
Structured Storage

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2.
Topics and sub topics for this tutorial are listed below. Don’t forget to read Tenouk’s small disclaimer. The
supplementary notes for this tutorial are statstg, Thread.h, ReadThread.cpp and WriteThread.cpp.

Index:

Intro
Compound Files
Storages and the IStorage Interface
Getting an IStorage Pointer
Freeing STATSTG Memory
Enumerating the Elements in a Storage Object
Sharing Storages Among Processes
Streams and the IStream Interface
IStream Programming
The ILockBytes Interface
The MYMFC31A Example: Structured Storage
The MYMFC31A From Scratch
The Menu
The CMymfc31aView Class
The Worker Threads
Structured Storage and Persistent COM Objects
The IPersistStorage Interface
IPersistStream
IPersistStream Programming
The MYMFC31B Example: A Persistent DLL Component
The MYMFC31B From Scratch
The MYMFC31C Example: A Persistent Storage Client Program
The MYMFC31C From Scratch
Compound File Fragmentation
Other Compound File Advantages

Intro

Like Automation and Uniform Data Transfer, structured storage is one of those COM features that you can use
effectively by itself. Of course, it's also behind much of the ActiveX technology, particularly compound
documents.
In this module, you'll learn to write and read compound files with the IStorage and IStream interfaces. The
IStorage interface is used to create and manage structured storage objects. IStream is used to manipulate the
data contained by the storage object. The IStorage and IStream interfaces, like all COM interfaces, are simply
virtual function declarations. Compound files, on the other hand, are implemented by code in the Microsoft
Windows OLE32 DLL. Compound files represent a Microsoft file I/O standard that you can think of as "a file
system inside a file."
When you're familiar with IStorage and IStream, you'll move on to the IPersistStorage and
IPersistStream interfaces. With the IPersistStorage and IPersistStream interfaces, you can
program a class to save and load objects to and from a compound file. You say to an object, "Save yourself," and it
knows how.

Compound Files

This MFC Tutorial discusses four options for file I/O. You can read and write whole sequential files (like the MFC
archive files you saw first in Module 11). You can use a database management system. You can write your own
code for random file access. Finally, you can use compound files.

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/statstg.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/Thread.h
http://www.tenouk.com/visualcplusmfc/mfcsupp/ReadThread.cpp
http://www.tenouk.com/visualcplusmfc/mfcsupp/WriteThread.cpp
http://www.tenouk.com/visualcplusmfc/visualcplusmfc11sdi.html

Think of a compound file as a whole file system within a file. Figure 1 shows a traditional disk directory as
supported by early MS-DOS systems and by Microsoft Windows. This directory is composed of files and
subdirectories, with a root directory at the top. Now imagine the same structure inside a single disk file. The files
are called streams, and the directories are called storages. Each is identified by a name of up to 32 wide characters
in length. A stream is a logically sequential array of bytes, and a storage is a collection of streams and sub-
storages.

Figure 1: A disk directory with files and subdirectories.

A storage can contain other storages, just as a directory can contain subdirectories. In a disk file, the bytes aren't
necessarily stored in contiguous clusters. Similarly, the bytes in a stream aren't necessarily contiguous in their
compound file. They just appear that way.
Storage and stream names cannot contain the characters /, \, :, or !. If the first character has an ASCII value of
less than 32, the element is marked as managed by some agent other than the owner.
You can probably think of many applications for a compound file. The classic example is a large document
composed of modules and paragraphs within modules. The document is so large that you don't want to read the
whole thing into memory when your program starts, and you want to be able to insert and delete portions of the
document. You could design a compound file with a root storage that contains sub-storages for modules. The
module sub-storages would contain streams for the paragraphs. Other streams could be for index information.
One useful feature of compound files is transactioning. When you start a transaction for a compound file, all
changes are written to a temporary file. The changes are made to your file only when you commit the transaction.

Storages and the IStorage Interface

If you have a storage object, you can manipulate it through the IStorage interface. Pay attention to these
functions because Microsoft Foundation Class offers no support for storage access. The IStorage interface
inherits the methods of the standard COM interface IUnknown (QueryInterface(), AddRef() and
Release()). In addition, IStorage defines the following methods.

Method/Function Description

CreateStream()

Creates and opens a stream object with the specified name contained in this
storage object. The name must not exceed 31 characters in length (not
including the string terminator). The 000 through 01f characters, serving as
the first character of the stream/storage name, are reserved for use by OLE.
This is a compound file restriction, not a structured storage restriction.

OpenStream()

Opens an existing stream object within this storage object using the
specified access permissions in grfMode. The name must not exceed 31
characters in length (not including the string terminator). The 000 through
01f characters, serving as the first character of the stream/storage name, are
reserved for use by OLE. This is a compound file restriction, not a
structured storage restriction.

CreateStorage()

Creates and opens a new storage object within this storage object. The name
must not exceed 31 characters in length (not including the string
terminator). The 000 through 01f characters, serving as the first character of
the stream/storage name, are reserved for use by OLE. This is a compound

file restriction, not a structured storage restriction.

OpenStorage()

Opens an existing storage object with the specified name according to the
specified access mode. The name must not exceed 31 characters in length
(not including the string terminator). The 000 through 01f characters,
serving as the first character of the stream/storage name, are reserved for
use by OLE. This is a compound file restriction, not a structured storage
restriction.

CopyTo() Copies the entire contents of this open storage object into another storage
object. The layout of the destination storage object may differ.

MoveElementTo() Copies or moves a substorage or stream from this storage object to another
storage object.

Commit() Reflects changes for a transacted storage object to the parent level.

Revert() Discards all changes that have been made to the storage object since the last
commit operation.

EnumElements() Returns an enumerator object that can be used to enumerate the storage and
stream objects contained within this storage object.

DestroyElement() Removes the specified storage or stream from this storage object.
RenameElement() Renames the specified storage or stream in this storage object.

SetElementTimes() Sets the modification, access, and creation times of the indicated storage
element, if supported by the underlying file system.

SetClass() Assigns the specified CLSID to this storage object.
SetStateBits() Stores up to 32 bits of state information in this storage object.
Stat() Returns the STATSTG structure for this open storage object.

Table 1.

Following are some of the important member functions and their significant parameters.

HRESULT Commit(…);

Commits all the changes to this storage and to all elements below it.

HRESULT CopyTo(…, IStorage**pStgDest);

Copies a storage, with its name and all its sub-storages and streams (recursively), to another existing storage.
Elements are merged into the target storage, replacing elements with matching names.

HRESULT CreateStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Creates a new sub-storage under this storage object.

HRESULT CreateStream(const WCHAR*
pName, …, DWORD mode, …, IStream** ppStream);

Creates a new stream under this storage object.

HRESULT DestroyElement(const WCHAR* pName);

Destroys the named storage or stream that is under this storage object. A storage cannot destroy itself.

HRESULT EnumElements(…, IEnumSTATSTG** ppEnumStatstg);

Iterates through all the storages and streams under this storage object. The IEnumSTATSTG interface has Next(),
Skip(), and Clone() member functions, as do other COM enumerator interfaces.

HRESULT MoveElementTo(const WCHAR* pName,
IStorage* pStgDest, const LPWSTR* pNewName, DWORD flags);

Moves an element from this storage object to another storage object.

HRESULT OpenStream(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing stream object, designated by name, under this storage object.

HRESULT OpenStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing substorage object, designated by name, under this storage object.

DWORD Release(void);

Decrements the reference count. If the storage is a root storage representing a disk file, Release() closes the file
when the reference count goes to 0.

HRESULT RenameElement(const
WCHAR* pOldName, const WCHAR* pNewName);

Assigns a new name to an existing storage or stream under this storage object.

HRESULT Revert(void);

Abandons a transaction, leaving the compound file unchanged.

HRESULT SetClass(CLSID& clsid);

Inserts a 128-bit class identifier into this storage object. This ID can then be retrieved with the Stat() function.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in a STATSTG structure with useful information about the storage object, including its name and class ID.

Getting an IStorage Pointer

Where do you get the first IStorage pointer? COM gives you the global function StgCreateDocfile() to
create a new structured storage file on disk and the function StgOpenStorage() to open an existing file. Both of
these set a pointer to the file's root storage. Here's some code that opens an existing storage file named MyStore.stg
and then creates a new sub-storage:

IStorage* pStgRoot;
IStorage* pSubStg;

if (::StgCreateDocfile(L"MyStore.stg",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE, 0, &pStgRoot) ==
S_OK)
 {
 if (pStgRoot->CreateStorage(L"MySubstorageName",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, 0, &pSubStg) == S_OK) {
 // Do something with pSubStg
 pSubStg->Release();
 }
 pStgRoot->Release();
}

Freeing STATSTG Memory

When you call IStorage::Stat with a STATFLAG_DEFAULT value for the flag parameter, COM allocates
memory for the element name. You must free this memory in a manner compatible with its allocation. COM has its
own allocation system that uses an allocator object with an IMalloc interface. You must get an IMalloc pointer
from COM, call IMalloc::Free for the string, and then release the allocator. The code below illustrates this.
If you want just the element size and type and not the name, you can call Stat() with the STATFLAG_NONAME
flag. In that case, no memory is allocated and you don't have to free it. This seems like an irritating detail, but if you
don't follow the recipe, you'll have a memory leak.

Enumerating the Elements in a Storage Object

Following is some code that iterates through all the elements under a storage object, differentiating between sub-
storages and streams. The elements are retrieved in a seemingly random sequence, independent of the sequence in
which they were created; however, I've found that streams are always retrieved first. The IEnumSTATSTG::Next
element fills in a STATSTG structure that tells you whether the element is a stream or a storage object.

IEnumSTATSTG* pEnum;
IMalloc* pMalloc;
STATSTG statstg;
extern IStorage* pStg; // maybe from OpenStorage
::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit called
VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK)
while (pEnum->Next(1, &statstg, NULL) == NOERROR) {
 if (statstg.type == STGTY_STORAGE) {
 if (pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK) {
 // Do something with the substorage
 }
 else if (statstg.type == STGTY_STREAM)
 {
 // Process the stream
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
}

Sharing Storages Among Processes

If you pass an IStorage pointer to another process, the marshaling code ensures that the other process can access
the corresponding storage element and everything below it. This is a convenient way of sharing part of a file. One of
the standard data object media types of the TYMED enumeration is TYMED_ISTORAGE, and this means you can
pass an IStorage pointer on the clipboard or through a drag-and-drop operation.

Streams and the IStream Interface

If you have a stream object, you can manipulate it through the IStream interface. Streams are always located
under a root storage or a substorage object. Streams grow automatically (in 512-byte increments) as you write to
them. An MFC class for streams, COleStreamFile, makes a stream look like a CFile object. That class won't
be of much use to us in this module, however. The IStream interface inherits the methods of the standard COM
interface IUnknown (QueryInterface(), AddRef() and Release()). In addition, IStream defines the
following methods. Once you have a pointer to IStream, a number of functions are available to you for
manipulating the stream. Here is a list and the detail of all the IStream functions.

Method Description

Read() Reads a specified number of bytes from the stream object into memory starting
at the current seek pointer.

Write() Writes a specified number of bytes into the stream object starting at the current
seek pointer.

Seek() Changes the seek pointer to a new location relative to the beginning of the
stream, the end of the stream, or the current seek pointer.

SetSize() Changes the size of the stream object.

CopyTo() Copies a specified number of bytes from the current seek pointer in the stream to
the current seek pointer in another stream.

Commit() Ensures that any changes made to a stream object open in transacted mode are
reflected in the parent storage object.

Revert() Discards all changes that have been made to a transacted stream since the last
call to IStream::Commit.

LockRegion() Restricts access to a specified range of bytes in the stream. Supporting this
functionality is optional since some file systems do not provide it.

UnlockRegion() Removes the access restriction on a range of bytes previously restricted with
IStream::LockRegion.

Stat() Retrieves the STATSTG structure for this stream.

Clone() Creates a new stream object that references the same bytes as the original stream
but provides a separate seek pointer to those bytes.

Table 2.

The following are some of the important functions used in this tutorial.

HRESULT CopyTo(IStream** pStm, ULARGE_INTEGER cb, …);

Copies cb bytes from this stream to the named stream. ULARGE_INTEGER is a structure with two 32-bit
members—HighPart and LowPart.

HRESULT Clone(IStream** ppStm);

Creates a new stream object with its own seek pointer that references the bytes in this stream. The bytes are not
copied, so changes in one stream are visible in the other.

HRESULT Commit(…);

Transactions are not currently implemented for streams.

HRESULT Read(void const* pv, ULONG cb, ULONG* pcbRead);

Tries to read cb bytes from this stream into the buffer pointed to by pv. The variable pcbRead indicates how
many bytes were actually read.

DWORD Release(void);

Closes this stream.

HRESULT Revert(void);

Has no effect for streams.

HRESULT Seek(LARGE_INTEGER dlibMove,
DWORD dwOrigin, ULARGE_INTEGER* NewPosition);

Seeks to the specified position in this stream. The dwOrigin parameter specifies the origin of the offset defined in
the NewPosition parameter.

HRESULT SetSize(ULARGE_INTEGER libNewSize);

Extends or truncates a stream. Streams grow automatically as they are written, but calling SetSize() can
optimize performance.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in the STATSTG structure with useful information about the stream, including the stream name and size. The
size is useful if you need to allocate memory for a read.

HRESULT Write(void const* pv, ULONG cb, ULONG* pcbWritten);

Tries to write cb bytes to this stream from the buffer pointed to by pv. The variable pcbWritten indicates how
many bytes were actually written.

IStream Programming

Here is some sample code that creates a stream under a given storage object and writes some bytes from m_buffer
to the stream:

extern IStorage* pStg;
IStream* pStream;
ULONG nBytesWritten;

if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK)
{
 ASSERT(pStream != NULL);
 pStream->Write(m_buffer, m_nLength, &nBytesWritten);
 pStream->Release();
}

The ILockBytes Interface

As already mentioned, the compound file system you've been looking at is implemented in the OLE32 DLL. The
structured storage interfaces are flexible enough, however, to permit you to change the underlying implementation.
The key to this flexibility is the ILockBytes interface. The ILockBytes interface inherits the methods of the
standard COM interface IUnknown (QueryInterface(), AddRef() and Release()). In addition,
ILockBytes defines the following methods.

Method Description

ReadAt() Reads a specified number of bytes starting at a specified offset from the
beginning of the byte array.

WriteAt() Writes a specified number of bytes to a specified location in the byte
array.

Flush() Ensures that any internal buffers maintained by the byte array object are
written out to the backing storage.

SetSize() Changes the size of the byte array.
LockRegion() Restricts access to a specified range of bytes in the byte array.

UnlockRegion() Removes the access restriction on a range of bytes previously restricted
with ILockBytes::LockRegion.

Stat() Retrieves a STATSTG structure for this byte array object.

Table 3.

The StgCreateDocfile() and StgOpenStorage() global functions use the default Windows file system.
You can write your own file access code that implements the ILockBytes interface and then call
StgCreateDocfileOnILockBytes() or StgOpenStorageOnILockBytes() to create or open the file,
instead of calling the other global functions.
Rather than implement your own ILockBytes interface, you can call CreateILockBytesOnHGlobal() to
create a compound file in RAM. If you wanted to put compound files inside a database, you would implement an
ILockBytes interface that used the database's blobs (binary large objects).

The MYMFC31A Example: Structured Storage

When you choose the Storage Write option in the MYMFC31A example, the program walks through your entire
disk directory looking for TXT files. As it looks, it writes a compound file (\direct.stg) on the top level of your
directory structure. This file contains storages that match your subdirectories. For each TXT file that the program
finds in a subdirectory, it copies the first line of text to a stream in the corresponding storage. When you choose the
Storage Read option, the program reads the direct.stg compound file and prints the contents of this file in the
Debug window. If you create such an example from scratch, use AppWizard without any ActiveX or Automation
options and then add the following lines in your StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> // for wide-character conversion

Then delete the following line:

#define VC_EXTRALEAN

To prepare MYMFC31A, open the mymfc31a.dsw workspace and build the project. Run the program from the
debugger. First choose Write from the Storage menu and wait for a "Write complete" message box. Then choose
Read. Observe the output in the Debug window.

The MYMFC31A From Scratch

This is SDI application without ActiveX or Automation support.

Figure 2: MYMFC31A – Visual C++ new project dialog.

Figure 3: MYMFC31A – AppWizard step 1 of 6, an SDI application.

Figure 4: MYMFC31A – AppWizard step 2 of 6.

Figure 5: MYMFC31A – AppWizard step 3 of 6, deselect Automation and ActiveX Controls support options.

Figure 6: MYMFC31A – AppWizard step 4 of 6

Figure 7: MYMFC31A – AppWizard step 5 of 6

Figure 8: MYMFC31A – AppWizard step 6 of 6

Figure 9: MYMFC31A project summary.

Add the following menu items.

ID Caption
- Storage
ID_STORAGE_READ Read
ID_STORAGE_WRITE Write

Table 4.

Figure 10: Adding Storage menu and Write sub menu.

Figure 11: Adding Read sub menu.

Figure 12: A completed MYMFC31A menus.

Use ClassWizard to add command handlers as listed in the following Table for the menu items in
CMymfc31aView class.

ID Function
ID_STORAGE_READ OnStorageRead()
ID_STORAGE_WRITE OnStorageWrite()

Table 5.

Figure 13: Adding command handlers for menu items.

Then, add codes to the command handlers.

void CMymfc31aView::OnStorageRead()
{
 // TODO: Add your command handler code here
 CWinThread* pThread = AfxBeginThread(ReadThreadProc, GetSafeHwnd());
}

void CMymfc31aView::OnStorageWrite()
{
 // TODO: Add your command handler code here
 CWinThread* pThread = AfxBeginThread(WriteThreadProc, GetSafeHwnd());
}

Listing 1.

Add the #include directive to mymfc31aView.cpp.

#include "Thread.h"

Listing 2.

Add files to the project, copy and paste the codes (the codes are provided in the following Listings). Add Thread.h
file.

Figure 14: Adding new files for new class to the project.

Figure 15: Adding Thread.h header file to project.

Repeat the same step for WriteThread.cpp and ReadThread.cpp source files (of course you have to select the C++
Source File in the previous Figure), copy and paste the codes to those files.

http://www.tenouk.com/visualcplusmfc/mfcsupp/Thread.h
http://www.tenouk.com/visualcplusmfc/mfcsupp/WriteThread.cpp
http://www.tenouk.com/visualcplusmfc/mfcsupp/ReadThread.cpp

Add the following lines in your StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> // for wide-character conversion

Then delete the following line:

#define VC_EXTRALEAN

Listing 3.

Build and run in debug mode. Click the Write menu.

Figure 16: Running MYMFC31A in debug mode.

Select the Write menu.

Figure 17: MYMFC31A output.

The message box displayed when Write menu is selected as shown below.

Figure 18: Message box displayed when Write menu was selected.

Then, click the Read menu.

Figure 19: Testing the Read menu.

Figure 20: Message box displayed when Read menu was selected.

Check the Debug window. It will look something like this (the storage and stream should be different with yours).

Storage = mfcjadik
 Storage = final
 Stream = \mfcjadik\final\log.txt

 Storage = myscribble
 Storage = Debug
 Stream = \mfcjadik\myscribble\ReadMe.txt
==
...
[trimmed]
...
==

 Storage = mymfc27B
 Storage = res
 Storage = Debug
 Stream = ReadMe.txt
==

The thread 0x398 has exited with code 0 (0x0).
The thread 0xD04 has exited with code 0 (0x0).
The program 'F:\mfcproject\mymfc31a\Debug\mymfc31a.exe' has exited with code 0 (0x0).

Verify the direct.stg file creation.

Figure 21: Verifying the direct.stg file creation by the write operation in the previous step.

The Menu

The MYMFC31A example has an added top-level Storage menu with Write and Read options.

The CMymfc31aView Class

This class maps the new Storage Read and Write menu commands listed above to start worker threads. The
handlers are shown here:

void CMymfc31aView::OnStorageRead()
{
 CWinThread* pThread = AfxBeginThread(ReadThreadProc, GetSafeHwnd());
}

void CMymfc31aView::OnStorageWrite()
{
 CWinThread* pThread = AfxBeginThread(WriteThreadProc, GetSafeHwnd());
}

The Worker Threads

Listing 4 lists the code for the Storage Write and Storage Read worker threads.

THREAD.H

// Thread.h (MYMFC31A)

extern int g_nIndent;
extern const char* g_szBlanks;
extern const char* g_szRootStorageName;

UINT WriteThreadProc(LPVOID pParam);
UINT ReadThreadProc(LPVOID pParam);
void ReadDirectory(const char* szPath, LPSTORAGE pStg);
void ReadStorage(LPSTORAGE pStg);

WRITETHREAD.CPP
// WriteThread.cpp (MYMFC31A)

#include "StdAfx.h"
#include "Thread.h"

int g_nIndent = 0;
const char* g_szBlanks = " ";
// the file for storage...
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 // you can start at any root...or directory...
 // if just "\\", current root will be used...
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}

void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;

 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[10000];
 char szStreamName[10000];
 char szData[10001];
 char* pch = NULL;

 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);
 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, '!')) != NULL) {
 *pch = '|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath,fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = '\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4, g_szBlanks, szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();
 }
 else {
 if ((pch = strrchr(fData.cFileName, '.')) != NULL)
 {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = '\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4, g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 10000))
 {
 TRACE("%s\n", szData);
 // For a very 'big' file number the Write() will trigger the
 // Exception - Access violation, just click the ignore
 // button...
 // To avoid the Exception, memory allocation must be properly
 // done...T2COLE do the string conversion...hohoho...
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 pStream->Write(szData, strlen(szData) + 1, NULL);
 pStream->Release();

 // ---This is another snippet version----
 // if(pStg->CreateStream(T2COLE(szStreamName),

 // STGM_CREATE | STGM_READWRITE |
 // STGM_SHARE_EXCLUSIVE,
 // 0, 0, &pStream) == S_OK)
 // {
 // ASSERT(pStream != NULL);
 // // Include the null terminator in the stream
 // pStream->Write(szData, strlen(szData) + 1, NULL);
 // pStream->Release();
 // }
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent--;
}

READTHREAD.CPP

// ReadThread.cpp (MYMFC31A)

#include "StdAfx.h"
#include "Thread.h"

UINT ReadThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 // doesn't work without STGM_SHARE_EXCLUSIVE
 g_nIndent = 0;
 if (::StgOpenStorage(T2COLE(g_szRootStorageName), NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK) {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();
 }
 else {
 AfxMessageBox("Storage file not available or not readable");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage -- recursive calls for substorages
{
 USES_CONVERSION;
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 LPMALLOC pMalloc = NULL; // for freeing statstg
 STATSTG statstg;
 ULONG nLength;
 BYTE buffer[101];

 g_nIndent++;
 ::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit
 // was called
 VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK);
 while (pEnum->Next(1, &statstg, NULL) == S_OK) {
 if (statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));

 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if (statstg.type == STGTY_STREAM) {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));
 pStream->Read(buffer, 100, &nLength);
 buffer[nLength] = '\0';
 TRACE("%s\n", buffer);
 pStream->Release();
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
 pEnum->Release();
 g_nIndent--;
}

Listing 4: The Storage menu worker threads.

To keep the program simple, there's no synchronization between the main thread and the two worker threads. You
could run both threads at the same time if you used two separate compound files.
From your study of the Win32 threading model, you might expect that closing the main window would cause the
read thread or write thread to terminate "midstream," possibly causing memory leaks. But this does not happen
because MFC senses that the worker threads are using COM objects. Even though the window closes immediately,
the program does not exit until all threads exit.
Both threads use recursive functions. The ReadStorage() function reads a storage and calls itself to read the
substorages. The ReadDirectory() function reads a directory and calls itself to read the subdirectories. This
function calls the Win32 functions FindFirstFile() and FindNextFile() to iterate through the elements
in a directory. The dwFileAttributes member of the WIN32_FIND_DATA structure indicates whether the
element is a file or a subdirectory. ReadDirectory() uses the MFC CStdioFile class because the class is
ideal for reading text.
The USES_CONVERSION macro is necessary to support the wide-character conversion macros OLE2CT and
T2COLE. These macros are used here because the example doesn't use the CString class, which has built-in
conversion logic.

Structured Storage and Persistent COM Objects

The MYMFC31A program explicitly called member functions of IStorage and IStream to write and read a
compound file. In the object-oriented world, objects should know how to save and load themselves to and from a
compound file. That's what the IPersistStorage and IPersistStream interfaces are for. If a COM
component implements these interfaces, a container program can "connect" the object to a compound file by passing
the file's IStorage pointer as a parameter to the Save() and Load() member functions of the
IPersistStorage interface. Such objects are said to be persistent. Figure 22 shows the process of calling the
IPersistStorage::Save function.
A COM component is more likely to work with an IStorage interface than an IStream interface. If the COM
object is associated with a particular storage, the COM component can manage substorages and streams under that
storage once it gets the IStorage pointer. A COM component uses the IStream interface only if it stores all its
data in an array of bytes. ActiveX controls implement the IStream interface for storing and loading property
values.

http://www.tenouk.com/cnwin32tutorials.html

Figure 22: Calling IPersistStorage::Save.

The IPersistStorage Interface

When an OLE container creates a new object, loads an existing object from storage, or inserts a new object in a
clipboard or a drag-and-drop operation, the container uses the IPersistStorage interface to initialize the object
and put it in the loaded or running state. When an object is loaded or running, an OLE container calls other
IPersistStorage methods to instruct the object to perform various save operations or to release its storage.
Typically, applications use helper functions such as OleLoad() or OleCreate(), rather than calling the
IPersistStorage::Load or IPersistStorage::InitNew methods directly. Similarly, applications
typically call the OleSave() helper function rather than calling IPersistStorage::Save directly.
Methods/functions in IPersistStorage is listed below.

IUnknown Methods Description

QueryInterface() Returns pointers to
supported interfaces.

AddRef() Increments reference
count.

Release() Decrements reference
count.

Table 6.

IPersist Method Description

GetClassID() Returns the class identifier (CLSID) for the object on
which it is implemented.

Table 7.

IPersistStorage
Methods Description

IsDirty() Indicates whether the object has changed since it was last
saved to its current storage.

InitNew() Initializes a new storage object.
Load() Initializes an object from its existing storage.

Save() Saves an object, and any nested objects that it contains,
into the specified storage object. The object enters

NoScribble mode.

SaveCompleted()
Notifies the object that it can revert from NoScribble or
HandsOff mode, in which in must not write to its storage
object, to Normal mode in which it can.

HandsOffStorage()
Instructs the object to release all storage objects that have
been passed to it by its container and to enter
HandsOffAfterSave or HandsOffFromNormal mode.

Table 8.

Both the IPersistStorage and IPersistStream interfaces are derived from IPersist, which contributes
the GetClassID() member function. Of course the IUnknown member function also included. Here's a
summary of the important IPersistStorage member functions in detail.

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT InitNew(IStorage* pStg);

Initializes a newly created object. The component might need to use the storage for temporary data, so the container
must provide an IStorage pointer that's valid for the life of the object. The component should call AddRef() if
it intends to use the storage. The component should not use this IStorage pointer for saving and loading; it should
wait for Save() and Load() calls and then use the passed-in IStorage pointer to call IStorage::Write
and Read().

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStorage* pStg);

Loads the COM object's data from the designated storage.

HRESULT Save(IStorage* pStg, BOOL fSameAsLoad);

Saves the COM object's data in the designated storage.

The IPersistStream Interface

Here's a summary of the IPersistStream member functions:

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT GetMaxSize(ULARGE_INTEGER* pcbSize);

Returns the number of bytes needed to save the object.

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStream* pStm);

Loads the COM object's data from the designated stream.

HRESULT Save(IStream* pStm, BOOL fClearDirty);

Saves the COM object's data to the designated stream. If the fClearDirty parameter is TRUE, Save clears the
object's dirty flag.

IPersistStream

The IPersistStream interface provides methods for saving and loading objects that use a simple serial stream
for their storage needs. The IPersistStream interface inherits its definition from the IPersist interface, and
so includes the GetClassID method of IPersist. Call methods of IPersistStream from a container
application to save or load objects that are contained in a simple stream. When used to save or load monikers,
typical applications do not call the methods directly, but allow the default link handler to make the calls to save and
load the monikers that identify the link source. These monikers are stored in a stream in the storage for the linked
object. If you are writing a custom link handler for your class of objects, you would call the methods of
IPersistStream to implement the link handler. Methods/functions available for IPersistStream are listed
below.

IUnknown Methods Description

QueryInterface() Returns pointers to
supported interfaces.

AddRef() Increments the reference
count.

Release() Decrements the reference
count.

Table 9.

IPersist Method Description

GetClassID() Returns the class identifier (CLSID) for
the component object.

Table 10.

IPersistStream
Methods Description

IsDirty() Checks the object for changes since it was last saved.
Load() Initializes an object from the stream where it was previously saved.

Save() Saves an object into the specified stream and indicates whether the
object should reset its dirty flag.

GetSizeMax() Return the size in bytes of the stream needed to save the object.

Table 11.

IPersistStream Programming

The following container program code fragment creates a stream and saves a COM object's data in it. Both the
IPersistStream pointer for the COM object and the IStorage pointer are set elsewhere.

extern IStorage* pStg;
extern IPersistStream* pPersistStream;
IStream* pStream;
if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK)
{
 ASSERT(pStream != NULL);
 pPersistStream->Save(pStream, TRUE);
 pStream->Release();
}

If you program your own COM class for use in a container, you'll need to use the MFC interface macros to add the
IPersistStream interface. Too bad there's not an "interface wizard" to do the job.

The MYMFC31B Example: A Persistent DLL Component

The MYMFC31B program, which is used by MYMFC31C, is a COM DLL that contains the CText component.
This is a simple COM class that implements the IDispatch and IPersistStream interfaces. The
IDispatch interface allows access to the component's one and only property, Text, and the IPersistStream
interface allows an object to save and load that Text property to and from a structured storage file.
To prepare MYMFC31B, open the mymfc31b.dsw workspace and build the project. Use regsvr32 to register the
DLL. Listing 5 lists the code for the CText class in Text.h and Text.cpp.

TEXT.H

#if !defined(AFX_TEXT_H__14635AFC_DF23_4875_B984_BFC39089C60F__INCLUDED_)
#define AFX_TEXT_H__14635AFC_DF23_4875_B984_BFC39089C60F__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// Text.h : header file
//

///
// CText command target

class CText : public CCmdTarget
{
 DECLARE_DYNCREATE(CText)

 CText(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CText)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CText();

 // Generated message map functions
 //{{AFX_MSG(CText)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CText)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CText)
 afx_msg VARIANT GetText();
 afx_msg void SetText(const VARIANT FAR& newValue);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()

 BEGIN_INTERFACE_PART(PersistStream, IPersistStream)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();

 STDMETHOD(Load)(LPSTREAM);
 STDMETHOD(Save)(LPSTREAM, BOOL);
 STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR*);
 END_INTERFACE_PART(PersistStream)

private:
 char* m_pchText;

};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined(AFX_TEXT_H__14635AFC_DF23_4875_B984_BFC39089C60F__INCLUDED_)

TEXT.CPP

// Text.cpp : implementation file
//

#include "stdafx.h"
#include "mymfc31b.h"
#include "Text.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CText

IMPLEMENT_DYNCREATE(CText, CCmdTarget)

CText::CText()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
}

CText::~CText()
{
 // To terminate the application when all objects created with
 // with OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}

void CText::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // deletes the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CText, CCmdTarget)
 //{{AFX_MSG_MAP(CText)
 // NOTE - the ClassWizard will add and remove mapping macros here.

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CText, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CText)
 DISP_PROPERTY_EX(CText, "Text", GetText, SetText, VT_VARIANT)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IText to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {84D30689-5963-400D-8D4C-19CA756679B1}
static const IID IID_IText =
{ 0x84d30689, 0x5963, 0x400d, { 0x8d, 0x4c, 0x19, 0xca, 0x75, 0x66, 0x79, 0xb1 }
};

BEGIN_INTERFACE_MAP(CText, CCmdTarget)
 INTERFACE_PART(CText, IID_IPersistStream, PersistStream)
 INTERFACE_PART(CText, IID_IText, Dispatch)
END_INTERFACE_MAP()

// {B34965D8-9295-45E9-A4C6-EC0B51EBD1BD}
IMPLEMENT_OLECREATE(CText, "mymfc31b.Text", 0xb34965d8, 0x9295, 0x45e9, 0xa4,
0xc6, 0xec, 0xb, 0x51, 0xeb, 0xd1, 0xbd)

///
// CText message handlers

VARIANT CText::GetText()
{
 return COleVariant(m_pchText).Detach();
}

void CText::SetText(const VARIANT FAR& newValue)
{
 // TODO: Add your property handler here
 CString strTemp;
 ASSERT(newValue.vt == VT_BSTR);
 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 strTemp = newValue.bstrVal; // converts to narrow chars
 m_pchText = new char[strTemp.GetLength() + 1];
 strcpy(m_pchText, strTemp);
}

//

STDMETHODIMP_(ULONG) CText::XPersistStream::AddRef()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CText::XPersistStream::Release()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalRelease();
}

STDMETHODIMP CText::XPersistStream::QueryInterface(REFIID iid,
 void FAR* FAR* ppvObj)
{
 METHOD_PROLOGUE(CText, PersistStream)
 // ExternalQueryInterface looks up iid in the macro-generated tables
 return (HRESULT) pThis->ExternalQueryInterface(&iid, ppvObj);

}

///

STDMETHODIMP CText::XPersistStream::GetClassID(LPCLSID lpClassID)
{
 TRACE("Entering CText::XPersistStream::GetClassID\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 *lpClassID = CText::guid;
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::IsDirty()
{
 TRACE("Entering CText::XPersistStream::IsDirty\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Load(LPSTREAM pStm)
{
 ULONG nLength;
 STATSTG statstg;

 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 if(pThis->m_pchText != NULL) {
 delete [] pThis->m_pchText;
 }
 // don't need to free statstg.pwcsName because of NONAME flag
 VERIFY(pStm->Stat(&statstg, STATFLAG_NONAME) == NOERROR);
 int nSize = statstg.cbSize.LowPart; // assume < 4 GB
 if(nSize > 0) {
 pThis->m_pchText = new char[nSize];
 pStm->Read(pThis->m_pchText, nSize, &nLength);
 }
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Save(LPSTREAM pStm, BOOL fClearDirty)
{
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 int nSize = strlen(pThis->m_pchText) + 1;
 pStm->Write(pThis->m_pchText, nSize, NULL);
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::GetSizeMax(ULARGE_INTEGER FAR* pcbSize)
{
 TRACE("Entering CText::XPersistStream::GetSizeMax\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 pcbSize->LowPart = strlen(pThis->m_pchText) + 1;
 pcbSize->HighPart = 0; // assume < 4 GB
 return NOERROR;
}

Listing 5: The code listing for the CText class in Text.h and Text.cpp.

The MYMFC31B From Scratch

This is DLL application with Automation support.

Figure 23: MYMFC31B – Visual C++ new project dialog, select MFC AppWizard (dll) project.

Figure 24: MYMFC31B – AppWizard step 1 of 1, select the Automation option.

Figure 1: MYMFC31B project summary.

Add new class using ClassWizard. Click the Add Class button.

Figure 25: Adding new class using ClassWizard.

Fill up the CText class information and don’t forget to select Creatable by type ID option.

Figure 26: Entering CText class information.

Add/override OnFinalRelease() function to CMymfc31bApp class.

Figure 27: Adding OnFinalRelease() function to CMymfc31bApp class.

Add property to CText class. In the Automation page of ClassWizard, click the Add Property button. Make sure
CText class is selected in the Class name combo box. Fill up the following information. This is a Get/Set method.

Figure 28: Adding Text property to CText class.

Figure 29: The added Text property.

Add a private variable to CText class as shown below.

private:
 char* m_pchText;

Figure 30: Adding a private member variable to CText class.

Add manually the following in the Text.h.

BEGIN_INTERFACE_PART(PersistStream, IPersistStream)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();
 STDMETHOD(Load)(LPSTREAM);
 STDMETHOD(Save)(LPSTREAM, BOOL);
 STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR*);
 END_INTERFACE_PART(PersistStream)

Listing 6.

Then, add the following PersistStream interface in Text.cpp

 INTERFACE_PART(CText, IID_IPersistStream, PersistStream)

Listing 7.

Next, add the following PersistStream member function codes at the end of the Text.cpp.

STDMETHODIMP_(ULONG) CText::XPersistStream::AddRef()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CText::XPersistStream::Release()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalRelease();
}

STDMETHODIMP CText::XPersistStream::QueryInterface(REFIID iid,
 void FAR* FAR* ppvObj)
{
 METHOD_PROLOGUE(CText, PersistStream)
 // ExternalQueryInterface looks up iid in the macro-generated tables
 return (HRESULT) pThis->ExternalQueryInterface(&iid, ppvObj);
}

///

STDMETHODIMP CText::XPersistStream::GetClassID(LPCLSID lpClassID)
{
 TRACE("Entering CText::XPersistStream::GetClassID\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 *lpClassID = CText::guid;
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::IsDirty()
{
 TRACE("Entering CText::XPersistStream::IsDirty\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Load(LPSTREAM pStm)
{
 ULONG nLength;
 STATSTG statstg;

 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 if(pThis->m_pchText != NULL)
 { delete [] pThis->m_pchText; }
 // don't need to free statstg.pwcsName because of NONAME flag
 VERIFY(pStm->Stat(&statstg, STATFLAG_NONAME) == NOERROR);
 int nSize = statstg.cbSize.LowPart; // assume < 4 GB
 if(nSize > 0) {
 pThis->m_pchText = new char[nSize];
 pStm->Read(pThis->m_pchText, nSize, &nLength);
 }

 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Save(LPSTREAM pStm, BOOL fClearDirty)
{
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 int nSize = strlen(pThis->m_pchText) + 1;
 pStm->Write(pThis->m_pchText, nSize, NULL);
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::GetSizeMax(ULARGE_INTEGER FAR* pcbSize)
{
 TRACE("Entering CText::XPersistStream::GetSizeMax\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 pcbSize->LowPart = strlen(pThis->m_pchText) + 1;
 pcbSize->HighPart = 0; // assume < 4 GB
 return NOERROR;
}

Add code for GetText() and SetText().

VARIANT CText::GetText()
{
 return COleVariant(m_pchText).Detach();
}

void CText::SetText(const VARIANT FAR& newValue)
{
 CString strTemp;
 ASSERT(newValue.vt == VT_BSTR);
 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 strTemp = newValue.bstrVal; // converts to narrow chars
 m_pchText = new char[strTemp.GetLength() + 1];
 strcpy(m_pchText, strTemp);
}

Build MYMFC31B to generate the DLL. Make sure there is no error or warning. Then, use regsvr32 to register the
component as shown below so that MYMFC31C is ready to be used. To test MYMFC31B we need a client
program, MYMFC31C.

Figure 31: Registering mymfc31b.dll using regsvr32 at command prompt.

ClassWizard generated the CText class as an ordinary Automation component. The IPersistStream interface
was added manually. Look carefully at the XPersistStream::Load and XPersistStream::Save
functions. The Load() function allocates heap memory and then calls IStream::Read to load the contents of
the stream. The Save() function copies the object's data to the stream by calling IStream::Write.

The MYMFC31C Example: A Persistent Storage Client Program

This program is similar to MYMFC31A in function, indeed, the storage files are compatible. Internally, however,
both worker threads use the persistent COM class CText (MYMFC31B) for loading and storing text.
To prepare MYMFC31C, open the mymfc31c.dsw workspace and build the project. Run the program from the
debugger, first choosing Write from the Storage menu and then choosing Read. Observe the output in the Debug
window or you can start it from scratch.

The MYMFC31C From Scratch

This is an SDI application without Automation and ActiveX Controls support.

Figure 32: MYMFC31C – Visual C++ new project dialog.

Figure 33: MYMFC31C – AppWizard step 1 of 6, select Single document.

Figure 34: MYMFC31C – AppWizard step 2 of 6.

Figure 35: MYMFC31C – AppWizard step 3 of 6, deselect Automation and ActiveX Controls.

Figure 36: MYMFC31C – AppWizard step 4 of 6.

Figure 37: MYMFC31C – AppWizard step 5 of 6.

Figure 38: MYMFC31C – AppWizard step 6 of 6.

Figure 39: MYMFC31C project summary.

Add the following menu items.

ID Caption
- Storage
ID_STORAGE_READ Read
ID_STORAGE_WRITE Write

Table 12.

Figure 40: Adding Write menu item.

Figure 41: Adding Read menu item.

Figure 42: A completed MYMFC31C menus.

Use ClassWizard to add command handlers for the previous menu items as shown in the following Table to
CMymfc31cView class.

ID Type Function
ID_STORAGE_READ Command OnStorageRead()
ID_STORAGE_WRITE Command OnStorageWrite()

Table 13.

Figure 43: Adding command handlers to CMymfc31cView class.

Add codes to the command handlers.

void CMymfc31cView::OnStorageRead()
{
 // TODO: Add your command handler code here
 CWinThread* pThread = AfxBeginThread(ReadThreadProc, GetSafeHwnd());
}

void CMymfc31cView::OnStorageWrite()
{
 // TODO: Add your command handler code here
 CWinThread* pThread = AfxBeginThread(WriteThreadProc, GetSafeHwnd());
}

Listing 8.

Add the #include directive to mymfc31aView.cpp.

#include "Thread.h"

Listing 9.

Add Thread.h, WriteThread.cpp and ReadThread.cpp files, the modified version of MYMFC31A to the project.
Copy and paste the codes (provided in the following Listings) to the respective files.

Figure 44: Adding new files to project.

Figure 45: Adding Thread.h file to MYMFC31C. Repeat for other two source files.

http://www.tenouk.com/visualcplusmfc/mfcsupp/Thread.h
http://www.tenouk.com/visualcplusmfc/mfcsupp/WriteThread.cpp
http://www.tenouk.com/visualcplusmfc/mfcsupp/ReadThread.cpp

Add the following lines in your StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> // for wide-character conversion

Then delete the following line (or commented out):

#define VC_EXTRALEAN

Listing 10.

Add MYMFC31B class from the type library to the project. Click Add Class button in ClassWizard and select
From a type library button.

Figure 46: Adding new class from type library.

Figure 47: Browsing and selecting the mymfc31b.tlb type library file.

Figure 48: IText class from MYMFC31B addition confirmation dialog.

You can verify the added class through ClassView.

Figure 49: Verifying the added class through ClassView.

Build and run in debug mode. Click the Write menu.

Figure 50: MYMFC31C in action.

Figure 51: The write operation message box displayed.

Then, click the Read menu.

Figure 52: testing the Read menu, provided the previous write operation was successful.

Figure 53: The completed read operation message box.

Check the Debug window. It will look something like this (the storage and stream should be different with yours).

Storage = mfcjadik
 Storage = final
 Stream = \mfcjadik\final\log.txt

Loaded 'C:\WINDOWS\system32\xpsp2res.dll', no matching symbolic information found.
Warning: CreateDispatch returning scode = REGDB_E_CLASSNOTREG ($80040154).
 Storage = myscribble
 Storage = Debug
 Stream = \mfcjadik\myscribble\ReadMe.txt
==

Warning: CreateDispatch returning scode = REGDB_E_CLASSNOTREG ($80040154).
 Storage = res
Storage = mfcproject
 Storage = bkup
 Storage = mymfc29A
 Storage = Debug
 Stream = \mfcproject\bkup\mymfc29A\ReadMe.txt
==
…
[Trimmed]
…
==

Warning: CreateDispatch returning scode = REGDB_E_CLASSNOTREG ($80040154).
 Storage = res
 Storage = myproject

 Storage = childprocess
Storage = Debug
 Storage = console
Storage = Debug
 Storage = crtexecprog
…
[Trimmed]
…
Storage = Debug
Storage = Release
 Storage = testmydllruntime
Storage = Debug
 Storage = testsharedll
Storage = Debug
 Storage = win32prog
Storage = Debug
 Storage = myuserprog
 Storage = myuserprog
Storage = Debug
 Storage = RECYCLER
 Storage = NPROTECT
 Storage = S-1-5-21-1343024091-1647877149-
 Storage = S-1-5-21-1547161642-1580818891-
Storage = Df1
 Storage = Debug
 Stream = \RECYCLER\S-1-5-21-1547161642-1580818891-725345543-1003\Df1\ReadMe.txt
==

Warning: CreateDispatch returning scode = REGDB_E_CLASSNOTREG ($80040154).
 Storage = res
 Storage = S-1-5-21-1547161642-1580818891-
 Storage = S-1-5-21-1757981266-1202660629-
 Storage = S-1-5-21-448539723-1364589140-8
 Storage = S-1-5-21-448539723-1364589140-8
 Storage = S-1-5-21-602162358-1682526488-8
 Storage = System Volume Information
The thread 0x968 has exited with code 0 (0x0).
The thread 0x970 has exited with code 0 (0x0).
The thread 0x8C has exited with code 0 (0x0).
The thread 0xBCC has exited with code 0 (0x0).
The thread 0x8E4 has exited with code 0 (0x0).
The thread 0x8DC has exited with code 0 (0x0).
The program 'F:\mfcproject\mymfc31c\Debug\mymfc31c.exe' has exited with code 0 (0x0).

Verify the directdll.stg file creation.

Figure 54: Verifying the directdll.stg file creation during the previous write operation.

The menu, the view class, and the application class are the same as the MYMFC31A versions. Only the thread code
is different. Listing 11 lists the code for both the WriteThread.cpp and the ReadThread.cpp files.

WRITETHREAD.CPP

// WriteThread.cpp (MYMFC31C)

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

CLSID g_clsid; // for the Text server
int g_nIndent = 0;
const char* g_szBlanks = " ";
const char* g_szRootStorageName = "\\directdll.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"MYMFC31B.TEXT", &g_clsid);
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}

void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;
 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[100];
 char szStreamName[100];
 char szData[81];
 char* pch = NULL;

 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);
 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, '!')) != NULL) {
 *pch = '|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath,fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = '\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4, g_szBlanks,
szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();

 }
 else {
 if ((pch = strrchr(fData.cFileName, '.')) != NULL) {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = '\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 80)) {
 TRACE("%s\n", szData);
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 IText text;
 //VERIFY
 if(text.CreateDispatch(g_clsid)) //;
 {
 text.m_lpDispatch->QueryInterface(IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 text.SetText(COleVariant(szData));
 pPersistStream->Save(pStream, TRUE);
 pPersistStream->Release();
 pStream->Release();
 }
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent--;
}

READTHREAD.CPP

// ReadThread.cpp (MYMFC31C)

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

UINT ReadThreadProc(LPVOID pParam)
{
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"MYMFC31B.TEXT", &g_clsid);
 LPSTORAGE pStgRoot = NULL;
 if(::StgOpenStorage(L"\\DIRECTDLL.STG", NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK)
 {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();

 }
 else {
 AfxMessageBox("Storage file not available or not readable");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage -- recursive calls for substorages
{
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 STATSTG statstg;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 if(pStg->EnumElements(0, NULL, 0, &pEnum) != NOERROR)
 {
 ASSERT(FALSE);
 return;
 }
 while(pEnum->Next(1, &statstg, NULL) == NOERROR)
 {
 if(statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if(statstg.type == STGTY_STREAM)
 {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 IText text;
 //VERIFY
 if(text.CreateDispatch(g_clsid)) //;
 {
 text.m_lpDispatch->QueryInterface(IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 pPersistStream->Load(pStream);
 pPersistStream->Release();
 COleVariant va = text.GetText();
 ASSERT(va.vt == VT_BSTR);
 CString str = va.bstrVal;
 TRACE("%s\n", str);
 pStream->Release();
 }
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 ::CoTaskMemFree(statstg.pwcsName);
 }
 pEnum->Release();
 g_nIndent--;
}

Listing 11: The code listing for the two worker threads in MYMFC31C.

Look at the second half of the ReadDirectory() function in the WriteThread.cpp file in Figure 27-5. For each
TXT file, the program constructs a CText object by constructing an IText driver object and then calling
CreateDispatch(). Then it calls the SetText() member function to write the first line of the file to the
object. After that, the program calls IPersistStream::Save to write the object to the compound file. The
CText object is deleted after the IPersistStream pointer is released and after the IText object is deleted,
releasing the object's IDispatch pointer.
Now look at the second half of the ReadStorage() function in the ReadThread.cpp file. Like
ReadDirectory(), it constructs an IText driver object and calls CreateDispatch(). Then it calls
QueryInterface() to get the object's IPersistStream pointer, which it uses to call Load(). Finally, the
program calls GetText() to retrieve the line of text for tracing.
As you've learned already, a COM component usually implements IPersistStorage, not IPersistStream.
The CText class could have worked this way, but then the compound file would have been more complex because
each TXT file would have needed both a storage element (to support the interface) and a subsidiary stream element
(to hold the text).
Now get ready to take a giant leap. Suppose you have a true creatable-by-CLSID COM component that supports the
IPersistStorage interface. Recall the IStorage functions for class IDs. If a storage element contains a class
ID, together with all the data an object needs, COM can load the server, use the class factory to construct the object,
get an IPersistStorage pointer, and call Load() to load the data from a compound file. This is a preview of
compound documents, which you'll see in Module 27.

Compound File Fragmentation

Structured storage has a dark side. Like the disk drive itself, compound files can become fragmented with frequent
use. If a disk drive becomes fragmented, however, you still have the same amount of free space. With a compound
file, space from deleted elements isn't always recovered. This means that compound files can keep growing even if
you delete data.
Fortunately, there is a way to recover unused space in a compound file. You simply create a new file and copy the
contents. The IStorage::CopyTo function can do the whole job in one call if you use it to copy the root storage.
You can either write a stand-alone utility or build a file regeneration capability into your application.

Other Compound File Advantages

You've seen how compound files add a kind of random access capability to your programs, and you can appreciate
the value of transactioning. Now consider the brave new world in which every program can read any other
program's documents. We're not there yet, but we have a start. Compound files from Microsoft applications have a
stream under the root storage named \005SummaryInformation. This stream is formatted as a property set, as
defined for ActiveX controls. If you can decode the format for this stream, you can open any conforming file and
read the summary.
Visual C++ comes with a compound file viewing utility named DocFile Viewer (Dfview.exe), which uses a tree
view to display the file's storages and streams.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc27.html

Figure 55: Using DocFile Viewer to view structured storage file.

Here is the DocFile Viewer output for the structured storage file generated by MYMFC31C (directdll.stg).

Figure 56: MYMFC31C’s directdll.stg structured storage file content.

As a matter of fact, you can use DocFile Viewer to view the structure of any compound file. Are you starting to see
the potential of this "universal file format?"

---------------------End------------------

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward

compatible with 6.0 class library
3. MSDN Library
4. DCOM at MSDN.
5. COM+ at MSDN.
6. COM at MSDN.
7. Windows data type.
8. Win32 programming Tutorial.
9. The best of C/C++, MFC, Windows and other related books.
10. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

