
Automation part 2

Program examples compiled using Visual C++ 6.0 compiler on Windows XP Pro machine with Service Pack 2. The
Excel version is Excel 2003/Office 11. Topics and sub topics for this tutorial are listed below. Don’t forget to read
Tenouk’s small disclaimer. The supplementary notes for this tutorial are mymfc29C.xls, automation, variant and
COlevariant class.

Index:

The MYMFC29C SDI Automation Component - EXE Example: with User Interface
MYMFC29C From Scratch
CMymfc29CDoc class
CMainFrame class
CMymfc29CView class
The Story

The MYMFC29C SDI Automation Component
EXE Example: with User Interface

This Automation component example illustrates the use of a document component class in an SDI application in
which a new process is started for each object. This component program demonstrates an indexed property plus a
method that constructs a new COM object.
The first Automation component example you saw, MYMFC29A, didn't have a user interface. The global class
factory constructed a CBank object that did the component's work. What if you want your EXE component to have
a window? If you've bought into the MFC document-view architecture, you'll want the document, view, and frame,
with all the benefits they provide.
Suppose you created a regular MFC application and then added a COM-creatable class such as CBank. How do you
attach the CBank object to the document and view? From a CBank class member function, you could navigate
through the application object and main frame to the current document or view, but you'd have a tough time in an
MDI application if you encountered several component objects and several documents. There is a better way. You
make the document class the creatable class, and you have the full support of AppWizard for this task. This is true
for both MDI and SDI applications.
The MDI MSDN’s Autoclik example demonstrates how COM triggers the construction of new document, view, and
child frame objects each time an Automation client creates a new component object. Because the MYMFC29C
example is an SDI program, Windows starts a new process each time the client creates an object. Immediately after
the program starts, COM, with the help of the MFC application framework, constructs not only the Automation-
aware document but also the view and the main frame window.
Now is a good time to experiment with the MYMFC29C application, which was first generated by AppWizard with
the Automation option checked. It's a Windows-based alarm clock program designed to be manipulated from an
Automation client such as Excel. MYMFC29C has the following properties and methods.

Method/property Description
Time DATE property that holds a COM DATE (m_Time)

Figure Indexed VARIANT property for the four figures on the clock face
(m_strFigure[])

RefreshWin Method that invalidates the view window and brings the main frame window to the
top (Refresh)

ShowWin Method that displays the application's main window (ShowWin)

CreateAlarm Method that creates a CAlarm object and returns its IDispatch pointer
(CreateAlarm)

Table 1.

Here are the steps for building and running an already completed MYMFC29C.

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/mymfc29C.xls
http://www.tenouk.com/visualcplusmfc/mfcsupp/automation.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/variant.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/colevariantclass.html
http://msdn2.microsoft.com/en-us/library/1370z17c(vs.80).aspx

From Visual C++, open the workspace mymfc29C.dsw or any directory that you have designated for your project.
Build the project to produce the mymfc29C.exe file in the project's Debug subdirectory.

Run the program once to register it. The program is designed to be executed either as a standalone application or
as an Automation component. When you run it from Windows or from Visual C++, it updates the Registry
automatically and displays the face of a clock with the characters XII, III, VI, and IX at the 12, 3, 6, and 9
o'clock positions. Exit the program.

Next, load the mymfc29C.xls Excel workbook file. The worksheet should look something like the one shown here.

Figure 1: mymfc29C.xls, a client, to test MYMFC29C component.

Click the Load Clock button, and then double-click the Set Alarm button. There could be a long delay after you
click the Load Clock button, depending on your system. The clock should appear as shown below, with the letter A
indicating the alarm setting.

Figure 2: Alarm is set through a client.

http://www.tenouk.com/visualcplusmfc/mfcsupp/mymfc29C.xls

If you've started the component program from the debugger, you can watch the Debug window to see when
InitInstance() is called and when the document object is constructed.

MYMFC29C From Scratch

To experience a real programming, the following are steps to build MYMFC29C from scratch. Have a good
practice! This is an SDI application with Automation support.

Figure 3: Visual C++ new project dialog.

Select the Single Document.

Figure 4: MYMFC29C – AppWizard step 1 of 6, SDI application.

Figure 5: MYMFC29C – AppWizard step 2 of 6.

Don’t forget to select Automation option.

Figure 6: MYMFC29C – AppWizard step 3 of 6.

Figure 7: MYMFC29C – AppWizard step 4 of 6.

Click the Advanced button. Here, we just use the default settings for Localized strings. Take note that the Doc type
name has the maximum six characters.

Figure 8: MYMFC29C – AppWizard default Localized strings.

Figure 9: MYMFC29C – AppWizard step 5 of 6.

Figure 10: MYMFC29C – AppWizard step 6 of 6.

Figure 11: MYMFC29C project summary.

Let create our own icon for this project. Before that, disable the IDR_MFC29CTYPE icon by enclosing it in double
quotes.

Figure 12: Disabling the default icon.

You can verify it through the View Resource Symbols menu.

Figure 13: Viewing resource symbols.

Figure 14: MYMFC29C resource symbols.

Modify the icon for both the Standard (32 x 32) and Small (16 x 16).

Figure 15: Standard icon.

Figure 16: Small icon.

Create a new CAlarm class using ClassWizard.

Figure 17: Creating and adding new class to a project using ClassWizard.

Don’t forget to select the Automation support option.

Figure 18: Entering CAlarm class information.

Let do a clean-up by rebuilding the ClassWizard database. Delete the CLW file under the project directory.

Figure 19: Deleting the ClassWizard database file.

Then launch ClassWizard, the following prompt will be displayed. Just click the Yes button for the following
prompt.

Figure 20: Building ClassWizard database prompt.

And click the OK button for the following dialog.

Figure 21: ClassWizard database building files inclusion dialog.

Figure 22: CAlarm class in ClassWizard.

Add property to CAlarm without notification function. Select the Automation tab of the ClassWizard. Then click
the Add Property button.

Figure 23: Adding property and method through Automation page of ClassWizard.

Add Time property, fill up as shown below.

Figure 24: Adding Time property.

In Alarm.h, replace:

DECLARE_DYNCREATE(CAlarm)

with

DECLARE_DYNAMIC(CAlarm)

Listing 1.

Modify the protected constructor to become public (or you can use friend keyword) and add the following
parameter.

DATE time

Listing 2.

In Alarm.cpp change:

IMPLEMENT_DYNCREATE(CAlarm, CCmdTarget)

to

IMPLEMENT_DYNAMIC(CAlarm, CCmdTarget)

Listing 3.

Then, modify the CAlarm constructor as shown below.

CAlarm::CAlarm(DATE time)
{
 TRACE("Entering CAlarm ctor -- vaTime = %f\n", (double) time);
 m_time = time;
 EnableAutomation();
}

Listing 4.

Add the following properties and methods for the CMymfc29CDoc class through the Automation tab of the
ClassWizard.

Name Description
Time DATE property that holds a COM DATE (m_time)
Figure Indexed VARIANT property for the four figures on the clock face (m_strFigure[])

RefreshWin Method that invalidates the view window and brings the main frame window to the top
(Refresh)

ShowWin Method that displays the application's main window (ShowWin)

CreateAlarm Method that creates a CAlarm object and returns its IDispatch pointer
(CreateAlarm)

Table 2.

Launch ClassWizard and click the Automation tab, select CMymfc29CDoc in Class name combo box and click
Add Property button and fill in the information as shown in the following Figures.

Figure 25: Adding property through Automation page of ClassWizard.

Fill up the property information as shown in the following Figures.

Figure 26: Time property.

Figure 27: Figure property.

Click the Add Method button and add methods as shown in the following Figures.

Figure 28: RefreshWin method.

Figure 29: ShowWin method.

Figure 30: CreateAlarm method.

Figure 31: The added properties and methods to CMymfc29Doc class.

Add the SaveModified() message handler to CMymfc29CDoc class.

Figure 32: Adding SaveModified() message handler to CMymfc29CDoc class.

CMymfc29CDoc class

Add public member variables for the mymfc29CDoc class in the mymfc29CDoc.h.

public:
 CString m_strFigure[4];

CAlarm * m_pAlarm;

Listing 5.

Edit/add codes for methods, properties and message handlers of the CMymfc29C1Doc class as shown in the
following.

CMymfc29CDoc::CMymfc29CDoc()
{
 // TODO: add one-time construction code here
 TRACE("Entering CMymfc29CDoc ctor\n");
 m_time = COleDateTime(0, 0, 0, 5, 10, 15);
 // bogus initial values
 m_strFigure[0] = "XII"; m_strFigure[1] = "III";
 m_strFigure[2] = "VI"; m_strFigure[3] = "IX";
 m_pAlarm = NULL;

 EnableAutomation();

 AfxOleLockApp();
}

Listing 6.

VARIANT CMymfc29CDoc::GetFigure(short n)
{
 TRACE("Entering CMymfc29CDoc::GetFigure -- n = %d m_strFigure[n] =
%s\n",
 n, m_strFigure[n]);
 return COleVariant(m_strFigure[n]).Detach();

}

Listing 7.

void CMymfc29CDoc::SetFigure(short n, const VARIANT FAR& newValue)
{
 // TODO: Add your property handler here
 TRACE("Entering CMymfc29CDoc::SetFigure -- n = %d, vt = %d\n", n,
 newValue.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &newValue);
 m_strFigure[n] = vaTemp.bstrVal; // converts double-to-single
}

Listing 8.

void CMymfc29CDoc::ShowWin()
{
 // TODO: Add your dispatch handler code here
 TRACE("Entering CMymfc29CDoc::ShowWin\n");
 CRect rectWindow;
 CWnd* pFrm = AfxGetApp()->m_pMainWnd;
 pFrm->GetWindowRect(rectWindow);
 WINDOWPLACEMENT wndpl;
 wndpl.length = sizeof(WINDOWPLACEMENT);
 wndpl.showCmd = SW_SHOWNORMAL;
 wndpl.rcNormalPosition.left = rectWindow.left;
 wndpl.rcNormalPosition.top = rectWindow.top;
 wndpl.rcNormalPosition.right = rectWindow.left + 150;
 wndpl.rcNormalPosition.bottom = rectWindow.top + 150;
 pFrm->SetWindowPlacement(&wndpl);
 pFrm->ShowWindow(AfxGetApp()->m_nCmdShow);
 pFrm->UpdateWindow();
 pFrm->BringWindowToTop();
}

Listing 9.

LPDISPATCH CMymfc29CDoc::CreateAlarm(DATE time)
{
 // TODO: Add your dispatch handler code here
 TRACE("Entering CMymfc29CDoc::CreateAlarm, time = %f\n", time);
 // OLE deletes any prior CAlarm object
 m_pAlarm = new CAlarm(time);
 return m_pAlarm->GetIDispatch(FALSE); // no AddRef here
}

BOOL CMymfc29CDoc::SaveModified()
{
 // TODO: Add your specialized code here and/or call the base class
 return TRUE;
}

Listing 10.

CMainFrame class

Add the following statement in the CMainFrame::PreCreateWindow function to disable the menu.

cs.hMenu = NULL; // no menu
 return CFrameWnd::PreCreateWindow(cs);

Listing 11.

CMymfc29CView class

Using ClassView or manually add the following data members in mymfc29CView.h.

private:
 static const int nX[60];
 static const int nY[60];
 CFont m_font;

Listing 12.

Add the following in the mymfc29CView.cpp.

// computer-generated x-y coordinates for 60 points around a circle
const int CMymfc29CView::nX[] = {
 0, 105, 208, 309, 407, 500, 588, 669, 743, 809, 866, 914,
 951, 978, 995, 1000, 995, 978, 951, 914, 866, 809, 743, 669,
 588, 500, 407, 309, 208, 105, 0, -104, -207, -308, -406, -499,
 -587, -668, -742, -808, -865, -913, -950, -977, -994, -999, -994, -977,
 -950, -913, -865, -808, -742, -668, -587, -499, -406, -308, -207, -104 };
const int CMymfc29CView::nY[] = {
 999, 994, 978, 951, 913, 866, 809, 743, 669, 587, 499, 406,
 309, 207, 104, 0, -104, -207, -309, -406, -499, -587, -669, -743,
 -809, -866, -913, -951, -978, -994, -999, -994, -978, -951, -913, -866,
 -809, -743, -669, -587, -500, -406, -309, -207, -104, 0, 104, 207,
 309, 406, 499, 587, 669, 743, 809, 866, 913, 951, 978, 994 };

Listing 13.

Add the code for the CMymfc29CView::OnDraw() member function.

void CMymfc29CView::OnDraw(CDC* pDC)
{
 CMymfc29CDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 CRect rectClient;
 CPen pen0(PS_SOLID, 0, (COLORREF) 0);
 CPen pen1(PS_SOLID, 20, (COLORREF) 0);
 CPen pen2(PS_SOLID, 30, (COLORREF) 0);
 int i, j, n, m, nS, nM, nH;
 CSize sz;
 pDC->SetMapMode(MM_ISOTROPIC);
 GetClientRect(rectClient);
 pDC->SetWindowExt(2400, 2400);
 pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
 pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2);
 pDC->SelectObject(&m_font);
 pDC->SelectObject(&pen0);
 for(i = 0; i < 60; i++) { // second/minute ticks
 pDC->MoveTo(nX[i], nY[i]);
 pDC->LineTo(nX[i] * 9 / 10, nY[i] * 9 / 10);
 }
 pDC->SelectObject(&pen1);
 for(i = 0; i < 12; i++) { // hour ticks
 j = i * 5;
 pDC->MoveTo(nX[j], nY[j]);
 pDC->LineTo(nX[j] * 8 / 10, nY[j] * 8 / 10);
 }
 for(i = 0; i < 4; i++) { // figures
 j = i * 15;
 sz = pDC->GetTextExtent(pDoc->m_strFigure[i], pDoc-
>m_strFigure[i].GetLength());
 n = nX[j] * 10 / 9 - sz.cx / 2;
 m = nY[j] * 10 / 9 + sz.cy / 2;
 pDC->TextOut(n, m, pDoc->m_strFigure[i]);
 }

 // draw the clock hands
 COleDateTime dt = pDoc->m_time;
 nH = dt.GetHour();
 nM = dt.GetMinute();
 nS = dt.GetSecond();
 pDC->SelectObject(&pen0);
 i = nS;
 pDC->MoveTo(0, 0);
 pDC->LineTo(nX[i], nY[i]); // seconds

 pDC->SelectObject(&pen1);
 i = nM;
 pDC->MoveTo(0, 0);
 pDC->LineTo(nX[i] * 8 / 10, nY[i] * 8 / 10); // minutes

 pDC->SelectObject(&pen2);
 i = nH * 5;
 i = (i % 60) + nM / 12;
 pDC->MoveTo(0, 0);
 pDC->LineTo(nX[i] * 6 / 10, nY[i] * 6 / 10); // hours

 pDC->SelectStockObject(BLACK_PEN);
 CAlarm* pAlarm;
 if((pAlarm = pDoc->m_pAlarm) != NULL) {

 COleDateTime dt = pAlarm->m_time;
 nH = dt.GetHour();
 nM = dt.GetMinute();
 nS = dt.GetSecond();
 TRACE("dt = %f, nH = %d, nM = %d, nS = %d\n", dt.m_dt, nH, nM, nS);
 i = nH * 5;
 i = (i % 60) + nM / 12;
 pDC->TextOut(nX[i] * 8 / 10, nY[i] * 8 / 10, "A"); // alarm
 }
}

Add the WM_CREATE Windows message handler.

Figure 33: Adding WM_CREATE Windows message handler to CMymfc29CView class.

Then, add/edit the OnCreate() code.

int CMymfc29CView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;
 m_font.CreateFont(150, 0, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS,
 "Arial");
 return 0;
}

Listing 14.

Add the #include statement for the mymfc29CView.cpp.

#include "Alarm.h"

Listing 15.

Change the protected OLE dispatch map functions in mymfc29CDoc.h to public (or you can use friend
keyword).

Listing 16.

Also change the protected OLE dispatch map functions in Alarm.h to public (or you can use friend
keyword).

Listing 17.

Add the #include statement to the mymfc29C.cpp and mymfc29CDoc.cpp file.

#include "Alarm.h"

Listing 18.

Listing 19.

Build the program and make sure there is no error. Next, we need a client to test our component.

For the Excel, launch Excel, save the file as mymfc29C.xls and invoke the Visual Basic editor. Double-click the
sheet1 on the top-left window. Copy and paste the following macros.

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
 Set Clock = CreateObject("Mymfc29C.Document")
 Range("A3").Select
 n = 0
 Do Until n < 4
 Clock.figure(n) = Selection.Value
 Selection.Offset(0, 1).Range("A1").Select
 n = n + 1
 Loop
 RefreshClock
 Clock.ShowWin
End Sub

Sub RefreshClock()
 Clock.Time = Now()
 Clock.RefreshWin
End Sub

Sub CreateAlarm()
 Range("E3").Select
 Set Alarm = Clock.CreateAlarm(Selection.Value)
 RefreshClock
End Sub

Sub UnloadClock()
 Set Clock = Nothing
End Sub

http://www.tenouk.com/visualcplusmfc/mfcsupp/mymfc29C.xls

Figure 34: Creating macros with Visual Basic editor.

Arrange the buttons as shown below and assign the previously created macros to the buttons appropriately. Be
careful, the cells in macro code should match with the Excel cell.

Figure 35: mymfc29C.xls button layout.

Next, we are going to test the MYMFC29C component. Click the Load Clock button.

Figure 36: mymfc29C.xls, a client program in action.

The following clock is launched. At the same time XII, III, VI and IX value will be displayed in the appropriate
Excel cells. Type the alarm in E3 cell and click the Set Alarm button. The alarm will be set in the clock as shown in
Figure 38.

Figure 37: Clock (component) triggered through client program (Excel).

Figure 38: Alarm was set through a client.

Figure 39: MYMFC29C in action, component and client side-by-side.

The Story

If you're wondering why there's no menu, it's because of the following statement in the
CMainFrame::PreCreateWindow function:

cs.hMenu = NULL; // no menu
 return CFrameWnd::PreCreateWindow(cs);

Listing 20.

Close the Clock program and then click the Unload Clock button. If you've started the component program from
the debugger, you can watch the Debug window for a message box that indicates that the ExitInstance()
function is called.

AppWizard did most of the work of setting up the document as an Automation component. In the derived
application class CMymfc29CApp, it generated a data member for the component, as shown here:

public:
 COleTemplateServer m_server;

The MFC COleTemplateServer class is derived from COleObjectFactory. It is designed to create a COM
document object when a client calls IClassFactory::CreateInstance. The class ID comes from the
global clsid variable defined in mymfc29C.cpp. The human-readable program ID (Mymfc29C.Document) comes
from the IDR_MAINFRAME string resource.

In the InitInstance() function (in mymfc29C.cpp), AppWizard generated the code below, which connects the
component object (the document) to the application's document template.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CMymfc29CDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMymfc29CView));
AddDocTemplate(pDocTemplate);
.
.
.
m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

Now all the plumbing is in place for COM and the framework to construct the document, together with the view and
frame. When the objects are constructed, however, the main window is not made visible. That's your job. You must
write a method that shows the window.

The following UpdateRegistry() call from the InitInstance() function updates the Windows Registry
with the contents of the project's IDR_MAINFRAME string resource:

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);

The following dispatch map in the mymfc29CDoc.cpp file shows the properties and methods for the
CMymfc29CDoc class. Note that the Figure property is an indexed property that ClassWizard can generate if you
specify a parameter. Later you'll see the code you have to write for the GetFigure() and SetFigure()
functions.

...
BEGIN_DISPATCH_MAP(CMymfc29CDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CMymfc29CDoc)
 DISP_PROPERTY_NOTIFY(CMymfc29CDoc, "Time", m_time, OnTimeChanged,
 VT_DATE)
 DISP_FUNCTION(CMymfc29CDoc, "ShowWin", ShowWin, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CMymfc29CDoc, "CreateAlarm", CreateAlarm,
 VT_DISPATCH, VTS_DATE)
 DISP_FUNCTION(CMymfc29CDoc, "RefreshWin", Refresh, VT_EMPTY,
 VTS_NONE)
 DISP_PROPERTY_PARAM(CMymfc29CDoc, "Figure", GetFigure, SetFigure,
 VT_VARIANT, VTS_I2)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
...

The ShowWin() and RefreshWin() member functions aren't very interesting, but the CreateAlarm()
method is worth a close look. Here's the corresponding CreateAlarm() member function:

LPDISPATCH CMymfc29CDoc::CreateAlarm(DATE time)
{
 TRACE("Entering CMymfc29CDoc::CreateAlarm, time = %f\n", time);
 // OLE deletes any prior CAlarm object
 m_pAlarm = new CAlarm(time);
 return m_pAlarm->GetIDispatch(FALSE); // no AddRef() here

}

We've chosen to have the component create an alarm object when a controller calls CreateAlarm(). CAlarm is
an Automation component class that we've generated with ClassWizard. It is not COM-creatable, which means
there's no IMPLEMENT_OLECREATE macro and no class factory. The CreateAlarm() function constructs a
CAlarm object and returns an IDispatch pointer. The FALSE parameter for CCmdTarget::GetIDispatch
means that the reference count is not incremented; the CAlarm object already has a reference count of 1 when it is
constructed.
The CAlarm class is declared in Alarm.h as follows:

class CAlarm : public CCmdTarget
{
 DECLARE_DYNAMIC(CAlarm)
public:
 CAlarm(DATE time);

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAlarm)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CAlarm();

 // Generated message map functions
 //{{AFX_MSG(CAlarm)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
public:
 //{{AFX_DISPATCH(CAlarm)
 DATE m_time;
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

Notice the absence of the DECLARE_DYNCREATE macro. Alarm.cpp contains a dispatch map, as follows:

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAlarm)
 DISP_PROPERTY(CAlarm, "Time", m_time, VT_DATE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

Why do we have a CAlarm class? We could have added an AlarmTime property in the CMymfc29CDoc class
instead, but then we would have needed another property or method to turn the alarm on and off. By using the
CAlarm class, what we're really doing is setting ourselves up to support multiple alarms, a collection of alarms.

To implement an Automation collection, we would write another class, CAlarms, which would contain the
methods Add, Remove, and Item. Add and Remove are self-explanatory; Item returns an IDispatch pointer for
a collection element identified by an index, numeric, or some other key. We would also implement a read-only
Count property that returned the number of elements. The document class (which owns the collection) would have
an Alarms method with an optional VARIANT parameter. If the parameter were omitted, the method would return
the IDispatch pointer for the collection. If the parameter specified an index, the method would return an
IDispatch pointer for the selected alarm.
If we wanted our collection to support the VBA "For Each" syntax, we'd have some more work to do. We'd add an
IEnum VARIANT interface to the CAlarms class to enumerate the collection of variants and implement the
Next() member function of this interface to step through the collection. Then we'd add a CAlarms method
named _NewEnum that returned an IEnumVARIANT interface pointer. If we wanted the collection to be general,
we'd allow separate enumerator objects (with an IEnumVARIANT interface) and we'd implement the other
IEnumVARIANT functions, Skip(), Reset(), and Clone().
The Figure property is an indexed property, which makes it interesting. The Figure property represents the four
figures on the clock face, XII, III, VI, and IX. It's a CString array, so we can use Roman numerals. Here's the
declaration in mymfc29CDoc.h:

public:
 CString m_strFigure[4];

And here are the GetFigure() and SetFigure() functions in mymfc29CDoc.cpp:

VARIANT CMymfc29CDoc::GetFigure(short n)
{
 TRACE("Entering CMymfc29CDoc::GetFigure -- n = %d m_strFigure[n] =
%s\n", n, m_strFigure[n]);
 return COleVariant(m_strFigure[n]).Detach();
}

void CMymfc29CDoc::SetFigure(short n, const VARIANT FAR& newValue)
{
 TRACE("Entering CMymfc29CDoc::SetFigure -- n = %d, vt = %d\n", n,
 newValue.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &newValue);
 m_strFigure[n] = vaTemp.bstrVal; // converts double-to-single
}

These functions tie back to the DISP_PROPERTY_PARAM macro in the CMymfc29CDoc dispatch map. The first
parameter is the index number, specified as a short integer by the last macro parameter. Property indexes don't have
to be integers, and the index can have several components (row and column numbers, for example). The
ChangeType() call in SetFigure() is necessary because the controller might otherwise pass numbers instead
of strings. You've just seen collection properties and indexed properties. What's the difference? A controller can't
add or delete elements of an indexed property, but it can add elements to a collection and it can delete elements from
a collection. What draws the clock face? As you might expect, it's the OnDraw() member function of the view
class. This function uses GetDocument() to get a pointer to the document object, and then it accesses the
document's property data members and method member functions.
The Excel macro code appears below.

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
 Set Clock = CreateObject("Mymfc29C.Document")
 Range("A3").Select
 n = 0
 Do Until n < 4
 Clock.figure(n) = Selection.Value
 Selection.Offset(0, 1).Range("A1").Select

 n = n + 1
 Loop
 RefreshClock
 Clock.ShowWin
End Sub

Sub RefreshClock()
 Clock.Time = Now()
 Clock.RefreshWin
End Sub

Sub CreateAlarm()
 Range("E3").Select
 Set Alarm = Clock.CreateAlarm(Selection.Value)
 RefreshClock
End Sub

Sub UnloadClock()
 Set Clock = Nothing
End Sub

Notice the Set Alarm statement in the CreateAlarm macro. It calls the CreateAlarm method to return an
IDispatch pointer, which is stored in an object variable. If the macro is run a second time, a new alarm is created,
but the original one is destroyed because its reference count goes to 0.
You've seen a modal dialog in a DLL (MYMFC29B) and you've seen a main frame window in an EXE
(MYMFC29C). Be careful with modal dialogs in EXEs. It's fine to have an About dialog that is invoked directly by
the component program, but it isn't a good idea to invoke a modal dialog in an out-of-process component method
function. The problem is that once the modal dialog is on the screen, the user can switch back to the client program.
MFC clients handle this situation with a special "Server Busy" message box, which appears right away. Excel does
something similar, but it waits 30 seconds, and this could confuse the user.

Continue on next module. part 3...

----------------End Automation part 2------------
Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward

compatible with 6.0 class library
3. MSDN Library
4. DCOM at MSDN.
5. COM+ at MSDN.
6. COM at MSDN.
7. Windows data type.
8. Win32 programming Tutorial.
9. The best of C/C++, MFC, Windows and other related books.
10. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

