much larger applications, they often find their
homes within places such as Visual Basic forms and MFC form views and dialogs. When a control is instantiated,
the client code can usually reach into the control and manipulate its properties by calling certain functions on the
control's incoming interface functions. However, when an ActiveX control is in design mode, accessing the
properties through the interface functions isn't always practical. It would be unkind to tool developers to force them
to go through the interface functions all the time just to tweak some properties in the control. Why should the tool
vendor who is creating the client have to provide Ul for managing control properties? That's what property pages are
for. Property pages are sets of dialogs implemented by the control for manipulating properties. That way, the tool
vendors don't have to keep re-creating dialog boxes for tweaking the properties of an ActiveX control.

How Property Pages Are Used. Property pages are usually used in one of two ways. The first way is through the
control's I0leObject interface. The client can call 101eObject's DoVerb() function, passing in the
properties verb identifier (named OLE IVERB_PROPERT I ES and defined as the number -7) to ask the control to
show its property pages. The control then displays a dialog, or property frame, that contains all the control's property
pages. For example, Figure 57 shows the Property Pages dialog containing the property pages for the Microsoft
FlexGrid 6.0 control.

Property Pages | x| |

General | Stle | Font | Color | Picture |

Bows IE Fired Rows I'I
Cols IE Fixed Colz I'l

AllowBigSelection [+ MiouzePaoinber IEI - Default "I
ScilBars [3-Both 7| Filstyle [0-Single 7]
HighLight [1 - alweps =] Selectiondode [0-Free =]
FocuzRect m Allowl zerResizing Im

] 4 I Cancel Sppl Help

Figure 57: The Microsoft FlexGrid 6.0 control executing the properties verb.

Property pages are a testament to the power of COM. As it turns out, each single property page is a separate
COM object (named using a GUID and registered like all the other COM classes on your system). When a client
asks an ActiveX control to show its property pages via the properties verb, the control passes its own list of property
page GUIDs into a system API function named OleCreatePropertyFrame().
OleCreatePropertyFrame() enumerates the property page GUIDs, calling CoCreatelnstance() for
each property page. The property frame gets a copy of an interface so that the frame can change the properties
within the control. OleCreatePropertyFrame() calls back to the control when the user clicks the OK or
Apply button.

The second way clients use property pages is when the client asks the control for a list of property page GUIDs.
Then the client calls CoCreate lnstance() on each property page and installs each property page in its own
frame. Figure 58 shows an example of how Visual C++ uses the Microsoft FlexGrid property pages in its own
property dialog frame.

This second method is by far the most common way for a control's property pages to be used. Notice that the
property sheet in Figure 58 contains a General tab in addition to the control's property pages, and that the General
tab shown in Figure 55 has been renamed to the Control tab. The General property page in Figure 58 belongs to
Visual C++. The Control, Style, Font, Color, and Picture property pages belong to the control (even though
they're being shown within the context of Visual C++).

Microsoft FlexGrid Control, version 6.0 Properties

A '? General gl:l:untn:ul | Style | Font | Colar | Picture | Al |

Bows |2 Fired B ows |17
Colz |2 Fizxed Caolz |1

AlowBigSelection [MousePointer |0-Defaul |
ScrolBars [3-Bath v Eilstie [0-Single]
HighLight Im Selectiontode |0 - Free -
FocuszFect m Allowl zerResizing m

Figure 58: Microsoft Visual C++ inserting the Microsoft FlexGrid 6.0 property pages into its own dialog box for
editing resource properties.

For a property page to work correctly, the control that the property page is associated with needs to implement
ISpecifyPropertyPages and the property page object needs to implement an interface named
IPropertyPage. With this in mind, let's examine exactly how ATL implements property pages.

Adding a Property Page to Your Control. You can use the Visual Studio ATL Object Wizard to create property
pages in your ATL project. To create a property page, perform the following steps:

Select New ATL Obiject from the Visual C++ Insert menu.

From the ATL Object Wizard dialog, select Controls from the Category list.

Select Property Page from the Objects list.

Click Next.

Fill in the required information on the ATL Object Wizard Properties dialog, and click OK.

DA

ATL's Object Wizard generates a dialog template and includes it as part of a control's resources. In the dice control
example, the two properties you're concerned with are the color of the dice and the number of times to roll the
dice. The dialog template created by ATL's Object Wizard is blank, so you'll want to add a couple of controls to
represent these properties. In this example, the user will be able to select the dice color from a combo box and enter
the number of times the dice should roll in an edit control, as shown in Figure 59.

Color; -

Timez Tao
Rall:

Figure 59. The property page dialog template.

The ATL Object Wizard also creates a C++ class for you that implement the interface necessary for the class to
behave as a property page. In addition to generating this C++ class, the ATL Object Wizard makes the class part of
the project. The ATL Object Wizard adds the new property page class to the IDL file within the coclass section. In
addition, the ATL Object Wizard appends the property page to the object map so that DI 1GetClassObject()
can find the property page class. Finally, the ATL Object Wizard adds a new Registry script so that the DLL makes
the correct Registry entries when the control is registered. Here is the header file created by the ATL Object Wizard
for a property page named DiceMainPropPage:

#include "resource.h”™ // main symbols

class ATL _NO_VTABLE CDiceMainPropPage :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CDiceMainPropPage, &CLSID DiceMainPropPage>,
public IPropertyPagelmpl<CDiceMainPropPage>,
public CDialoglmpl<CDiceMainPropPage>

{

public:
CDiceMainPropPage()
{

m _dwTitlelD = IDS_TITLEDiceMainPropPage;
m_dwHelpFilelD = IDS_HELPFILEDiceMainPropPage;
m_dwDocStringID = IDS_DOCSTRINGDiceMainPropPage;

enum {IDD = IDD_DICEMAINPROPPAGE};
DECLARE_REGISTRY_RESOURCEID(IDR_DICEMAINPROPPAGE)
DECLARE_PROTECT_FINAL_CONSTRUCTQ)
BEGIN_COM_MAP(CDiceMainPropPage)

COM_INTERFACE_ENTRY (IPropertyPage)
END_COM_MAPQ)
BEGIN_MSG_MAP(CDiceMainPropPage)

CHAIN_MSG_MAP(IPropertyPagelmpl<CDiceMainPropPage>)
END_MSG_MAPQ)

STDMETHOD (Apply) (void)

{
ATLTRACE(_T(''CDiceMainPropPage: :Apply\n'));
for (UINT 1 = 0; i1 < m_nObjects; i++)
{
// Do something interesting here
// ICircCtl™* pCirc;
// m_ppUnk[i]->Querylnterface(11D_ICircCtl, (void**)&pCirc);
// pCirc->put_Caption(CComBSTR("'something special'));
// pCirc->Release();
}
m_bDirty = FALSE;
return S_OK;
}
}:

Examining this property page listing reveals that ATL's property page classes are composed of several ATL
templates: CComOb jectRooOtEX (to implement 1Unknown), CComCoClass (the class object for the property
page), 1PropertyPagelmpl (for implementing IPropertyPage), and CDialogImpl for implementing the
dialog-specific behavior.

As with most other COM classes created by ATL's Object Wizard, most of the code involved in getting a property
page to work is boilerplate code. Notice that besides the constructor and some various maps, the only other function
is one named Apply.

Before getting into the mechanics of implementing a property page, it's helpful to take a moment to understand how
the property page architecture works. The code you need to type in to get the property pages working will then make
more sense.

When the client decides it's time to show some property pages, a modal dialog frame needs to be constructed. The
frame is constructed by either the client or by the control itself. If the property pages are being shown via the
DoVerb() function, the control constructs the frame. If the property pages are being shown within the context of
another application, as when Visual C++ shows the control's property pages within the IDE, the client constructs the
dialog frame. The key to the dialog frame is that it holds property page sites (small objects that implement
IPropertyPageSite) for each property page.

The client code (the modal dialog frame, in this case) then enumerates through a list of GU I Ds, calling
CoCreatelnstance() on each one of them and asking for the IPropertyPage interface. If the COM object
produced by CoCreatelnstance() is a property page, it implements the I PropertyPage interface. The
dialog frame uses the 1PropertyPage interface to talk to the property page. Here's the declaration of the
IPropertyPage interface:

interface IPropertyPage : public lUnknown
{
HRESULT SetPageSite(lPropertyPageSite *pPageSite) = 0;
HRESULT Activate(HWND hWndParent,
LPCRECT pRect,
BOOL bModal) = 0;
HRESULT Deactivate(void) = 0;

HRESULT GetPageInfo(PROPPAGEINFO *pPagelnfo) = O;
HRESULT SetObjects(ULONG cObjects,
IUnknown **ppUnk) = 0O;
HRESULT Show(UINT nCmdShow) 0;
HRESULT Move(LPCRECT pRect) = O;
HRESULT IsPageDirty(void) = O;
HRESULT Apply(void) = 0;
HRESULT Help(LPCOLESTR pszHelpDir) = O;
HRESULT TranslateAccelerator(MSG *pMsg) = O;

};

Once a property page has been created, the property page and the client code need some channels to communicate
back and forth with the control. After the property dialog frame successfully calls Querylnterface() for
IPropertyPage on the property page objects, the frame calls IPropertyPage: : SetPageSite on each
IPropertyPage interface pointer it holds, passing in an IPropertyPageSi te interface pointer. The property
page sites within the property frame provide a way for each property page to call back to the frame. The property
page site provides information to the property page and receives notifications from the page when changes occur.
Here's the IPropertyPageSi te interface:

interface IPropertyPageSite : public IUnknown

{
public:
virtual HRESULT OnStatusChange(DWORD dwFlags) = O;
virtual HRESULT GetLocalelD(LCID *pLocalelD) = 0;
virtual HRESULT GetPageContainer(lUnknown *ppUnk) = O;
virtual HRESULT TranslateAccelerator(MSG *pMsg) = O;
}:

In addition to the frame and control connecting to each other through IPropertyPage and
IPropertyPageSite, each property page needs a way to talk back to the control. This is usually done when the
dialog frame calls IPropertyPage: : SetObjects, passing in the control's lUnknown. Figure 60 illustrates
the property page architecture.

Now that you see how ActiveX Control property pages work in general, understanding how they work within ATL
will be a lot easier. You'll see how ATL's property pages work, in cases when the client code exercises the control's
properties verb as well as in cases when environments like Visual C++ integrate a control's property pages into the
IDE.

Cliant Property Frame
Coda (A Modal Dialog Box)
Page Site Page Site
T |
If - WPropertyPageSite [! ProperlyPagesie
1 i
| a
H ILirsricein ll ILivsencmen
| -
|

! i i

Ha-pmyF'ag-'e Property Page HGPE”J-’PEE-‘E Properiy Page
'\-u.._____‘ i H_,_,.,--""#

| irknown

Dice Conlrol

Figure 60: How the property pages, the property frame, and the property page sites communicate.

ATL and the Properties Verb. The first way in which an ActiveX control shows its property pages is when the
client invokes the properties verb by calling 10leObject: :DoVerb using the constant
OLEIVERB_PROPERTIES. When the client calls DoVerb() in an ATL-based control, the call ends up in the
function CComControlBase: :DoVerbProperties, which simply calls OleCreatePropertyFrame(),
passing in its own 1Unknown pointer and the list of property page GUIDs. OleCreatePropertyFrame()
takes the list of GUIDs, calling CoCreate Instance() on each one to create the property pages, and arranges
them within the dialog frame. OleCreatePropertyFrame() uses each property page's IPropertyPage
interface to manage the property page, as described in "How Property Pages Are Used"

ATL Property Maps. Of course, understanding how OleCreatePropertyFrame () works from within the
ATL-based control begs the next question: where does the list of property pages actually come from? ATL uses
macros to generate lists of property pages called property maps. Whenever you add a new property page to an ATL-
based control, you need to set up the list of property pages through these macros. ATL includes several macros for
implementing property maps: BEGIN_PROPERTY_MAP, PROP_ENTRY, PROP_ENTRY_EX, PROP_PAGE, and
END_PROPERTY_MAP. Here are those macros in the raw:

struct ATL_PROPMAP_ENTRY
{
LPCOLESTR szDesc;
DISPID dispid;
const CLSID* pclsidPropPage;
const 11D* piidDispatch;
DWORD dwOffsetData;
DWORD dwSizeData;
VARTYPE vt;

};

#define BEGIN_PROPERTY MAP(theClass) \
typedef _ATL_PROP_NOTIFY_EVENT_CLASS __ ATL_PROP_NOTIFY_EVENT CLASS;

typedef theClass PropMapClass; \
static ATL_PROPMAP_ENTRY* GetPropertyMap(\

A\
{

#define PROP_PAGE(clsid) \
{NULL, NULL, &clsid, &II1D_NULLY},

static ATL_PROPMAP_ENTRY pPropMap[] = \

#define PROP_ENTRY(szDesc, dispid, clsid) \
{OLESTR(szDesc), dispid, &clsid, &IID_IDispatch},

#define PROP_ENTRY_EX(szDesc, dispid, clsid, iidDispatch) \
{OLESTR(szDesc), dispid, &clsid, &iidDispatch},

#define END_PROPERTY_MAP() \
{NULL, O, NULL, &IID_NULL} \
3\
return pPropMap; \
}

When you decide to add property pages to a COM class using ATL's property page macros, according to the ATL
documentation you should put these macros into your class's header file. For example, if you want to add property
pages to the dice control, you'd add the following code to the C++ class:

class ATL_NO_VTABLE Cmyatldiceob :

BEGIN_PROP_MAP(Cmyatldiceob)
PROP_ENTRY(*'Caption goes here..", 2,
CLSID_MainPropPage)
PROP_ENTRY_EX(''Caption goes here..", 3,
CLSID_SecondPropPage,
DI1D_SecondDual Interface)
PROP_PAGE(CLSID_StockColorPage)
END_PROPERTY_MAPQ)

};

ATL's property map macros set up the list of GU I Ds representing property pages. ATL's property maps are
composed of an array of ATL_PROPMAP_ENTRY structures. The BEGIN_PROPERTY_MAP macro declares a static
variable of this structure. The PROP_PAGE macro inserts a GUID into the list of property pages. PROP_ENTRY
inserts a property page GUID into the list as well as associating a specific control property with the property page.
The final macro, PROP_ENTRY_EX, lets you associate a certain dual interface to a property page. When client code
invokes the control's properties verb, the control just rips through this list of GU I Ds and hands the list over to the
OleCreatePropertyFrame() so that the property can create the property pages.

Property Pages and Development Tools Executing the properties verb isn't the only way for an ActiveX control to
show its property pages. As we mentioned before, folks who write tools such as Visual Basic and Visual C++ might
want programmatic access to a control's property pages. For example, when using MFC to work on a dialog box
containing an ActiveX control, right-clicking on the control to view the properties gives you a dialog frame
produced by Visual C++ (as opposed to the dialog frame produced by OleCreatePropertyFrame()).

Visual C++ uses the control's 1 SpecifyPropertyPages interface to get the list of GUIDs (the list generated by
the property page macros). Here's the 1Speci fyPropertyPages interface definition:

interface ISpecifyPropertyPages : public IUnknown

HRESULT GetPages(CAUUID *pPages);
¥

typedef struct tagCAUUID

ULONG cElems;
GUID FAR* pElems;
} CAUUID;

ATL implements the 1SpecifyPropertyPages: :GetPages function by cycling through the list of GUIDS
(produced by the property map macros) and returning them within the CAUU I D structure. Environments like Visual
C++use each GUID in a call to CoCreateInstance() to create a new property page. The property page site
and the property page exchange interfaces. The property page site holds on to the property page's
IPropertyPage interface, and the property page holds on to the property site's IPropertyPageSite
interface. After the dialog frame constructs the property pages, it needs to reflect the current state of the ActiveX
control through the dialog controls. For that you need to override the property page's Show() method.

Showing the Property Page. The property page's Show() method is called whenever the property page is about to
be shown. A good thing for a property page to do at this time is fetch the values from the ActiveX control and
populate the property page's controls. Remember that the property page holds on to an array of unknown pointers
(they're held in the 1PropertyPagelmpl's m_ppUnk array.) To access the ActiveX control's properties, you
need to call Querylnterface() on the unknown pointers and ask for the interface that exposes the properties. In
this case, the interface is IMyatldiceobj. Once the property page has the interface, it can use the interface to
fetch the properties and plug the values into the dialog box controls. Here's the overridden Show() method:

#include "atldicesrvr_h"
class ATL _NO_VTABLE CDiceMainPropPage :

public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CDiceMainPropPage, &CLSID DiceMainPropPage>,

public IPropertyPagelmpl<CDiceMainPropPage>,
public CDialoglmpl<CDiceMainPropPage>

STDMETHOD(Show) (UINT nCmdShow)

{
HRESULT hr;

USES_CONVERSION;

if(nCmdShow == SW_SHOW ||
nCmdShow == SW_SHOWNORMAL) {
for (UINT 1 = 0; i1 < m_nObjects; i++)

CComQIPtr< IATLDieceObj, &I1ID_IATLDieceObj >
pMyatldiceob(m_ppUnk[i]);
short nColor = 0;

if FAILED(pMyatldiceob->get DiceColor(&nColor))

CComPtr<IErrorinfo> pError;

CComBSTR StrError;

GetErroriInfo(0, &pError);

pError->GetDescription(&strError);

MessageBox(OLE2T(strError), T('Error'™),
MB_ICONEXCLAMATION);

return E_FAIL;

by
HWND hwndComboBox = GetDIgltem(1DC_COLOR);
: :SendMessage (hWndComboBox ,

CB_SETCURSEL,

nColor, 0);

short nTimesToRoll = O;
it FAILED(

pMyatldiceob->get TimesToRoll(&nTimesToRoll))
{

CComPtr<IErrorinfo> pError;

CComBSTR strError;

GetErrorinfo(0, &pError);

pError->GetDescription(&strError);

MessageBox(OLE2T(strError),
_T('Error'™), MB_ICONEXCLAMATION);

return E_FAIL;

}
SetDIgltemInt(IDC_TIMESTOROLL, nTimesToRoll, FALSE);
}
¥
m_bDirty = FALSE;
hr = IPropertyPagelmpl<CDiceMainPropPage>: :Show(nCmdShow) ;
return hr;

}
};

In addition to adding code to prepare to show the dialog box, you need to add code allowing users to set the control's
properties. Whenever the user changes a property, the property dialog activates the Apply button, indicating that the
user can apply the newly set properties. When the user presses the Apply button, control jumps to the property
page's Apply function so you need to insert some code in here to make the Apply button work.

Handling the Apply Button. After the user finishes manipulating the properties, he or she clicks either the Apply
button or the OK button to save the changes. In response, the client code asks the property page to apply the new
properties to the control. Remember that the ActiveX control and the property page are separate COM objects, so
they need to communicate via interfaces. Here's how the process works.

When you create a property page using the ATL Object Wizard, ATL overrides the Apply () function from
IPropertyPage for you. The property page site uses this function for notifying the property page of changes that
need to be made to the control. When the property page's Apply () function is called, it's time to synch up the state
of the property page with the state of the control. Remember, the control's IlUnknown interface was passed into the
property page early in the game via a call to IPropertyPage: :SetObjects. The interface pointers are stored
in the property page's m_ppUnk array. Most property pages respond to the Apply () function by setting the state
of the ActiveX control properties through the interface provided. In the case of our example ATL-based property
page, this means examining the value in the combo box and the edit box and setting the new values inside the
control itself, like this:

#include "atldicesrvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CDiceMainPropPage, &CLSID DiceMainPropPage>,
public IPropertyPagelmpl<CDiceMainPropPage>,
public CDialoglmpl<CDiceMainPropPage>

STDMETHOD(Apply) (void)
{
USES_CONVERSION;
ATLTRACE(_T(''CDiceMainPropPage: :Apply\n'));
for (UINT 1 = 0; i1 < m_nObjects; i++)
{
CComQIPtr<IATLDieceObj,
&11D_IATLDieceObj> pMyatldiceob(m_ppUnk[i]);
HWND hwndComboBox = GetDIgltem(1DC_COLOR);
short nColor = (short)::SendMessage(hWwndComboBox,
CB_GETCURSEL,
0, 0);
if(nColor >= 0 && nColor <= 2)
{
ifT FAILED(pMyatldiceob->put_DiceColor(nColor))
{
CComPtr<IErrorinfo> pError;
CComBSTR strError;
GetErrorinfo(0, &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError),
_T(C'Error™),
MB_ICONEXCLAMATION) ;
return E_FAIL;

}

short nTimesToRoll = (short)GetDIgltemInt(IDC_TIMESTOROLL);
if FAILED(pMyatldiceob->put_TimesToRoll(nTimesToRoll))

CComPtr<IErrorinfo> pError;
CComBSTR StrError;
GetErroriInfo(0, &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError),
_T(Error'™),
MB_1CONEXCLAMATION) ;

return E_FAIL;
e
}
m_bDirty = FALSE;

return S_OK;
}

Property Persistence

Once you have added properties to the control, it's logical that you might want to have those properties persist with
their container. For example, imagine Hasbro buys your dice control to include in its new Windows version of
Monopoly. The game vendor uses your dice control within one of the Monopoly dialog boxes and configures the
control so that the dice are blue and they roll 23 times before stopping. If the dice control had a sound property, the
Monopoly authors could configure the dice to emit a beep every time they roll. When someone plays the game and
rolls the dice, that person will see a pair of blue dice that roll 23 times before stopping and they will hear the dice
make a sound while they roll. Remember that these properties are all properties of the control. If you're using the
control in an application, chances are good you'll want these properties to be saved with the application.
Fortunately, adding persistence support to your control is almost free when you use the ATL property macros.
You've already seen how to add the property pages to the control DLL using the property map macros. As it turns
out, these macros also make the properties persistent.

You can find ATL's code for handling the persistence of a control's properties within the CComControlBase
class. CComControlBase has a member function named IPersistStreamInit_Save() that handles
saving a control's properties to a stream provided by the client. Whenever the container calls
IPersistStreamlnit: :Save, ATL ends up calling IPersistStreamInit_Save() to do the actual
work. IPersistStreamlnit_Save() works by retrieving the control's property map, the list of properties
maintained by the control. Remember that the BEGIN_PROPERTY_MAP macro adds a function named
GetPropertyMap() to the control. The first item written out by 1PersistStreamlnit_Save() is the
control's extents (its size on the screen). IPersistStreamlnit_Save() then cycles through the property map
to write the contents of the property map out to the stream. For each property, the control calls
Querylnterface() on itself to get its own dispatch interface. As IPersistStreamlnit_Save() goes
through the list of properties, the control calls IDispatch: : Invoke on itself to get the property based on the
DISPID associated with the property. The property's DISPID is included as part of the property map structure. The
property comes back from IDispatch: : Invoke as a Variant, and IPersistStreamlnit_Save()
writes the property to the stream provided by the client.

Bidirectional Communication (Events)

Now that the dice control has properties and property pages and renders itself to a device context, the last thing to do
is to add some events to the control. Events provide a way for the control to call back to the client code and inform
the client code of certain events as they occur.

For example, the user can roll the dice. Then when the dice stop rolling, the client application can fish the dice
values out of the control. However, another way to implement the control is to set it up so that the control notifies
the client application when the dice have rolled using an event. Here you'll see how to add some events to the dice
control. We'll start by understanding how ActiveX Control events work.

How Events Work. When a control is embedded in a container (such as a Visual Basic form or an MFC-based
dialog box), one of the steps the client code takes is to establish a connection to the control's event set. That is, the
client implements an interface that has been described by the control and makes that interface available to the
control. That way, the control can talk back to the container.

Part of developing a control involves defining an interface that the control can use to call back to the client. For
example, if you're developing the control using MFC, ClassWizard will define the interface and produce some
functions you can call from within the control to fire events back to the client. If you're developing the control in
ATL, you can accomplish the same result by defining the event callback interface in the control's IDL and using
ClassView to create a set of callback proxy functions for firing the events to the container. When the callback
interface is defined by the control, the container needs to implement that interface and hand it over to the control.
The client and the control do this through the IConnectionPointContainer and IConnectionPoint
interfaces.

IConnectionPointContainer is the interface that a COM object implements to indicate that it supports
connections. IConnectionPointContailner represents a collection of connections available to the client.

Within the context of ActiveX Controls, one of these connections is usually the control's main event set. Here's the
IConnectionPointContainer interface:

interface IConnectionPointContainer : lUnknown

HRESULT FindConnectionPoint(REFIID riid, IConnectionPoint **ppcp) =
0;

};

HRESULT EnumConnectionPoints(l1EnumConnectionsPoint **ppec) = 0;

IConnectionPointContainer represents a collection of IConnectionPoint interfaces. Here's the
IConnectionPoint interface:

interface IConnectionPoint : lUnknown

{
HRESULT GetConnectionlnterface(lID *pid) = O;

HRESULT GetConnectionPointContainer(lConnectionPointContainer
**ppcpc) = 03

HRESULT Advise(lUnknown *pUnk, DWORD *pdwCookie) = 0O;
HRESULT Unadvise(dwCookie) = O;
HRESULT EnumConnections(lIEnumConnections **ppec) = 0;

}

The container creates the control by calling CoCreatelnstance() on the control. As the control and the
container are establishing the interface connections between themselves, one of the interfaces the container asks for
is IConnectionPointContainer (that is, the container calls Querylnterface() asking for
11D_IConnectionPointContainer). If the control supports connection points (the control answers "Yes"
when queried for IConnectionPointContailner), the control uses

IConnectionPointContainer: :FindConnectionPoint to get the IConnectionPoint interface
representing the main event set. The container knows the GU I D representing the main event set by looking at the
control's type information as the control is inserted into the container.

If the container can establish a connection point to the control's main event set (that is,
IConnectionPointContainer: :FindConnectionPoint returns an IConnectionPoint interface
pointer), the container uses 1ConnectionPoint: :Advise to subscribe to the callbacks. Of course, to do this
the container needs to implement the callback interface defined by the control (which the container can learn about
by using the control's type library). Once the connection is established, the control can call back to the container
whenever the control fires off an event. Here's what it takes to make events work within an ATL-based ActiveX
control.

Adding Events to the Dice Control. There are several steps to adding event sets to your control. Some of them are
hidden by clever wizardry. First, use IDL to describe the events. Second, add a proxy that encapsulates the
connection points and event functions. Finally, fill out the control's connection map so that the client and the object
have a way to connect to each other. Let's examine each step in detail.

When using ATL to write an ActiveX control, IDL is the place to start adding events to your control. The event
callback interface is described within the IDL so the client knows how to implement the callback interface correctly.
The IDL is compiled into a type library that the client will use to figure out how to implement the callback interface.
For example, if you wanted to add events indicating the dice were rolled, doubles were rolled, and snake eyes were
rolled, you'd describe the callback interface like this in the control's IDL file:

library ATLDICESRVRLib

{
importlib('stdole32.tlb™);

importlib('stdole2._tlb™);

uuid(21C85C43-0BFF-11d1-8CAA-FD10872CC837),
helpstring(""Events created from rolling dice™)

ispinterface _IMyatldiceobjEvents

O e

properties:

methods:
[id(1)] void DiceRolled([in]short x, [in] short y);
[1d(2)] void Doubles([in] short x);
[1d(3)] void SnakeEyes();

e

L
uuid(6AED4EBD-0991-11D1-8CAA-FD10872CC837),
helpstring("Myatldiceob Class™)

1

coclass Myatldiceob

[default] interface IATLDieceObj;
[default, source] dispinterface _IMyatldiceobjEvents;

};

The control's callback interface is defined as a dispatch interface (note the dispinterface keyword) because that's the
most generic kind of interface available. When it comes to callback interfaces, most environments understand only
IDispatch. The code on the previous page describes a callback interface to be implemented by the client (if the
client decides it wants to receive these callbacks). We added this dice events interface by hand. The Object Wizard
will put one in for you. It might have a different name than the one we have listed. For example, the Wizard is likely
to put in an interface named IATLObjJEvents.

Implementing the Connection Point. After you've described the callback interface within the IDL and compiled
the control, the control's type information will contain the callback interface description so that the client will know
how to implement the callback interface. However, you don't yet have a convenient way to fire these events from the
control. You could, of course, call back to the client by setting up calls to IDispatch: : Invoke by hand.
However, a better way to do this is to set up a proxy (a set of functions wrapping calls to IDispatch) to handle
the hard work for you. To generate a set of functions that you can call to fire events in the container, use the
Implement Connection Point menu option from ClassView.

In ClassView, click the right mouse button while the cursor is hovering over the Cmyatldiceob symbol. This
brings up the context menu for the Cmyatldiceob item. Choose Implement Connection Point from the menu to
bring up the Implement Connection Point dialog box. This dialog box asks you to locate the type information
describing the interface you expect to use when calling back to the container (the _IMyatldiceobjEvents
interface, in this case). By default, this dialog box looks at your control's type library. The dialog box reads the type
library and shows the interfaces found within it. Choose _IMyatldiceobjEvents and click OK. Doing so
creates a C++ class that wraps the dice events interface. Given the above interface definition, here's the code
generated by the Implement Connection Point dialog box:

template <class T>

class CProxy_IATLDieceObjEvents :

public IConnectionPointimpl<T, &DIID__ IATLDieceObjEvents,
CComDynamicUnkArray>

//Warning this class may be recreated by the wizard.

public:
}:

//Warning this class may be recreated by the wizard.
public:

VOID Fire_Doubles(SHORT x)

{

T* pT = static_cast<T*>(this);

int nConnectionlndex;

CComVariant* pvars = new CComVariant[1];
int nConnections = m_vec.GetSize();

for (nConnectionlndex = 0;

nConnectionlndex < nConnections;
nConnectionlndex++)

pT->Lock();

CComPtr<lUnknown> sp = m_vec.GetAt(nConnectionlndex);

pT->Unllock();

IDispatch* pDispatch =
reinterpret_cast<IDispatch*>(sp.p);

if (pDispatch '= NULL)

{

pvars[0].-vt = VT_12;

pvars[0]-i1Val= x;

DISPPARAMS disp = { pvars, NULL, 1, 0 };

pDispatch->Invoke(Ox1, 11D _NULL,
LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp,
NULL, NULL, NULL);

}

by

delete[] pvars;

VOID Fire_DiceRolled(SHORT x, SHORT y)
{
T* pT = static_cast<T*>(this);
int nConnectionlndex;
CComVariant* pvars = new CComVariant[2];
int nConnections = m_vec.GetSize();

for (nConnectionlndex = 0;
nConnectionlndex < nConnections;
nConnectionlndex++)

pT->Lock();

CComPtr<lUnknown> sp = m_vec.GetAt(nConnectionlndex);

pT->Unllock();

IDispatch* pDispatch =
reinterpret_cast<IDispatch*>(sp.p);

it (pDispatch != NULL)

pvars[1].v
pvars[1]-1i
pvars[0] -v _
pvars[0].iVal= y;
DISPPARAMS disp = { pvars, NULL, 2, 0 };
pDispatch->Invoke(0x2, 11D_NULL,
LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp,
NULL, NULL, NULL);
}
>
delete[] pvars;
}

VOID Fire_SnakeEyes()
{
T* pT = static_cast<T*>(this);
int nConnectionlndex;
int nConnections = m_vec.GetSize();

for (nConnectionlndex = 0;

nConnectionlndex < nConnections;
nConnectionlndex++)

{
pT->Lock();
CComPtr<lUnknown> sp = m_vec.GetAt(nConnectionlndex);
pT->Unllock();
IDispatch* pDispatch =
reinterpret_cast<IDispatch*>(sp.p);
if (pDispatch '= NULL)
{
DISPPARAMS disp = { NULL, NULL, O, O };
pDispatch->Invoke(0x3, 11D_NULL,
LOCALE_USER DEFAULT,
DISPATCH_METHOD, &disp,
NULL, NULL, NULL);
}
}

}
};

The C++ class generated by the connection point generator serves a dual purpose. First, it acts as the specific
connection point. Notice that it derives from 1ConnectionPointImpl. Second, the class serves as a proxy to
the interface implemented by the container. For example, if you want to call over to the client and tell the client that
doubles were rolled, you'd simply call the proxy's Fire_Doubles() function. Notice how the proxy wraps the
IDispatch call so that you don't have to get your hands messy dealing with variants by yourself.

Establishing the Connection and Firing the Events. The final step in setting up the event set is to add the
connection point to the dice control and turn on the IConnectionPointContainer interface. The connection
point dialog box added the CProxy_ IMyatldiceobjEvents class to the dice control's inheritance list, which
provides the IConnectionPoint implementation inside the control. An ATL class named
IConnectionPointContainerImpl provides the implementation of IConnectionPointContainer.
These two interfaces should be in the dice control's inheritance list like this:

class Cmyatldiceob :

public CComObjectRootEx<CComSingleThreadModel>,

public CStockProplmpl<Cmyatldiceob, IATLDieceObj,
&IID_IATLDieceObj,
&LIBID_ATLDICESRVRLib>,

public CComControl<Cmyatldiceob>,

public IPersistStreamlnitimpl<Cmyatldiceob>,

public 100leControlImpl<Cmyatldiceob>,

public 10leObjectimpl<Cmyatldiceob>,

public 10lelnPlaceActiveObjectimpl<Cmyatldiceob>,

public IViewObjectExImpl<Cmyatldiceob>,

public 10lelnPlaceObjectWindowlessImpl<Cmyatldiceob>,

public IConnectionPointContainerimpl<Cmyatldiceob>,

public IPersistStoragelmpl<Cmyatldiceob>,

public ISpecifyPropertyPagesimpl<Cmyatldiceob>,

public IQuickActivatelmpl<Cmyatldiceob>,

public IDataObjectimpl<Cmyatldiceob>,

public IProvideClassIinfo2lmpl<&CLSID Myatldiceob,

&DI1ID__ IMyatldiceobjEvents,
&LIBID_ATLDICESRVRLib>,

public IPropertyNotifySinkCP<Cmyatldiceob>,

public CComCoClass<Cmyatldiceob, &CLSID Myatldiceob>,

public CProxy DDiceEvents< Cmyatldiceob >

};

Having these classes in the inheritance list inserts the machinery in your control that makes connection points work.
Whenever you want to fire an event to the container, all you need to do is call one of the functions in the proxy. For
example, a good time to fire these events is from within the control's ONTimer () method, firing a
DiceRolled() event whenever the timer stops, firing a SnakeEyes () event whenever both die faces have the
value 1, and firing a Doubles() event when both die faces are equal:

Cmyatldiceob: :OnTimer(UINT msg, WPARAM wParam, LPARAM IParam, BOOL&

bHandled)
{
if(n_nTimesRolled > m_nTimesToRoll)
{
m_nTimesRolled = O;
KillTimer(1);
Fire DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
if(m_nFirstDievValue == m_nSecondDieValue)
Fire Doubles(m_nFirstDieValue);
if(m_nFirstDievValue == 1 &&
m_nSecondDieValue == 1)
Fire_SnakeEyes();
} else {
m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
FireViewChange();
m_nTimesRol led++;
}

bHandled = TRUE;
return O;

}

Finally, notice the connection map contains entries for the control's connection points:

BEGIN_CONNECTION_POINT_MAP(Cmyatldiceob)
CONNECTION_POINT_ENTRY(DIID__IMyatldiceobjEvents)
CONNECTION_POINT_ENTRY(I1D_IPropertyNotifySink)

END_CONNECTION_POINT_MAPQ)

The control uses this map to hand back connection points as the client requests them.
Using the Control

So, how do you use the control once you've written it? The beauty of COM is that as long as the client and the object
agree on their shared interfaces, they don't need to know anything else about each other. All the interfaces
implemented within the dice control are well understood by a number of programming environments. You've
already seen how to use ActiveX Controls within an MFC-based dialog box. The control you just wrote will work
fine within an MFC-based dialog box, just use the Add To Project menu option under the Project menu. Select
Registered ActiveX Controls and insert the Myatldiceob component into your project. Visual C++ will read the
dice control's type information and insert all the necessary COM glue to make the dialog box and the control talk
together. This includes all the OLE embedding interfaces as well as the connection and event interfaces. In addition,
you could just as easily use this control from within a Visual Basic form. When working on a Visual Basic project,
select References from the Project menu and insert the dice control into the Visual Basic project.

Conclusion

ActiveX Controls are one of the most widely used applications of COM in the real world today. To summarize,
ActiveX controls are just COM objects that happen to implement a number of standard interfaces that
environments like Visual C++ and Visual Basic understand how to use. These interfaces deal with rendering,
persistence, and events, allowing you to drop these components into the aforementioned programming environments
and use them right away.

http://www.tenouk.com/visualcplusmfc/mfcatltest29.html

In the past, MFC was the only practical way to implement ActiveX Controls. However, these days ATL provides a
reasonable way of implementing ActiveX Controls, provided you're willing to follow ATL's rules. For example, if
you buy into the ATL architecture for writing controls, you'll have to dip down into Windows and start working
with window handles and device context handles in their raw forms. However, the tradeoff is often worthwhile,
because ATL provides more flexibility when developing ActiveX controls. For example, dual interfaces are free
when using ATL, whereas they're a real pain to implement in MFC.

End

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward
compatible with 6.0 class library

MSDN Library

DCOM at MSDN.

COM+ at MSDN.

COM at MSDN.

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

O Unicode and Multibyte character set: Story and program examples.

SN nAw

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

