Module 21: Bitmaps

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Bitmaps

GDI Bitmaps and Device-Independent Bitmaps
Color Bitmaps and Monochrome Bitmaps
Using GDI Bitmaps

Loading a GDI Bitmap from a Resource
The Effect of the Display Mapping Mode
Stretching the Bits

The MYMFC26A Example

Using Bitmaps to Improve the Screen Display
The MYMFC26B Example

Windows Animation

DIBs and the CDib Class

A Few Words About Palette Programming
DIBs, Pixels, and Color Tables

The Structure of a DIB Within a BMP File
DIB Access Functions

The CDib Class

DIB Display Performance

The MYMFC26C Example

Going Further with DIBs

The Loadlmage() Function

The DrawDibDraw() Function

Putting Bitmaps on Pushbuttons

The MYMFC26D Example

Going Further with Bitmap Buttons

Bitmaps

Without graphics images, Microsoft Windows-based applications would be pretty dull. Some applications depend on
images for their usefulness, but any application can be spruced up with the addition of decorative clip art from a variety
of sources. Windows bitmaps are arrays of bits mapped to display pixels. That might sound simple, but you have to learn
a lot about bitmaps before you can use them to create professional applications for Windows.

This module starts with the "old" way of programming bitmaps, creating the device-dependent GDI bitmaps that work
with a memory device context. You need to know these techniques because many programmers are still using them and
you'll also need to use them on occasion.

Next you'll graduate to the modern way of programming bitmaps, creating device-independent bitmaps (DIBs). If you
use DIBs, you'll have an easier time with colors and with the printer. In some cases you'll get better performance. The
Win32 function CreateDIBSection() gives you the benefits of DIBs combined with all the features of GDI
bitmaps. Finally, you'll learn how to use the MFC CBitmapButton class to put bitmaps on pushbuttons. Using
CBitmapButton to put bitmaps on pushbuttons has nothing to do with DIBs, but it's a useful technique that would be
difficult to master without an example.

GDI Bitmaps and Device-Independent Bitmaps

There are two kinds of Windows bitmaps: GDI bitmaps and DIBs. GDI bitmap objects are represented by the MFC
Library version 6.0 CBitmap class. The GDI bitmap object has an associated Windows data structure, maintained
inside the Windows GDI module, which is device-dependent. Your program can get a copy of the bitmap data, but the
bit arrangement depends on the display hardware. GDI bitmaps can be freely transferred among programs on a single
computer, but because of their device dependency, transferring bitmaps by disk or modem doesn't make sense.



In Win32, you're allowed to put a GDI bitmap handle on the clipboard for transfer to another process, but behind the
scenes Windows converts the device-dependent bitmap to a DIB and copies the DIB to shared memory. That's a good
reason to consider using DIBs from the start.

DIBs offer many programming advantages over GDI bitmaps. Because a DIB carries its own color information, color
palette management is easier. DIBs also make it easy to control gray shades when printing. Any computer running
Windows can process DIBs, which are usually stored in BMP disk files or as a resource in your program's EXE or DLL
file. The wallpaper background on your monitor is read from a BMP file when you start Windows. The primary storage
format for Microsoft Paint is the BMP file, and Visual C++ uses BMP files for toolbar buttons and other images. Other
graphic interchange formats are available, such as TIFF, GIF, PNG and JPEG, but only the DIB format is directly
supported by the Win32 API.

Color Bitmaps and Monochrome Bitmaps

Now might be a good time to reread the "Windows Color Mapping" section in Module 4. As you'll see in this module,
Windows deals with color bitmaps a little differently from the way it deals with brush colors. Many color bitmaps are
16-color. A standard VGA board has four contiguous color planes, with 1 corresponding bit from each plane
combining to represent a pixel. The 4-bit color values are set when the bitmap is created. With a standard VGA board,
bitmap colors are limited to the standard 16 colors. Windows does not use dithered colors in bitmaps. A monochrome
bitmap has only one plane. Each pixel is represented by a single bit that is either off (0) or on (1). The

CDC: :SetTextColor function sets the "off" display color, and SetBkColor () sets the "on" color. You can
specify these pure colors individually with the Windows RGB macro.

Using GDI Bitmaps

A GDI bitmap is simply another GDI object, such as a pen or a font. You must somehow create a bitmap, and then you
must select it into a device context. When you're finished with the object, you must deselect it and delete it. You know
the drill.

There's a catch, though, because the "bitmap" of the display or printer device is effectively the display surface or the
printed page itself. Therefore, you can't select a bitmap into a display device context or a printer device context. You
have to create a special memory device context for your bitmaps, using the CDC: : CreateCompatibleDC function.
You must then use the CDC member function StretchBIt() or BitBIt() to copy the bits from the memory device
context to the "real" device context. These "bit-blitting" functions are generally called in your view class's OnDraw()
function. Of course, you mustn't forget to clean up the memory device context when you're finished.

Loading a GDI Bitmap from a Resource

The easiest way to use a bitmap is to load it from a resource. If you look in ResourceView in the Workspace window,
you'll find a list of the project's bitmap resources. If you select a bitmap and examine its properties, you'll see a filename

as shown below.
Bitmap Propetrties [

A ? Resounce |
10: |IDB_BMBIHD jF‘review:
Language: |English[U.5] =] BRJ
Condition; | |
File name: |[=Ea= a1 S

Figure 1: Bitmap properties dialog.

Here's an example entry in an RC (resource script) file, when viewed by a text editor:

// lcon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.


http://tenouk.com/visualcplusmfc/visualcplusmfc4.html

IDR_MAINFRAME 1CON DISCARDABLE "res\\mymfc25A._ico"

IDR_MYMFC2TYPE I1CON DISCARDABLE "res\\mymfc25ADoc. ico"
IDI_BLACK 1CON DISCARDABLE "res\\iconl.ico"
IDI_BLUE I1CON DISCARDABLE "res\\ico00001.ico"

IDI_CYAN 1CON DISCARDABLE "res\\ico00002.ico"

L11171777777777777777777777777777777777777/777777/7777////7777///77777////77777

//

// Bitmap

//

IDR_MAINFRAME BITMAP MOVEABLE PURE "res\\Toolbar _bmp"
1DB_BMBIRD BITMAP DISCARDABLE "res\\bitmapl.bmp"
1DB_BMBIRDSELECTED BITMAP DISCARDABLE ""res\\bmp00001.bmp"*
1DB_BMDOG BITMAP DISCARDABLE "res\\bmdog. bmp"*

I1DB_BMDOGSELECTED BITMAP DISCARDABLE "res\\bmp00002 . bmp**

IDB_BMBIRD is the resource ID, and the file is bitmapl.bmp in the project's \res subdirectory. The resource compiler
reads the DIB from disk and stores it in the project's RES file. The linker copies the DIB into the program's EXE file.
You know that the bitmap1l bitmap must be in device-independent format because the EXE can be run with any display
board that Windows supports.

The CDC: : LoadBitmap function converts a resource-based DIB to a GDI bitmap. Below is the simplest possible self-
contained OnDraw() function that displays the bitmapl bitmap:

CMyView: :OnDraw(CDC* pDC)

{
CBitmap bitmap; // Sequence is important

CDC dcMemory;

bitmap.LoadBitmap(1DB_BMBIRD);

dcMemory .CreateCompatibleDC(pDC);
dcMemory.SelectObject(&bitmap);

pDC->BitBIt(100, 100, 54, 96, &dcMemory, O, 0O, SRCCOPY);
// CDC destructor deletes dcMemory; bitmap is deselected
// CBitmap destructor deletes bitmap

}

The BitBIt() function copies the bitmapl pixels from the memory device context to the display (or printer) device
context. The bitmap is 54 bits wide by 96 bits high, and on a VGA display it occupies a rectangle of 54-by-96 logical
units, offset 100 units down and to the right of the upper-left corner of the window's client area. The code above works
fine for the display. The application framework calls the OnDraw() function for printing, in which case pDC points to a
printer device context. The bitmap here, unfortunately, is configured specifically for the display and thus cannot be
selected into the printer-compatible memory device context. If you want to print a bitmap, you should look at the CDib
class described later in this module.

The Effect of the Display Mapping Mode

If the display mapping mode in the bitmapl example is MM_TEXT, each bitmap pixel maps to a display pixel and the
bitmap fits perfectly. If the mapping mode is MM_LOENGL I SH, the bitmap size is 0.54-by-0.96 inch, or 52-by-92 pixels
for Windows 95 and the GDI must do some bit crunching to make the bitmap fit. Consequently, the bitmap might not
look as good with the MM_LOENGL I SH mapping mode. Calling CDC: : SetStretchBltMode with a parameter
value of COLORONCOLOR will make shrunken bitmaps look nicer.

Stretching the Bits

What if we want bitmapl to occupy a rectangle of exactly 54-by-96 pixels, even though the mapping mode is not
MM_TEXT? The StretchBlt() function is the solution. If we replace the BitBlt() call with the following three
statements, bitmapl is displayed cleanly, whatever the mapping mode:

CSize size(54, 96);



pDC->DPtoLP(&size);
pDC->StretchBlt(0, O, size.cx, -size.cy, &dcMemory, O, O, 54, 96, SRCCOPY);

With either BItBIt() or StretchBIt(), the display update is slow if the GDI has to actually stretch or compress
bits. If, as in the case above, the GDI determines that no conversion is necessary, the update is fast.

The MYMFC26A Example

The MYMFC26A example displays a resource-based bitmap in a scrolling view with mapping mode set to
MM_LOENGL I SH. The program uses the StretchBIlt() logic described above, except that the memory device
context and the bitmap are created in the view's OnInitialUpdate () member function and last for the life of the
program. Also, the program reads the bitmap size through a call to the CGd 1 Ob ject member function
GetObject(), so it's not using hard-coded values as in the preceding examples.

Here are the steps for building the example:
Run AppWizard to produce \mfcprojectimymfc26A. Accept all the default settings but two: select Single Document,

and in step 6, select the CScrol IView view base class for CMymFc26AView. The options and the default class
names are shown here.

MFC AppWizard - 5tep 6 of &

Appwiizard creates the following classes for pou;
Chivmic26a4pp
ChainFrame
ChdymfcZBaDoc

Clazz name: Header file:

|Chprnfc 268V iew e 268 iew.h

Baze class: Implementation file:
CScroltfisw |m_l,lmfn:25.f-‘n."-fiew.cpp

< Back | Einizh | Cancel

Figure 1: MYMFC26A step 6 of 6 AppWizard, using CScrol 1View as view base class.



X

Mew Project Information

Appwizard will create a new skeleton project with the following specifications:

Application twpe of mymfcZBa;
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc2Bi4pp in mymfcZBa. b and mumfc264. cpp
Frame: CMainFrame in MainFrm.h and MainFm.cpp
Dacument: CMymfc26A0ac in mmfc26400c.h and mymfc28A0 0. cpp
ScrolMiew: CMymfc2Baiiew in mymfc2Baiew. h and mymfc2Bahiew. cpp

Features:
+ |nitial toolbar in main frame
+ |nihial ztatus bar in main frame
+ 30 Controls
+ Usges shared DLL implementation [MFC42.0LL]
+ ActiveX Cantralz zuppart enabled
+ Localizable text in;
Englizh [United States]

Project Directony:
F:hrfoprojectsmmpmbc2 G,

Caricel

Figure 2: MYMFC26A project summary.

Import the Soap Bubbles.bmp bitmap. Choose Resource from Visual C++'s Insert menu. Import the bitmap Soap
Bubbles.bmp from the \WINDOWS directory (or other bmp file from the \WINDOWS directory or your own bmp).
Insert Project Build Tools

£ Hew Class, .

Mews Farm...

Resource,., Chrl+R

* ofim] Mew ATL Object. ..

Figure 3: Inserting a new resource.



Insert Resource

Fezource type: -
B2 Accelerator
EI Import...

+ B Cursor
+ Dialog
@ HTML Cancel
(9 leon
5 Menu

abe String Table
=4 Toolbar
Yersion

Cuztom...

it

Figure 4: Importing a new bitmap into the project.

Import Resource E]

Laok jn: | (3 WINDOWS | e -
rarmne Size | Tvpe A
I@F‘rairie wind. brap A5 KB  Bitmap Image
@Rhududendrnn.bmp 17 KB Bitmap Image

|gF'\iﬂ-.-'er Surmnida.brmp 27 KB  Bitmap Image =
|@Santa Fe Stucco.bmp &5 KB Bitmap Image

E‘.‘ Soap Bubbles, bmp 65 KB  Bitmap Image
%‘J?annl‘ﬁr.hmn 1N KR IHiI'mHn TrnAnr !

File nare; |S|:ua|:| Bubbles. brp Irmport

El-

Files of type: | &l Files [*.7] Cancel

KN NEN

Open gz |.-'1'-.ut|:|

Figure 5: Selecting Soap Bubbles.bmp bitmap file from Windows system directory.

Visual C++ will copy this bitmap file into your project's \res subdirectory. Assign the ID 1DB_SOAPBUBBLE, and save
the changes.

Bitmap Properties X]
4= % Resource |

10: |IDB_SD.-’-‘-.F'BLIBBLE jF‘review:
Language: |English (151 j

Condition: |

File name: |res"-.5 nap Bubblez. bm




Figure 6: The imported bitmap properties dialog copied into Visual C++ \res directory.

Add the following private data members to the class CMymFc26AView. Edit the file mymfc26AView.h or use
ClassView. The bitmap and the memory device context last for the life of the view. The CSize objects are the source
(bitmap) dimensions and the destination (display) dimensions.

Add Member Variable ?)X]

“ariable Type: Ok,
|CDC
Cancel
W ariable Name:
|m_|:u:|u:|'v1 emary
Access

" Public " Proteched * Private

Figure 7: Using ClassView to add a private data members to the class CMymFc26AView..

CDC* m_pdcMemory;
CBitmap* m_pBitmap;
CSize m_sizeSource, m_sizeDest;

LAl sn Ll

s 1 d -

DECLARE_MESSAGE HMAP( )
private:

CSize m_sizelest

CSize m_=izeSource:;

CBitmap*® m_pBitmap:

CDC* m_pdcHMemnorsy:

Listing 1.

Edit the following member functions in the class CMymFc26AView. Edit the file mymfc26AView.cpp. The constructor
and destructor do C++ housekeeping for the embedded objects. You want to keep the constructor as simple as possible
because failing constructors cause problems. The OnInitialUpdate () function sets up the memory device context
and the bitmap, and it computes output dimensions that map each bit to a pixel. The OnDraw() function calls
StretchBIt() twice, once by using the special computed dimensions and once by mapping each bit to a 0.01-by-
0.01-inch square. Add the following code:

CMymfc26AView: :CMymFc26AView()
m_pdcMemory = new CDC;

m_pBitmap = new CBitmap;
}

S8 CHymfcZeAViery constructionsdestruction

CHymfcZ26AView: CHynfc26AView()

{
A4 TODD: add construction code here
n_pdcHMemnory = new CDC;
m_pBitmap = new CHBitmap:

ks

Listing 2.

CMymfc26AView: : ~CMymTfc26AView()



// cleans up the memory device context and the bitmap
delete m_pdcMemory; // deselects bitmap
delete m_pBitmap;

}
CHymfcZ26AView: (~“CHymicZehView()
1
S oleans up the memcory device context and the bitmap
delete n_pdcMemory: . deselect=s bitnap
delete m_pBitmap:
b

Listing 3.
void CMymfc26AView: :OnDraw(CDC* pDC)
pDC->SetStretchBltMode (COLORONCOLOR) ;
pDC->StretchBlt(20, -20, m_sizeDest.cx, -m_sizeDest.cy, m_pdcMemory, 0, O,
m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);

pDC->StretchBIt(350, -20, m_sizeSource.cx, -m_sizeSource.cy, m_pdcMemory, 0, O,
m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);

ks
A CHymfcZeAView drawing

wold CHymic26AView:  OnDraw(CDiC* phiC)

{
pDC—:SetStretchBl tHode ( COLOROHCOLOR) ;
pDC—:StretchBlt (20, —-20, m_sizelest . cx. -n_sizelest . cy.
n_pdcHemory. 0. 0.
n_=lzeSource.cE,. n_sizeSource.cy, SECCOPY)
pDC—»StretchBl & (350, —-20. m_sizeSource.cxE. -n_sSizeSource. cv.
mn_pdcHemorw, 0, 0,
n_sizeSource . cE., n_sizeSource.cy. SECCOPY)
1

Listing 4.

void CMymfc26AView: :OnlnitialUpdate()
{
CScrollView: :OnlnitialUpdate();
CSize sizeTotal (800, 1050); // 8-by-10.5 inches
CSize sizelLine = CSize(sizeTotal.cx / 100, sizeTotal.cy 7/ 100);
SetScrol1Sizes(MM_LOENGLISH, sizeTotal, sizeTotal, sizelLine);

BITMAP bm; // Windows BITMAP data structure; see Win32 help
if (m_pdcMemory->GetSafeHdc() == NULL) {
CClientDC dc(this);
OnPrepareDC(&dc); // necessary
//Change the ID to your own bitmap if any
m_pBitmap->LoadBitmap(1DB_SOAPBUBBLE) ;
m_pdcMemory->CreateCompatibleDC(&dc);
m_pdcMemory->SelectObject(m_pBitmap);
m_pBitmap->GetObject(sizeof(bm), &bm);
m_sizeSource.cx = bm_bmWidth;
m_sizeSource.cy = bm.bmHeight;
m_sizeDest = m_sizeSource;
dc.DPtoLP(&m_sizeDest);



wvold CHymfcZeAView: OnlnitialUpdatel)

{
CScrollView: :OnInitiallpdate( )
CSize =zizeTotal {800, 1050%; . 8-by-10.5 inches
C5ize =zizeline = CSizel(=sizeTotal cox - 100, =sizeTotal cow ~ 1007 ;
SetScrollSizes(MM_LOEHGLISH., =izeTotal. =sizeTotal. sizeline):

BITHAF bm: ~« Windows BITHMAF data s=tructure; s=ee Wini? help
if {m_pdcHemorv-:GetSafeHdc() == HULL) {
CClientDC doithis):
OnPreparelCiédz) ;. - necessary
<« Change the ID to your own bitmap i1f any
n_pBitmap-:LoadBitmap{IDE_SOAPBUBELED ;
n_pdocHemnory—:CreateComnpatibleDCi éds) ;
n_pdcHemnory—:SelectObject (n_pBitmap)
n_pBitmap—:GetObject{zizect (bm). &bm);
n_=izeSource.c®Z = bm.bmWidth:
m_=izeSource .oy = bm. bmHeight
n_=izele=st = n_=sizeSource:;
do DPtolFPiém_sizelest)

Listing 5.

Build and test the MYMFC26A application. Your screen should look something like this.

7+ Untitled - mymfc26A

File Edit WYiew Help

O = & =N

Ready

Figure 8: MYMFC26A program output.

Try the Print Preview and Print features.



++ Untitled - mymfc26A

Hewt Page | Frey Fage | Two F'agel Zoom [n | oo O]

Ready I_ l_ I_ A

Figure 9: MYMFC26A Print Preview view.

The bitmap prints to scale because the application framework applies the MM_LOENGL I SH mapping mode to the printer
device context just as it does to the display device context. The output looks great in Print Preview mode, but
(depending on your print drivers) the printed output will probably be either blank or microscopic! We'll fix that soon.

Using Bitmaps to Improve the Screen Display

You've seen an example program that displays a bitmap that originated outside the program. Now you'll see an example
program that generates its own bitmap to support smooth motion on the screen. The principle is simple: you draw on a
memory device context with a bitmap selected, and then you zap the bitmap onto the screen.

The MYMFC26B Example

In the MYMFC6 example in Module 4, the user dragged a circle with the mouse. As the circle moved, the display
flickered because the circle was erased and redrawn on every mouse-move message. MYMFC26B uses a GDI bitmap to
correct this problem. The MYMFC6 custom code for mouse message processing carries over almost intact; most of the
new code is in the OnPaint() and OnlnitialUpdate() functions.

In summary, the MYMFC26B OnlnitialUpdate() function creates a memory device context and a bitmap that are
compatible with the display. The OnPaint() function prepares the memory device context for drawing, passes
OnDraw() a handle to the memory device context, and copies the resulting bitmap from the memory device context to
the display.

Here are the steps to build MYMFC26B from scratch:

Run AppWizard to produce \mfcprojectimymfc26B. Accept all the default settings but two: select Single Document and
select CScrol IView view as the base class for CMymfc26BView in step 6. The options and the default class names
are shown here.


http://tenouk.com/visualcplusmfc/visualcplusmfc4.html

MFC AppWizard - 5tep 6 of &

Appwiizard creates the following classes for pou;
Chdpmfc2BByisw
ChymfcZBBApp
ChainFrame
Chdymfc26BDoc

Clazz name: Header file:
|Chprnfc26EY iew mymnfc26EView.h

Baze class: Implementation file:
CScroltfisw |m_l,lmfn:EEB"-Iiew.cpp

< Back | | Einizh | Cancel |

Figure 10: MYMFC26B step 6 of 6 AppWizard using CScrol IView as a view based class.

New Project Information P§|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application twpe of mymfcZBR:
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc26BApp in mymfcZ6B.h and mymfc26B. cpp
Frame: CMainFrame in MainFrm b and kainFrm.cpp
Document: Cpmfc26BD oo in mumfc26B0oc. b and mymfc26B D oc.cpp
ScrollView: Cymfc26BYiew in mymfc2BEYiew h and mymfc2B6BYiew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ Printing and Frint Preview suppart in view
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Activel Controlz support enabled
+ Localizable text in:
Englizh [United States]

Froject Directory:
F:\mfcprojectsmymfc2GB

Cancel

Figure 11: MYMFC26B project summary.



Use ClassWizard to add CMymTc26BV i ew message handlers. Add message handlers for the following messages:

= WM_LBUTTONDOWN
=  WM_LBUTTONUP

= WM_MOUSEMOVE

= WM_PAINT

MFEC ClassWizard

Mezsage Maps Member ¥ ariables | Automation | BActiver Events | Clazs Info |

Project: Class name: Add Class.
ryrof 256 | | Chymic2EBView -] :

Fh smyrnfc2BB Sryrnfc2BBWiew. b, Fis. . smymfc2EBYiew. cpp ;

Object 103 Meszages: Delete Function

Chdpmf B8 Wiew

%3
[

ID_AFPFP_ABOUT Wikd_RBUTTOMDELCLE.
ID_APP_ExIT = Whd_REUTTONDOWHM
ID_EDIT_COFY Witd_REUTTOMNUP

ID_EDIT_CUT Whi_SETCURSOR

ID_EDIT_PASTE Wit _SETFOCUS —
ID_ECIT_UMDO b bl _SHOMWAA M DO ol
kdember functions:

"W OnLButtonDiawn OMN_wikd_LBUTTONDOWM ~
"W OnLButtonUp QM _w/t_LBUTTOMUP

W Onkousetdove 0w h_MOUSEMOWE

OnPaint O _wfbd_PaINT
Y OnPreparePrinting

54

Dezcription; Indicates a window frame needs painting [do not use for views]

ak. Cancel

Figure 12: Using ClassWizard to add CMymFc26BView message handlers.

Edit the mymfc26BView.h header file. Add the private data members shown here to the CMym¥fc26BView class:

private:
const CSize m_sizeEllipse;
CPoint m_pointTopLeft;

BOOL m_bCaptured;
CSize m_sizeOffset;
CDhC* m_pdcMemory;

CBitmap* m_pBitmap;



Add Member Yariable

Yariable Type:
|cPc.int
Cance
Yariable Marme:
|WLpDhﬂTDpLeﬂ
Access

" Public " Protected

Figure 13: Adding private data members to the CMymfc26BView class.

DECLARE_MESSAGE_MAP( )

private:
BOOL m_bCaptured:;
CSize m_=izelff=zet;
CDiC* n_pdcHemnory;

CBitmap* m_pBitmap;
| CPoint m_pointTopleft:
const CSize mn_=izeEllipse;

Listing 6.

Code the CMymFc26BView constructor and destructor in mymfc26BView.cpp. You need a memory device context
object and a bitmap GDI object. These are constructed in the view's constructor and destroyed in the view's destructor.
Add the following code:

CMymfc26BView: :CMymfc26BView() : m_sizeEllipse(100, -100),
m_pointTopLeft(10, -10),
m_sizeOffset(0, 0)

{
m_bCaptured = FALSE;
m_pdcMemory = new CDC;
m_pBitmap = new CBitmap;
}

S CHymfc?6BEViey constructionsdestruction

CHymfcZ26BView: - CHymfc26BView() : m_=izeEllip=e(100, =100},
n_pointTopleft{l0, —-10%,
m_=sizeQffset(0. 03

S TODD: add construction code here
m_biCaptured FALSE:

n_pdcHemnory new CDC;

n_pBitmap new CEitmap:

Listing 7.
CMymfc26BView: : ~CMymFc26BView()

delete m_pBitmap; // already deselected
delete m_pdcMemory;



CHvmfc2e6EView:  ~CHymnicZeBView()

1
delete m_pBitmap: - already deszeslected
delete m_pdcHemnory:

iy
Listing 8.

Add code for the OnInitialUpdate() function in mymfc26BView.cpp. The C++ memory device context and
bitmap objects are already constructed. This function creates the corresponding Windows objects. Both the device
context and the bitmap are compatible with the display context dc, but you must explicitly set the memory device
context's mapping mode to match the display context. You could create the bitmap in the OnPaint() function, but the
program runs faster if you create it once here. Add the code shown here:

void CMymfc26BView: :OnlnitialUpdate()
{
CScrollView: :OnlnitialUpdate();
CSize sizeTotal (800, 1050); // 8-by-10.5 inches
CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy /7 2);
CSize sizelLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
SetScrollISizes(MM_LOENGLISH, sizeTotal, sizePage, sizelLine);
// creates the memory device context and the bitmap
if (m_pdcMemory->GetSafeHdc() == NULL) {
CClientDC dc(this);
OnPrepareDC(&dc);
CRect rectMax(0, 0, sizeTotal.cx, -sizeTotal.cy);
dc.LPtoDP(rectMax);
m_pdcMemory->CreateCompatibleDC(&dc);
// makes bitmap same size as display window
m_pBitmap->CreateCompatibleBitmap(&dc, rectMax.right, rectMax.bottom);
m_pdcMemory->SetMapMode (MM_LOENGL ISH) ;

}

vold CHymic26EView: :OnlnitialUpdate()

CScrollView: OnlnitialUpdate():
CSize =izeTotal (800, 1050%; ~ 8-bv-10.5 inches
CSize =zizePage(=izeTotal . cx «~ 2. =izeTotal cv » 2):
CSize =izeline(s=izeTotal .cx ~ 50, =sizeTotal oy »~ 50} ;
SetScrollSizes(MM_LOENGLISH, =izeTotal. =izePage. =izeline);
S ocreates the memory device context and the bitmap
1f {m_pdcHemorv-:GetSafeHdc() == HULL) {
CClientDC doithi=):
CnPrepareDCiédc)
CRect rectMaxi(l, 0. =izeTotal cx. —-=izeTotal ov):
do . LFPtoDFP(rectiax)
n_pdcHemory—:CreateCompatibleDC{édc) ;
<4 makez bitmap samne =size as die=lssr sdwdoss -
m_pBitmap—>Cre§te€nmpatibleEiﬁmLTJh“H"EDE”EmamEDmpmthqEDEﬂhax.buttumj;
n_pdcHemnory—:SetMapMode (MM_LOEHGLISH) ;

Listing 9.

Add code for the OnPaint() function in mymfc26BView.cpp. Normally it isn't necessary to map the W_PAINT
message in your derived view class. The CView version of OnPaint() contains the following code:

CPaintDC dc(this);
OnPrepareDC(&dc) ;
OnDraw(&dc);



In this example, you will be using the OnPaint() function to reduce screen flicker through the use of a memory
device context. OnDraw() is passed this memory device context for the display, and it is passed the printer device
context for printing. Thus, OnDraw() can perform tasks common to the display and to the printer. You don't need to
use the bitmap with the printer because the printer has no speed constraint. The OnPaint() function must perform, in
order, the following three steps to prepare the memory device context for drawing:

= Select the bitmap into the memory device context.

*  Transfer the invalid rectangle (as calculated by OnMouseMove ()) from the display context to the
memory device context. There is no SetClipRect() function, but the CDC: : IntersectClipRect
function, when called after the CDC: - SelectClipRgn function (with a NULL parameter), has the same
effect. If you don't set the clipping rectangle to the minimum size, the program runs more slowly.

= Initialize the bitmap to the current window background color. The CDC: - PatBI t function fills the
specified rectangle with a pattern. In this case, the pattern is the brush pattern for the current window
background. That brush must first be constructed and selected into the memory device context.

After the memory device context is prepared, OnPaint() can call OnDraw() with a memory device context
parameter. Then the CDC: : BitBIt function copies the updated rectangle from the memory device context to the
display device context. Add the following code:

void CMymfc26BView: :OnPaint()
{
CPaintDC dc(this); // device context for painting
OnPrepareDC(&dc) ;
CRect rectUpdate;
dc.GetClipBox(&rectUpdate);
CBitmap* pOldBitmap = m_pdcMemory->SelectObject(m_pBitmap);
m_pdcMemory->SelectClipRgn(NULL);
m_pdcMemory->IntersectClipRect(&rectUpdate);
CBrush backgroundBrush((COLORREF) ::GetSysColor(COLOR_WINDOW));
CBrush* pOldBrush = m_pdcMemory->SelectObject(&backgroundBrush);
m_pdcMemory->PatBlt(rectUpdate. left, rectUpdate.top, rectUpdate.Width(),
rectUpdate._Height(), PATCOPY);
OnDraw(m_pdcMemory) ;
dc.BitBlt(rectUpdate.left, rectUpdate.top, rectUpdate.Width(),
rectUpdate.Height(), m_pdcMemory, rectUpdate.left, rectUpdate.top, SRCCOPY);
m_pdcMemory->SelectObject(pOldBitmap);
m_pdcMemory->SelectObject(pOldBrush);
¥

wold CMymfcZeBEView: . OnPaint()
1
S TODD: Add wvour message handler code here
CPaintDC doi{thi=);
CnPreparelC{édc)
CRect rectlpdate:
do. GetClipBox(trectlUpdate)

CEitmap* pOldBitmap = m_pdocMemnory—:SelectObject (m_pBitmap);
m_pdcHMemorv—:SelectClipRgn (HTTLL) ;
n_pdcMemory—:IntersectClipRect (frectUpdate)
CBrush baclgroundBrush( (COLOEREEF) : :GetSy=Color (COLOR_WIRDOW Y ) ;
CBrush#* pUldBrush = m_pdcHemnorv—:SelectObject (&baclkgroundBrush)
m_pdcMemorv—:PatBlt (rectlpdate. left,. rectlUpdate. top.
rectUpdate . Width(), rectUpdate. Height(). PATCOPY):

OnlDraw{m_pdcHenory)
do.BitBlt{rectlUpdate. left. rectlUpdate. top.

rectlUpdate. Width()., rectlUpdate. Height().

n_pdcMemory,. rectlUpdate.left,. rectlUpdate. top., SRCCOFY):
m_pdcMemory—:SelectObject (pOldBitmap) ;
n_pdcHemnorv—:SelectUbject {pOldBru=sh) ;
S Do not call CScrollWView: :OnPaint() for painting nessages



Listing 10.

Code the OnDraw() function in mymfc26BView.cpp. Copy the code from mymfc6View.cpp as shown below. In
MYMFC26B, OnDraw() is passed a pointer to a memory device context by the OnPaint() function. For printing,
OnDraw() is passed a pointer to the printer device context.

void CMymfc26BView: :OnDraw(CDC* pDC)

{
// TODO: add draw code for native data here
CBrush brushHatch(HS_DIAGCROSS, RGB(255, 0, 0));
CPoint point(0, 0); // logical (0, 0)
pDC->LPtoDP(&point); // 1In device coordinates,
pDC->SetBrushOrg(point); // align the brush with
// the window origin
pDC->SelectObject(&brushHatch);
pDC->El lipse(CRect(m_pointTopLeft, m_sizeEllipse));
pDC->SelectStockObject(BLACK_BRUSH); // Deselect brushHatch
pDC->Rectangle(CRect(100, -100, 200, -200)); // Test invalid rect
}
wold CHymfcZeEView:  OnDraw(CDC* pDC)
1
S TODD: add drawv code for natiwve data here
CBrush brushHatch(HS DIAGCROSS, RGB{255, 0O, 0313
CPoint point{0, 0): S logical (0, 0O
pDC—>LPtolP{&point ) ; < In device coordinates,
pDC—:SetBrushOrg(point ) ; < align the brush with
¢ the window origin
phC-:SelectObject {(&brushHatch) ;
pDC—:Ellipse(CRect (n_pointTopleft. m_=izeEllip=e));
pDC—-:5electStockObject (BLACK _BRUSH) ; 7 Dezslect brushHatch
b pIC-:Rectangle(CRect (100, 100, 200, -200)): - Te=st invalid rect

Listing 11.

Copy the mouse message-handling code from mymfc6View.cpp. Copy the functions shown below from
mymfc6View.cpp to mymfc26BView.cpp. Be sure to change the functions' class names from CMymFfc6View to
CMymFc26BView.

= OnLButtonDown()
=  OnLButtonUp(Q)
=  OnMouseMove()

void CMymfc26BView: :OnLButtonDown(UINT nFlags, CPoint point)

// TODO: Add your message handler code here and/or call default
CRect rectEllipse(m_pointTopLeft, m_sizeEllipse); // still logical
CRgn circle;

CClientDC dc(this);
OnPrepareDC(&dc) ;
dc.LPtoDP(rectEllipse); // Now it"s in device coordinates
circle.CreateEllipticRgnindirect(rectEllipse);
if (circle_PtInRegion(point)) {
// Capturing the mouse ensures subsequent LButtonUp message
SetCapture();
m_bCaptured = TRUE;
CPoint pointTopLeft(m_pointTopLeft);
dc.LPtoDP(&pointTopLeft);
m_sizeOffset = point - pointTopLeft; // device coordinates



// New mouse cursor is active while mouse is captured
::SetCursor(::LoadCursor(NULL, IDC_CROSS));

S CHymic26EView message handlers

volid CHymicZ6BView: :OnlButtonDown (UTINT nFlags. CPoint point)
1
S TODD: Add wour messzage handler code here and<or call default
CRect rectEllipse(mn_pointTopleft, m_sizeEllip=se). « =ti1ll logical
CRon circle:

CClientDT de{this):
OnPreparelCé&do) ;
do . LFPtoDF(rectEllip=s); - How it's in dewvice coordinates
circle. CreateEllipticEgnIndirect{rectEllip=e):
if (circle PtInEegion({point)) o
< Capturing the mouse ensures subsegquent LButtonlUp message
SetCapture():
n_bCaptured = TRUE;
CPoint pointTopleft{m_pointTopleft);
do . LPtoDF{&pointTopleft)
n_=izelff=st = point — pointTopleft:  device coordinates
< Hew mouse cursor 1= active while mouse 1= captured
SetCursor( ;  LoadCur=sor (HOLL, IDC_CROSS)):

b
b
Listing 12.
void CMymfc26BView: :OnLButtonUp(UINT nFlags, CPoint point)
{
// TODO: Add your message handler code here and/or call default
it (m_bCaptured)
{
::ReleaseCapture();
m_bCaptured = FALSE;
}
}

volid CMymfcZeBView: OnlLButtonUp(UINT nFlag=s., CPoint point)

S TODD: Add wour messzage handler code here andsor call default
if (m_bCaptured)

ReleaszeCapture();
n_bCaptured = FALSE:

Listing 13.
void CMymfc26BView: :OnMouseMove(UINT nFlags, CPoint point)

// TODO: Add your message handler code here and/or call default
if (m_bCaptured)
{
CClientDC dc(this);
OnPrepareDC(&dc);
CRect rectOld(m_pointTopLeft, m_sizeEllipse);
dc.LPtoDP(rectOld);
InvalidateRect(rectOld, TRUE);



m_pointTopLeft = point - m_sizeOffset;
dc.DPtoLP(&m_pointTopLeft);

CRect rectNew(m_pointTopLeft, m_sizeEllipse);
dc.LPtoDP(rectNew);

InvalidateRect(rectNew, TRUE);

volid CHymicZ6BView: :OnMouseMove(UINT nFlag=s. CPoint point)

S0 TODD: Add wour message handler code here andsor call default
1f {m_bCaptured)
{

CClientDC doithi=);

OnPreparelC{édc) ;

CRect rectlldim_pointTopleft,. m_sizeEllipse):
do . LFtoDFP (rectOld)

InvalidateRect (rect0ld, TREUE):

n_poinhtTopleft = point — m_=izelff=et;

do DPtolFPié&n_pointTopleft):

CRect rectlHewim_pointTopleft, m_sizeEllip=se):
do . LFPtoDFP(rectHew)

InvalidateRect (rectHew, TRUE);

Listing 14.
Change two lines in the OnMouseMove () function in mymfc26BView.cpp. Change the following two lines:
InvalidateRect(rectOld, TRUE);
ir-1\-/al idateRect(rectNew, TRUE);
to
InvalidateRect(rectOld, FALSE);

InvalidateRect(rectNew, FALSE);

If the second CWnd: : Inval idateRect parameter is TRUE (the default), Windows erases the background before
repainting the invalid rectangle. That's what you needed in MYMFC6, but the background erasure is what causes the
flicker. Because the entire invalid rectangle is being copied from the bitmap, you no longer need to erase the
background. The FALSE parameter prevents this erasure.

Build and run the application. Here is the MYMFC26B program output.



7+ Untitled - mymfc26B

File Edit Mew Help
=" & %
F
w
< >
Ready

Figure 14: MYMFC26A program output, with smooth movement of the circle bitmap.

Is the circle's movement smoother now? The problem is that the bitmap is only 8-by-10.5 inches, and if the scrolling
window is big enough, the circle goes off the edge. One solution to this problem is to make the bitmap as big as the
largest display.

Windows Animation

MYMFC26B is a crude attempt at Windows animation. What if you wanted to move an angelfish instead of a circle?
Win32 doesn't have an Angelfish function (yet), so you'd have to keep your angelfish in its own bitmap and use the
StretchBIt() mask ROP codes to merge the angelfish with the background. You'd probably keep the background in
its own bitmap, too. These techniques are outside the scope of this book. If you are interested in learning more about
Windows Animation, run out and get Nigel Thompson's Animation Techniques in Win32 (Microsoft Press, 1995). After
you read it, you can get rich writing video games for Windows!

DIBs and the CDib Class

There's an MFC class for GDI bitmaps (CBitmap), but there's no MFC class for DIBs. Don't worry, I'm giving you one
here. It's a complete rewrite of the CDi b class from the early editions of this book (prior to the fourth edition), and it
takes advantage of Win32 features such as memory-mapped files, improved memory management, and DIB sections. It
also includes palette support. Before you examine the CDib class, however, you need a little background on DIBs.

A Few Words About Palette Programming

Windows palette programming is quite complex, but you've got to deal with it if you expect your users to run their
displays in the 8-bpp (bits per pixel) mode and many users will if they have video cards with 1 MB or less of memory.
Suppose you're displaying a single DIB in a window. First you must create a logical palette, a GDI object that contains
the colors in the DIB. Then you must "realize" this logical palette into the hardware system palette, a table of the 256
colors the video card can display at that instant. If your program is the foreground program, the realization process tries
to copy all your colors into the system palette, but it doesn't touch the 20 standard Windows colors. For the most part,
your DIB looks just like you want it to look.



But what if another program is the foreground program, and what if that program has a forest scene DIB with 236 shades
of green? Your program still realizes its palette, but something different happens this time. Now the system palette won't
change, but Windows sets up a new mapping between your logical palette and the system palette. If your DIB contains a
neon pink color, for example, Windows maps it to the standard red color. If your program forgot to realize its palette,
your neon pink stuff would turn green when the other program went active.

The forest scene example is extreme because we assumed that the other program grabbed 236 colors. If instead the other
program realized a logical palette with only 200 colors, Windows would let your program load 36 of its own colors,
including, one hopes, neon pink.

So when is a program supposed to realize its palette? The Windows message WM_PALETTECHANGED is sent to your
program's main window whenever a program, including yours, realizes its palette. Another message,
WM_QUERYNEWPALETTE, is sent whenever one of the windows in your program gets the input focus. Your program
should realize its palette in response to both these messages (unless your program generated the message). These palette
messages are not sent to your view window, however. You must map them in your application's main frame window and
then notify the view.

You call the Win32 Real izePalette() function to perform the realization, but first you must call
SelectPalette() to select your DIB's logical palette into the device context. Se lectPalette() has a flag
parameter that you normally set to FALSE in your WM_PALETTECHANGED and WM_QUERYNEWPALETTE handlers.
This flag ensures that your palette is realized as a foreground palette if your application is indeed running in the
foreground. If you use a TRUE flag parameter here, you can force Windows to realize the palette as though the
application were in the background.

You must also call SelectPalette() for each DIB that you display in your OnDraw() function. This time you call
it with a TRUE flag parameter. Things do get complicated if you're displaying several DIBs, each with its own palette.
Basically, you've got to choose a palette for one of the DIBs and realize it (by selecting it with the FALSE parameter) in
the palette message handlers. The chosen DIB will end up looking better than the other DIBs. There are ways of merging
palettes, but it might be easier to go out and buy more video memory.

DIBs, Pixels, and Color Tables

A DIB contains a two-dimensional array of elements called pixels. In many cases, each DIB pixel will be mapped to a
display pixel, but the DIB pixel might be mapped to some logical area on the display, depending on the mapping mode
and the display function stretch parameters.

A pixel consists of 1, 4, 8, 16, 24, or 32 contiguous bits, depending on the color resolution of the DIB. For 16-bpp, 24-
bpp, and 32-bpp DIBs, each pixel represents an RGB color. A pixel in a 16-bpp DIB typically contains 5 bits each for
red, green, and blue values; a pixel in a 24-bpp DIB has 8 bits for each color value. The 16-bpp and 24-bpp DIBs are
optimized for video cards that can display 65,536 or 16.7 million simultaneous colors.

A 1-bpp DIB is a monochrome DIB, but these DIBs don't have to be black and white, they can contain any two colors
chosen from the color table that is built into each DIB. A monochrome bitmap has two 32-bit color table entries, each
containing 8 bits for red, green, and blue values plus another 8 bits for flags. Zero (0) pixels use the first entry, and one
(1) pixel uses the second. Whether you have a 65,536-color video card or a 16.7-million-color card, Windows can
display the two colors directly. (Windows truncates 8-bits-per-color values to 5 bits for 65,536-color displays.) If your
video card is running in 256-color palletized mode, your program can adjust the system palette to load the two specified
colors.

Eight-bpp DIBs are quite common. Like a monochrome DIB, an 8-bpp DIB has a color table, but the color table has 256
(or fewer) 32-bit entries. Each pixel is an index into this color table. If you have a palletized video card, your program
can create a logical palette from the 256 entries. If another program (running in the foreground) has control of the
system palette, Windows does its best to match your logical palette colors to the system palette.

What if you're trying to display a 24-bpp DIB with a 256-color palletized video card? If the DIB author was nice, he or
she included a color table containing the most important colors in the DIB. Your program can build a logical palette
from that table, and the DIB will look fine. If the DIB has no color table, use the palette returned by the Win32
CreateHal ftonePalette() function; it's better than the 20 standard colors you'd get with no palette at all.
Another option is to analyze the DIB to identify the most important colors, but you can buy a utility to do that.

The Structure of a DIB Within a BMP File

You know that the DIB is the standard Windows bitmap format and that a BMP file contains a DIB. So let's look
inside a BMP file to see what's there. Figure 15 shows a layout for a BMP file.



BITMAPFILEHEADER  bfType = "BM”
{BMP files cnly) BfOffBis —

BITMARINFOHEADER  biSize (of this structure)
bilWidth {in pixels)
biHeight (in pixels)
biFfanes=1
biBitCount (1, 4, 8, 16, 24, or 32)
biCompression (0 for none)
biSizelmage (only if compression is used)
biCirUised (nonzero for short color tables)

Color Table 2 entries for mono DIBs
16 or fewer entries for 4-bpp DIEs
258 or fewer entries for 8-bpp DIBs

Each entryis 32 bits

DIB Bit Image Pixels ordered by column within row —

Rows padded to 4-byte boundaries

Figure 15: The layout for a BMP file.

The BITMAPFILEHEADER structure contains the offset to the image bits, which you can use to compute the combined
size of the BITMAP INFOHEADER structure and the color table that follows. The BI TMAPF I LEHEADER structure
contains a file size member, but you can't depend on it because you don't know whether the size is measured in bytes,
words, or double words.

The BITMAP INFOHEADER structure contains the bitmap dimensions, the bits per pixel, compression information for
both 4-bpp and 8-bpp bitmaps, and the number of color table entries. If the DIB is compressed, this header contains the
size of the pixel array; otherwise, you can compute the size from the dimensions and the bits per pixel. Immediately
following the header is the color table (if the DIB has a color table). The DIB image comes after that. The DIB image
consists of pixels arranged by column within rows, starting with the bottom row. Each row is padded to a 4-byte
boundary. The only place you'll find a BI TMAPFILEHEADER structure, however, is in a BMP file. If you get a DIB
from the clipboard, for example, there will not be a file header. You can always count on the color table to follow the
BITMAPINFOHEADER structure, but you can't count on the image to follow the color table. If you're using the
CreateDIBSection() function, for example, you must allocate the bitmap info header and color table and then let
Windows allocate the image somewhere else. This module and all the associated code are specific to Windows DIBs.
There's also a well-documented variation of the DIB format for OS/2. If you need to process these OS/2 DIBs, you'll
have to modify the CDib class.

DIB Access Functions

Windows supplies some important DIB access functions. None of these functions is wrapped by MFC, so you'll need to
refer to the online Win32 documentation for details. Here's a summary:

= SetDIBitsToDevice(): This function displays a DIB directly on the display or printer. No scaling
occurs; one bitmap bit corresponds to one display pixel or one printer dot. This scaling restriction limits the
function's usefulness. The function doesn't work like BitBIt() because BitBIt() uses logical
coordinates.

=  StretchDIBits(): This function displays a DIB directly on the display or printer in a manner similar
to that of StretchBIt().

=  GetDIBits(): This function constructs a DIB from a GDI bitmap, using memory that you allocate. You
have some control over the format of the DIB because you can specify the number of color bits per pixel
and the compression. If you are using compression, you have to call GetDIBits() twice, once to
calculate the memory needed and again to generate the DIB data.



= CreateDIBitmap(): This function creates a GDI bitmap from a DIB. As for all these DIB functions,
you must supply a device context pointer as a parameter. A display device context will do; you don't need a
memory device context.

= CreateDIBSection(): This Win32 function creates a special kind of DIB known as a DIB section. It
then returns a GDI bitmap handle. This function gives you the best features of DIBs and GDI bitmaps. You
have direct access to the DIB's memory, and with the bitmap handle and a memory device context, you can

call GDI functions to draw into the DIB.

The CDib Class

If DIBs look intimidating, don't worry. The CDib class makes DIB programming easy. The best way to get to know the
CDib class is to look at the public member functions and data members. Listing 15 shows the CDib header and
implementation files.

CDIB.H
#ifndef _INSIDE_VISUAL_CPP_CDIB
#define _INSIDE_VISUAL_CPP_CDIB

class CDib : public CObject
{
enum Alloc {noAlloc, crtAlloc,
heapAlloc}; // applies to BITMAPINFOHEADER
DECLARE_SERIAL(CDib)
public:
LPVOID m_IpvColorTable;
HBITMAP m_hBitmap;
LPBYTE m_Iplmage; // starting address of DIB bits
LPBITMAPINFOHEADER m_IpBMIH; // buffer containing the
// BITMAPINFOHEADER
private:
HGLOBAL m_hGlobal; // for external windows we need to free;
// could be allocated by this class or
// allocated externally
Alloc m_nBmihAlloc;
Alloc m_nlImageAlloc;
DWORD m_dwSizelmage; // of bits—not BITMAPINFOHEADER
// or BITMAPFILEHEADER
int m_nColorTableEntries;

HANDLE m_hFile;

HANDLE m_hMap;

LPVOID m_IpvFile;

HPALETTE m_hPalette;
public:

CDibQ);

CDib(CSize size, int nBitCount); // builds BITMAPINFOHEADER

~CDib(Q);

int GetSizelmage() {return m_dwSizelmage;}

int GetSizeHeader()

{return sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) * m_nColorTableEntries;}

CSize GetDimensions();

BOOL AttachMapFile(const char* strPathname, BOOL bShare = FALSE);

BOOL CopyToMapFile(const char* strPathname);

BOOL AttachMemory(LPVOID IpvMem, BOOL bMustDelete = FALSE, HGLOBAL hGlobal =
NULL);

BOOL Draw(CDC* pDC, CPoint origin,

CSize size); // until we implement CreateDibSection

HBITMAP CreateSection(CDC* pDC = NULL);

UINT UsePalette(CDC* pDC, BOOL bBackground = FALSE);

BOOL MakePalette();

BOOL SetSystemPalette(CDC* pDC);

BOOL Compress(CDC* pDC, BOOL bCompress = TRUE); // FALSE means decompress

HBITMAP CreateBitmap(CDC* pDC);

BOOL Read(CFile* pFile);




BOOL ReadSection(CFile* pFile, CDC* pDC = NULL);
BOOL Write(CFile* pFile);
void Serialize(CArchive& ar);
void Empty();
private:
void DetachMapFile();
void ComputePaletteSize(int nBitCount);
void ComputeMetrics();
}:
#endif // _INSIDE_VISUAL_CPP_CDIB

CDIB.CPP

// cdib.cpp

// new version for WIN32
#include "stdafx.h"
#include "cdib.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_ ;
#endif

IMPLEMENT_SERIAL(CDib, CObject, 0);

CDib::CDib()

{
m_hFile = NULL;
m_hBitmap = NULL;
m_hPalette = NULL;
m_nBmihAlloc = m_nlImageAlloc = noAlloc;
Empty ()

¥

CDib::CDib(CSize size, int nBitCount)

{
m_hFile = NULL;
m_hBitmap = NULL;
m_hPalette = NULL;
m_nBmihAlloc = m_nlmageAlloc = noAlloc;
Empty();
ComputePaletteSize(nBitCount);
m_IpBMIH = (LPBITMAPINFOHEADER) new

char[sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) * m_nColorTableEntries];

m_nBmihAlloc = crtAlloc;
m_IpBMIH->biSize = sizeof(BITMAPINFOHEADER) ;
m_IpBMIH->biWidth = size.cx;
m_IpBMIH->biHeight = size.cy;
m_IpBMIH->biPlanes = 1;
m_IpBMIH->biBitCount = nBitCount;
m_IpBMIH->biCompression = BI_RGB;
m_IpBMIH->biSizelmage = O;
m_IpBMIH->biXPelsPerMeter = O;
m_IpBMIH->biYPelsPerMeter = O;
m_IpBMIH->biClrUsed = m_nColorTableEntries;
m_IpBMIH->biClrimportant = m_nColorTableEntries;
ComputeMetrics();
memset(m_lIpvColorTable, 0, sizeof(RGBQUAD) * m_nColorTableEntries);
m_Iplmage = NULL; // no data yet

¥

CDib::~CDib()

{

EmptyQ;
}




CSize CDib::GetDimensions()
{

if(m_IpBMIH == NULL) return CSize(0, 0);

return CSize((int) m_IpBMIH->biWidth, (int) m_IpBMIH->biHeight);
¥

BOOL CDib::AttachMapFile(const char* strPathname, BOOL bShare) // for reading
{
// it we open the same file twice, Windows treats it as 2 separate files
// doesn®t work with rare BMP Ffiles where # palette entries > biClrUsed
HANDLE hFile = ::CreateFile(strPathname, GENERIC_WRITE | GENERIC_READ,
bShare ? FILE_SHARE_READ : O,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
ASSERT(hFile != INVALID_HANDLE_VALUE);

DWORD dwFileSize = ::GetFileSize(hFile, NULL);
HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0O, O, NULL);
DWORD dwErr = ::GetLastError();

if(hMap == NULL) {
AfxMessageBox("'Empty bitmap file'™);
return FALSE;

}
LPVOID IpvFile = ::MapViewOfFile(hMap, FILE_MAP_WRITE, O, 0, 0); // map whole
file
ASSERT(IpvFile 1= NULL);
iT(((LPBITMAPFILEHEADER) IpvFile)->bfType 1= 0x4d42) {
AfxMessageBox(""Invalid bitmap file");
DetachMapFile();
return FALSE;

}
AttachMemory((LPBYTE) IpvFile + sizeof(BITMAPFILEHEADER));
m_IpvFile = lIpvFile;
m_hFile = hFile;
m_hMap = hMap;
return TRUE;
}

BOOL CDib: :CopyToMapFile(const char* strPathname)
{

// copies DIB to a new file, releases prior pointers

// if you previously used CreateSection, the HBITMAP will be NULL (and
unusable)

BITMAPFILEHEADER bmfh;

bmfh_bfType = 0x4d42; // *BM*

bmfh.bfSize = m_dwSizelmage + sizeof(BITMAPINFOHEADER) +

sizeof(RGBQUAD) * m_nColorTableEntries +

sizeof(BITMAPFILEHEADER) ;

// meaning of bfSize open to interpretation

bmfh.bfReservedl = bmfh.bfReserved2 = 0;

bmfh . bFfOFFBits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) +

sizeof(RGBQUAD) * m_nColorTableEntries;
HANDLE hFile = ::CreateFile(strPathname, GENERIC_WRITE | GENERIC_READ, O, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
ASSERT(hFile != INVALID_HANDLE_VALUE);
int nSize = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) +
sizeof(RGBQUAD) * m_nColorTableEntries + m_dwSizelmage;

HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, nSize, NULL);

DWORD dwErr = ::GetLastError();

ASSERT(hMap != NULL);

LPVOID lIpvFile = ::MapViewOfFile(hMap, FILE_MAP_WRITE, O, 0, 0); // map whole

ASSERT(IpvFile 1= NULL);

LPBYTE IpbCurrent = (LPBYTE) IpvFile;

memcpy(IpbCurrent, &bmfh, sizeof(BITMAPFILEHEADER)); // fTile header
IpbCurrent += sizeof(BITMAPFILEHEADER) ;

LPBITMAPINFOHEADER IpBMIH = (LPBITMAPINFOHEADER) IpbCurrent;

memcpy (IpbCurrent, m_IpBMIH,




sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) * m_nColorTableEntries); //

info

IpbCurrent += sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) *
m_nColorTableEntries;

memcpy(IpbCurrent, m_Iplmage, m_dwSizelmage); // bit image

DWORD dwSizelmage = m_dwSizelmage;

EmptyQ;

m_dwSizelmage = dwSizelmage;

m_nBmihAlloc = m_nlImageAlloc = noAlloc;

m_IpBMIH = IpBMIH;

m_Iplmage = IpbCurrent;

m_hFile = hFile;

m_hMap = hMap;

m_IpvFile = lIpvFile;

ComputePaletteSize(m_IpBMIH->biBitCount);

ComputeMetrics();

MakePalette();

return TRUE;

}

BOOL CDib: :AttachMemory(LPVOID IpvMem, BOOL bMustDelete, HGLOBAL hGlobal)

{
// assumes contiguous BITMAPINFOHEADER, color table, image
// color table could be zero length
Empty();
m_hGlobal = hGlobal;
if(bMustDelete == FALSE) {
m_nBmihAlloc = noAlloc;

else {

by
try {

m_nBmihAlloc = ((hGlobal == NULL) ? crtAlloc : heapAlloc);

m_IpBMIH = (LPBITMAPINFOHEADER) IpvMem;

ComputeMetrics();

ComputePaletteSize(m_IpBMIH->biBitCount);

m_Iplmage = (LPBYTE) m_IpvColorTable + sizeof(RGBQUAD) *
m_nColorTableEntries;

MakePalette();

}

catch(CException* pe) {
AfxMessageBox("'AttachMemory error');
pe->Delete();
return FALSE;

}
return TRUE;
3

UINT CDib: :UsePalette(CDC* pDC, BOOL bBackground /* = FALSE */)

if(m_hPalette == NULL) return O;

HDC hdc = pDC->GetSafeHdc();
::SelectPalette(hdc, m_hPalette, bBackground);
return ::RealizePalette(hdc);

}

BOOL CDib: :Draw(CDC* pDC, CPoint origin, CSize size)
{
iT(m_IpBMIH == NULL) return FALSE;
if(n_hPalette 1= NULL) {
::SelectPalette(pDC->GetSafeHdc(), m_hPalette, TRUE);

}

pDC->SetStretchBltMode (COLORONCOLOR) ;

s :StretchDIBits(pDC->GetSafeHdc(), origin.x, origin.y, size.cx, size.cy,
0, 0, m_IpBMIH->biWidth, m_IpBMIH->biHeight,
m_Iplmage, (LPBITMAPINFO) m_IpBMIH, DIB_RGB_COLORS, SRCCOPY);




return TRUE;
s

HBITMAP CDib: :CreateSection(CDC* pDC /* = NULL */)

if(m_IpBMIH == NULL) return NULL;

if(n_IpIlmage !'= NULL) return NULL; // can only do this if image doesn"t exist

m_hBitmap = ::CreateDIBSection(pDC->GetSafeHdc(), (LPBITMAPINFO) m_IpBMIH,
DIB_RGB_COLORS, (LPVOID*) &m_Iplmage, NULL, 0);

ASSERT(m_IplImage 1= NULL);

return m_hBitmap;

}

BOOL CDib: :MakePalette()
{
// makes a logical palette (m_hPalette) from the DIB"s color table
// this palette will be selected and realized prior to drawing the DIB
if(n_nColorTableEntries == 0) return FALSE;
if(n_hPalette = NULL) ::DeleteObject(m_hPalette);
TRACE('CDib: :MakePalette -- m_nColorTableEntries = %d\n",
m_nColorTableEntries);
LPLOGPALETTE pLogPal = (LPLOGPALETTE) new char[2 * sizeof(WORD) +
m_nColorTableEntries * sizeof(PALETTEENTRY)];
pLogPal->palVersion = 0x300;
pLogPal->palNumEntries = m_nColorTableEntries;
LPRGBQUAD pDibQuad = (LPRGBQUAD) m_IpvColorTable;
for(int 1 = 0; i1 < m_nColorTableEntries; i++) {
pLogPal->palPalEntry[i].peRed = pDibQuad->rgbRed;
pLogPal->palPalEntry[i].peGreen = pDibQuad->rgbGreen;
pLogPal->palPalEntry[i].peBlue = pDibQuad->rgbBlue;
pLogPal->palPalEntry[i].peFlags = O;
pDibQuad++;

}

m_hPalette = ::CreatePalette(pLogPal);
delete pLogPal;

return TRUE;

}
BOOL CDib: :SetSystemPalette(CDC* pDC)
{
// if the DIB doesn®"t have a color table, we can use the system®s halftone
palette
if(n_nColorTableEntries != 0) return FALSE;
m_hPalette = ::CreateHalftonePalette(pDC->GetSafeHdc());
return TRUE;
}
HBITMAP CDib: :CreateBitmap(CDC* pDC)
{
if (m_dwSizelmage == 0) return NULL;
HBITMAP hBitmap = ::CreateDIBitmap(pDC->GetSafeHdc(), m_IpBMIH,
CBM_INIT, m_Iplmage, (LPBITMAPINFO) m_IpBMIH, DIB_RGB_COLORS);
ASSERT(hBitmap != NULL);
return hBitmap;
¥
BOOL CDib: :Compress(CDC* pDC, BOOL bCompress /* = TRUE */)
{

// 1. makes GDI bitmap from existing DIB

// 2. makes a new DIB from GDI bitmap with compression

// 3. cleans up the original DIB

// 4. puts the new DIB in the object

iT((m_IpBMIH->biBitCount !'= 4) && (m_IpBMIH->biBitCount != 8)) return FALSE;
// compression supported only for 4 bpp and 8 bpp DIBs

if(m_hBitmap) return FALSE; // can”"t compress a DIB Section!

TRACE(""Compress: original palette size = %d\n', m_nColorTableEntries);




HDC hdc = pDC->GetSafeHdc();
HPALETTE hOldPalette = ::SelectPalette(hdc, m_hPalette, FALSE);
HBITMAP hBitmap; // temporary
if((hBitmap = CreateBitmap(pDC)) == NULL) return FALSE;
int nSize = sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) * m_nColorTableEntries;
LPBITMAPINFOHEADER IpBMIH = (LPBITMAPINFOHEADER) new char[nSize];
memcpy (IpBMIH, m_IpBMIH, nSize); // new header
iT(bCompress) {
switch (IpBMIH->biBitCount) {

case 4:
IpBMIH->biCompression = BI_RLE4;
break;

case 8:
IpBMIH->biCompression = BI_RLES8;
break;

default:
ASSERT(FALSE) ;

// calls GetDIBits with null data pointer to get size of compressed DIB
if(1::GetDIBits(pDC->GetSafeHdc(), hBitmap, O, (UINT) IpBMIH->biHeight,
NULL, (LPBITMAPINFO) IpBMIH, DIB_RGB_COLORS))

AfxMessageBox(*'Unable to compress this DIB™);
// probably a problem with the color table
::DeleteObject(hBitmap);

delete [] 1pBMIH;

::SelectPalette(hdc, hOldPalette, FALSE);
return FALSE;

3

if (IpBMIH->biSizelmage == 0) {
AfxMessageBox("'Driver can"t do compression'™);
::DeleteObject(hBitmap);
delete [] 1pBMIH;
::SelectPalette(hdc, hOldPalette, FALSE);
return FALSE;

else {

}

m_dwSizelmage = IpBMIH->biSizelmage;

else {
IpBMIH->biCompression = BI_RGB; // decompress
// Tigure the image size from the bitmap width and height
DWORD dwBytes = ((DWORD) IpBMIH->biWidth * IpBMIH->biBitCount) / 32;
iT(((DWORD) IpBMIH->biWidth * IpBMIH->biBitCount) % 32) {
dwBytes++;
by

dwBytes *= 4;
m_dwSizelmage = dwBytes * IpBMIH->biHeight; // no compression
IpBMIH->biSizelmage = m_dwSizelmage;
T
// second GetDIBits call to make DIB
LPBYTE Iplmage = (LPBYTE) new char[m_dwSizelmage];
VERIFY(::GetDIBits(pDC->GetSafeHdc(), hBitmap, O, (UINT) IpBMIH->biHeight,
Ipimage, (LPBITMAPINFO) IpBMIH, DIB_RGB_COLORS));

TRACE('dib successfully created - height = %d\n", IpBMIH->biHeight);

::DeleteObject(hBitmap);

Empty();

m_nBmihAlloc = m_nlImageAlloc = crtAlloc;

m_IpBMIH = IpBMIH;

m_Iplmage = Iplmage;

ComputeMetrics();

ComputePaletteSize(m_IpBMIH->biBitCount);

MakePalette();

::SelectPalette(hdc, hOldPalette, FALSE);

TRACE(""Compress: new palette size = %d\n", m_nColorTableEntries);




}

return TRUE;

BOOL CDib::Read(CFile* pFile)

}

// 1. read file header to get size of info hdr + color table
// 2. read info hdr (to get image size) and color table
// 3. read image
// can"t use bfSize in file header
Empty();
int nCount, nSize;
BITMAPFILEHEADER bmfh;
try {
nCount = pFile->Read((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));
if(nCount '= sizeof(BITMAPFILEHEADER)) {
throw new CException;

b

iT(bmfh_bfType '= 0x4d42) {
throw new CException;

}

nSize = bmFh_bFfOFfBits - sizeof(BITMAPFILEHEADER);

m_IpBMIH = (LPBITMAPINFOHEADER) new char[nSize];

m_nBmihAlloc = m_nlmageAlloc = crtAlloc;

nCount = pFile->Read(m_IpBMIH, nSize); // info hdr & color table
ComputeMetrics();

ComputePaletteSize(m_IpBMIH->biBitCount);

MakePalette();

m_Iplmage = (LPBYTE) new char[m_dwSizelmage];

nCount = pFile->Read(m_Iplmage, m_dwSizelmage); // image only

}

catch(CException* pe) {
AfxMessageBox("'Read error'™);
pe->Delete();
return FALSE;

}
return TRUE;

BOOL CDib: :ReadSection(CFile* pFile, CDC* pDC /* = NULL */)

{

// new function reads BMP from disk and creates a DIB section
// allows modification of bitmaps from disk
// 1. read file header to get size of info hdr + color table
// 2. read info hdr (to get image size) and color table
// 3. create DIB section based on header parms
// 4. read image into memory that CreateDibSection allocates
EmptyQ;
int nCount, nSize;
BITMAPFILEHEADER bmfh;
try {
nCount = pFile->Read((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));
if(nCount != sizeof(BITMAPFILEHEADER)) {
throw new CException;

h

if(bmfh_bfType = 0x4d42) {
throw new CException;

H

nSize = bmFh_bfOFfBits - sizeof(BITMAPFILEHEADER);
m_IpBMIH = (LPBITMAPINFOHEADER) new char[nSize];
m_nBmihAlloc = crtAlloc;
m_nlImageAlloc = noAlloc;
nCount = pFile->Read(m_IpBMIH, nSize); // info hdr & color table
if(m_IpBMIH->biCompression != BI_RGB) {
throw new CException;
}

ComputeMetrics();




ComputePaletteSize(m_IpBMIH->biBitCount);

MakePalette();
UsePalette(pDC);
m_hBitmap = ::CreateDIBSection(pDC->GetSafeHdc(), (LPBITMAPINFO)
m_IpBMIH,
DIB_RGB_COLORS, (LPVOID*) &m_Iplmage, NULL, 0);

ASSERT(m_IpImage != NULL);
nCount = pFile->Read(m_Iplmage, m_dwSizelmage); // image only

}

catch(CException* pe) {
AfxMessageBox(''ReadSection error');
pe->Delete();
return FALSE;

}
return TRUE;
}

BOOL CDib: :Write(CFile* pFile)

BITMAPFILEHEADER bmfh;
bmfh_bfType = 0x4d42; // *BM*
int nSizeHdr = sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD) *
m_nColorTableEntries;
bmfh.bfSize = 0;
// bmfh_bfSize = sizeof(BITMAPFILEHEADER) + nSizeHdr + m_dwSizelmage;
// meaning of bfSize open to interpretation (bytes, words, dwords?) -- we won"t use it
bmfh.bfReservedl = bmfh.bfReserved2 = 0;
bmfh . bfOFFBits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) +
sizeof(RGBQUAD) * m_nColorTableEntries;
try {
pFile->Write((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));
pFile->Write((LPVOID) m_IpBMIH, nSizeHdr);
pFile->Write((LPVOID) m_Iplmage, m_dwSizelmage);

}

catch(CException* pe) {
pe->Delete();
AfxMessageBox("'write error');
return FALSE;

}
return TRUE;
}

void CDib::Serialize(CArchive& ar)

DWORD dwPos;
dwPos = ar.GetFile()->GetPosition();
TRACE("'CDib::Serialize -- pos = %d\n", dwPos);
ar _Flush(Q);
dwPos = ar.GetFile()->GetPosition();
TRACE('CDib::Serialize -- pos = %d\n", dwPos);
if(ar.IsStoring()) {

Write(ar.GetFile()):;
}

else {

}

Read(ar.GetFile());

}

// helper functions
void CDib::ComputePaletteSize(int nBitCount)

iIT((m_IpBMIH == NULL) |l (m_IpBMIH->biClrUsed == 0)) {
switch(nBitCount) {
case 1:
m_nColorTableEntries = 2;
break;




case 4:
m_nColorTableEntries = 16;
break;

case 8

m_nColorTableEntries
break;

case 16:

case 24:

case 32:
m_nColorTableEntries
break;

default:
ASSERT(FALSE) ;

256;

1
o

}

else {
m_nColorTableEntries = m_IpBMIH->biClrUsed;

}
ASSERT((m_nColorTableEntries >= 0) && (m_nColorTableEntries <= 256));
}

void CDib: :ComputeMetrics()

iT(m_IpBMIH->biSize != sizeof(BITMAPINFOHEADER)) {
TRACE('Not a valid Windows bitmap -- probably an 0S/2 bitmap\n™);
throw new CException;

_dwSizelmage = m_IpBMIH->biSizelmage;
f(m_dwSizelmage == 0) {
DWORD dwBytes = ((DWORD) m_IpBMIH->biWidth * m_IpBMIH->biBitCount) / 32;
iF(((DWORD) m_IpBMIH->biWidth * m_IpBMIH->biBitCount) % 32) {
dwBytes++;
by

dwBytes *= 4;
m_dwSizelmage = dwBytes * m_IpBMIH->biHelight; // no compression

}
m
i

}
m_IpvColorTable = (LPBYTE) m_IpBMIH + sizeof(BITMAPINFOHEADER) ;
}

void CDib::Empty()
{
// this is supposed to clean up whatever is in the DIB
DetachMapFile();
if(m_nBmihAlloc == crtAlloc) {
delete [] m_IpBMIH;

}

else if(m_nBmihAlloc == heapAlloc) {
z:GlobalUnlock(m_hGlobal);
::GlobalFree(m_hGlobal);

if(n_nlImageAlloc == crtAlloc) delete [] m_Iplmage;
if(n_hPalette = NULL) ::DeleteObject(m_hPalette);
if(n_hBitmap != NULL) ::DeleteObject(m_hBitmap);
m_nBmihAlloc = m_nlmageAlloc = noAlloc;

m_hGlobal = NULL;

m_IpBMIH = NULL;

m_Iplmage = NULL;

m_IpvColorTable = NULL;

m_nColorTableEntries = 0;

m_dwSizelmage = O;

m_lpvFile = NULL;

m_hMap = NULL;

m_hFile = NULL;

m_hBitmap = NULL;

m_hPalette = NULL;




void CDib: :DetachMapFile()

if(n_hFile == NULL) return;
:UnmapViewOfFile(m_lpvFile);
::CloseHandle(m_hMap);
::CloseHandle(m_hFile);
m_hFile = NULL;

Listing 15: The CDib class declaration (header file) and implementation (source file).

Here's a rundown of the CDib member functions, starting with the constructors and the destructor:

Default constructor: You'll use the default constructor in preparation for loading a DIB from a file or for
attaching to a DIB in memory. The default constructor creates an empty DIB object.

DIB section constructor: If you need a DIB section that is created by the CreateDIBSection()
function, use this constructor. Its parameters determine DIB size and number of colors. The constructor
allocates info header memory but not image memory. You can also use this constructor if you need to
allocate your own image memory.

Parameter Description
size CSi ze object that contains the width and height of the DIB.
nBitCount | Bits per pixel; should be 1, 4, 8, 16, 24, or 32.

Table 1.

Destructor: The CDib destructor frees all allocated DIB memory.

AttachMapFile(): This function opens a memory-mapped file in read mode and attaches it to the
CDib object. The return is immediate because the file isn't actually read into memory until it is used.
When you access the DIB, however, a delay might occur as the file is paged in. The AttachMapFile()
function releases existing allocated memory and closes any previously attached memory-mapped file.

Parameter Description

strPathname | Pathname of the file to be mapped.

Flag that is TRUE if the file is to be opened in share mode; the
default value is FALSE.

Return value TRUE if successful.

bShare

Table 2

AttachMemory(): This function associates an existing CD b object with a DIB in memory. This
memory could be in the program's resources, or it could be clipboard or OLE data object memory. Memory
might have been allocated from the CRT heap with the new operator, or it might have been allocated from
the Windows heap with GlobalAlloc().

Parameter Description
IpvMem Address of the memory to be attached.
bMustDelete Flag that is TRUE if the CDib class is responsible for deleting this memory; the default

value is FALSE.

hGlobal CDib object needs to keep the handle in order to free it later, assuming that

If memory was obtained with a call to the Win32 GlobalAl loc() function, the

bMustDelete was set to TRUE.

Return value TRUE if successful.

Table 3.



Compress(): This function regenerates the DIB as a compressed or an uncompressed DIB. Internally, it
converts the existing DIB to a GDI bitmap and then makes a new compressed or an uncompressed DIB.
Compression is supported only for 4-bpp and 8-bpp DIBs. You can't compress a DIB section.

Parameter Description

pDC Pointer to the display device context.

bCompress TRUE (default) to compress the DIB; FALSE to uncompress it.
Return value TRUE if successful.

Table 4.

=  CopyToMapFile(): This function creates a new memory-mapped file and copies the existing CDib
data to the file's memory, releasing any previously allocated memory and closing any existing memory-
mapped file. The data isn't actually written to disk until the new file is closed, but that happens when the
CDib object is reused or destroyed.

Parameter Description
strPathname | Pathname of the file to be mapped.
Return value TRUE if successful.

Table 5.

= CreateBitmap(): This function creates a GDI bitmap from an existing DIB and is called by the
Compress() function. Don't confuse this function with CreateSection(), which generates a DIB
and stores the handle.

Parameter Description

pDC Pointer to the display or printer device context.

Handle to a GDI bitmap, NULL if unsuccessful. This handle is not stored
as a public data member.

Return value

Table 6.

= CreateSection(): This function creates a DIB section by calling the Win32
CreateDIBSection() function. The image memory will be uninitialized.

Parameter Description

pDC Pointer to the display or printer device context.

Handle to a GDI bitmap, NULL if unsuccessful. This handle is also
stored as a public data member.

Return value

Table 7.

=  Draw(): This function outputs the CDib object to the display (or to the printer) with a call to the Win32
StretchDIBits() function. The bitmap will be stretched as necessary to fit the specified rectangle.

Parameter | Description
Pointer to the display or printer device context that will receive
pDC .
the DIB image.
origin CPoint object that holds the logical coordinates at which the
DIB will be displayed.
- CSize object that represents the display rectangle's width and
size L . .
height in logical units.
Return TRUE if successful.
value

Table 8.



Empty(): This function empties the DIB, freeing allocated memory and closing the map file if
necessary.
GetDimensions(): This function returns the width and height of a DIB in pixels.

Parameter Description
Return value CSize object

Table 9.

GetSizeHeader (): This function returns the number of bytes in the info header and color table
combined.

Parameter Description
Return value 32-bit integer
Table 10.

GetSizelmage(): This function returns the number of bytes in the DIB image (excluding the info
header and the color table).

Parameter Description
Return value 32-bit integer
Table 11.

MakePalette(): If the color table exists, this function reads it and creates a Windows palette. The
HPALETTE handle is stored in a data member.

Parameter Description
Return value TRUE if successful
Table 12.

Read(): This function reads a DIB from a file into the CDib object. The file must have been
successfully opened. If the file is a BMP file, reading starts from the beginning of the file. If the file is a
document, reading starts from the current file pointer.

Parameter Description

Pointer to a CFi le object; the corresponding disk file
contains the DIB.

Return value TRUE if successful.

pFile

Table 13.

ReadSection(): This function reads the info header from a BMP file, calls CreateDI1BSection()
to allocate image memory, and then reads the image bits from the file into that memory. Use this function
if you want to read a DIB from disk and then edit it by calling GDI functions. You can write the DIB back
to disk with Write or CopyToMapFile().

Parameter Description

pFile Pointer to a CFi le object; the corresponding disk file
contains the DIB.

pDC Pointer to the display or printer device context.

Return value TRUE if successful.

Table 14.



= Serialize(): The CDib: :Serialize function, which overrides the MFC
CObject: :Serialize function, calls the Read() and Write() member functions. See the
Microsoft Foundation Classes and Templates section of the online help for a description of the parameters.

= SetSystemPalette(): If you have a 16-bpp, 24-bpp, or 32-bpp DIB that doesn't have a color table,
you can call this function to create for your CDIb object a logical palette that matches the palette returned
by the CreateHal ftonePalette() function. If your program is running on a 256-color palletized
display and you don't call SetSystemPalette(), you'll have no palette at all, and only the 20 standard
Windows colors will appear in your DIB.

Parameter Description
pDC Pointer to the display context.
Return value TRUE if successful.

Table 15.

= UsePalette(): This function selects the CDib object's logical palette into the device context and then
realizes the palette. The Draw() member function calls UsePalette() prior to painting the DIB.

Parameter Description

pDC Pointer to the display device context for realization.

If this flag is FALSE (the default value) and the application is running in the foreground,
Windows realizes the palette as the foreground palette (copies as many colors as possible into
the system palette). If this flag is TRUE, Windows realizes the palette as a background palette
(maps the logical palette to the system palette as best it can).

Number of entries in the logical palette mapped to the system palette. If the function fails, the
return value is GDI_ERROR.

bBackground

Return value

Table 16.

=  Write(): This function writes a DIB from the CDib object to a file. The file must have been
successfully opened or created.

Parameter Description
- Pointer to a CFi 1 e object; the DIB will be written to the
pFile . .
corresponding disk file.
Return value TRUE if successful.

Table 17.

For your convenience, four public data members give you access to the DIB memory and to the DIB section handle.
These members should give you a clue about the structure of a CDib object. A CDib is just a bunch of pointers to heap
memory. That memory might be owned by the DIB or by someone else. Additional private data members determine
whether the CDib class frees the memory.

DIB Display Performance

Optimized DIB processing is now a major feature of Windows. Modern video cards have frame buffers that conform to
the standard DIB image format. If you have one of these cards, your programs can take advantage of the new Windows
DIB engine, which speeds up the process of drawing directly from DIBs. If you're still running in VGA mode, however,
you're out of luck; your programs will still work, but not as fast.

If you're running Windows in 256-color mode, your 8-bpp bitmaps will be drawn very quickly, either with
StretchBIt() or with StretchDIBits(). If, however, you are displaying 16-bpp or 24-bpp bitmaps, those
drawing functions will be too slow. Your bitmaps will appear more quickly in this situation if you create a separate 8-
bbp GDI bitmap and then call StretchBIt(). Of course, you must be careful to realize the correct palette prior to
creating the bitmap and prior to drawing it.



Here's some code that you might insert just after loading your CDib object from a BMP file:

// m_hBitmap is a data member of type HBITMAP

// m_dcMem is a memory device context object of class CDC
m_pDib->UsePalette(&dc);

m_hBitmap = m_pDib->CreateBitmap(&dc); // could be slow
::SelectObject(m_dcMem.GetSafeHdc(), m_hBitmap);

Here is the code that you use in place of CDib::Draw in your view"s OnDraw member
function:

m_pDib->UsePalette(pDC); // could be in palette msg handler

CSize sizeDib = m_pDib->GetDimensions();

pDC->StretchBlt(0, O, sizeDib.cx, sizeDib.cy, &m dcMem, 0, O, sizeToDraw.cx,
sizeToDraw.cy, SRCCOPY);

Don't forget to call DeleteObject() for m_hBitmap when you're done with it.
The MYMFC26C Example

Now you'll put the CDib class to work in an application. The MYMFC26C program displays two DIBs, one from a
resource and the other loaded from a BMP file that you select at runtime. The program manages the system palette and
displays the DIBs correctly on the printer. Compare the MYMFC26C code with the GDI bitmap code in MYMFC26A.
Notice that you're not dealing with a memory device context and all the GDI selection rules! Following are the steps to
build MYMFC26C.

Run AppWizard to produce \mfcprojectimymfc26C. Accept all the defaults but two: select Single Document and select
the CScrol 1View view base class for CMymFc26CView in step 6. The options and the default class names are shown
here.

New Project Information §|

Appiafizard will create a new skeleton project with the following specifications:

Application twpe of mymfcZBC:
Single Document Interface Application targeting:
Wwind2

Clazzes to be created:
Application: CMymfc26CApp in mymfc2B6C.h and mymfc26C. cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
Document: Chymic2BC0oc in mymfc26C0oc.h and mymfc26C0 oc.cpp
Scrolliew: CMymfc2BCNiew in mymfc2BCWiew h and mymfc2BCNiew. cpp

Features:
+ Initial toolbar in main frame
+ |nitial statuz bar in main frame
+ Printing and Print Preview suppart in view
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL]
+ Active Controlz zupport enabled
+ Localizable text in:
Englizh [United States)

Project Directany:
F:smfcprojectsmymfc2BC

Cancel

Figure 16: MYMFC26C project summary.



Import the Soap Bubbles bitmap. Choose Resource from Visual C++'s Insert menu. Import Soap Bubbles.bmp from

the \WINDOWS directory.

Import Resource

2

Laok jn: | (3 WINDOWS

~| & @k B

rarmne Size | Tvpe A
|@Greenstn:-ne.I:nn'||:| 26 KB Bitmap Image
|@F‘rairie Wind.bmp 65 KB  Bitmap Image
|gFll'u:n:lu:u:lenu:lru:un.|:|m|:| 17 KE Bitmap Image
I@F‘\iver Surmida.bmp 27 KB  Bitmap Image |
|@Santa Fe Skucco.brip 65 KB Bitmap Image

‘:,'.‘E'En:-ap Bubbles,brmp 65 KB  Bitmap Image
@Zapntec.bmp 10 KE  EBitmap Image bl
< |
File name: |S|:ua|:u Bubbles.bmp

Files of type: | &l Files [*%]

Open az: |.-i'-.ut|:|

Figure 17: Importing Soap Bubbles.bmp into MYMFC26C project.

Visual C++ will copy this bitmap file into your project's \res subdirectory. Assign 1DB_SOAPBUBBLE as the ID, and

save the changes.

Bitmap Properties

4 7

Resource |

ID: [IDB_SO4PBUBBLE

- | Presiew:

Language: |English (U5

El

Candition: |

File name: |res"~5 aap Bubbles. bm

Figure 18: Modifying bitmap properties.

Integrate the CDib class with this project. If you've created this project from scratch, copy the cdib.h and cdib.cpp files
to the \mfcproject\mymfc26C directory. Simply copying the files to disk isn't enough; you must also add the CD1i b files
to the project. Choose Add To Project from Visual C++'s Project menu, and then choose Fi les. Select cdib.h
and cdib.cpp, and click the OK button. If you now switch to ClassView in the Workspace window, you will see the
class CDib and all of its member variables and functions.



Insert Files into Project

Look, jn; ||ﬁ mymfcZ2EC j ﬁi 'v
|- Debug ESlmymfczac.rc
Cres &) mymfcz6Choc. cpp

@

CDib.cpp @ rymfc2aCDac, b

E CDib.h @ mmfc2eCYiew, cpp
@ MainFrm.cpp @ e mfc2eCYievs, b
@ MairFrm.b @ Resource.h

@ mymfc26C, cpp @ Skdafx.cpp

Ih] mymfcz6C.h Ih] stdafx.h

File name:  ["CDib. " "CDib.opp"
Files of ype: |I:++ Files [.c..ocpp:.ors:. iz b theinl; ) j Cancel

Inzert into: | raymfc 250 J

Figure 19: Adding header and source files (class) to the project.

Add two private CDib data members to the class CMymFc26CView. In the ClassView window, right-click the
CMymFc26CView class. Choose Add Member Variable from the resulting pop-up menu, and then add the
m_dibResource member as shown in the following illustration.

Add Member Variable

Yanable Tupe:
|I:Dil:-
Cancel
Varnable Name:
|m_dibFile
Access
" Public " Protected

Figure 20: Adding private CDib type data members to the class CMymFc26CView.

Add m_dibFile in the same way. The result should be two data members at the bottom of the header file as shown
below:

Dib m_dibFile;
Dib m_dibResource;

Lt L1 L lalra L

<o RAFE HSG

DECLARE_HMESSAGE HAP( )
private:

CDib m_dibFile;

CDib m_dibReszource:

Listing 16.

ClassView also adds the #include statement at the top of the mymfc26CView.h file:



#if

#include "cdib.h" // Added by ClassView

ldefined (AFE _MYMFCZGCVIEW _H 2EDZESF3_

#define AFE WYMFC26CVIEW_H_ 2ED2ESF3_99AL

#include "CDib. h" S Added by Clas=sView
¥if _MSC_VEE > 1000

#pragma once

#endif - _HSC VER » 1000

Listing 17.

Edit the OnInitialUpdate () member function in mymfc26CView.cpp. This function sets the mapping mode to
MM_HIMETRIC and loads the m_dibResource object directly from the 1DB_REDBLOCKS resource. Note that we're
not calling LoadBitmap() to load a GDI bitmap as we did in MYMFC26A. The CDib: : AttachMemory function
connects the object to the resource in your EXE file. Add the following code:

void CMymfc26CView: :OnlnitialUpdate()

{
CScrollView: :OnlnitialUpdate();
CSize sizeTotal (30000, 40000); // 30-by-40 cm
CSize sizelLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
SetScrolISizes(MM_HIMETRIC, sizeTotal, sizeTotal, sizelLine);
LPVOID IpvResource = (LPVOID) ::LoadResource(NULL,

::FindResource(NULL, MAKEINTRESOURCE(IDB_SOAPBUBBLE), RT_BITMAP));
m_dibResource.AttachMemory(lpvResource); // no need for
// ::LockResource

CClientDC dc(this);
TRACE("'bits per pixel = %d\n*", dc.GetDeviceCaps(BITSPIXEL));

}

vold CHymfcZ6CView: :Onlnitialllpdate()

1

CScrollView: :OnlnitialUpdate();

CS5ize =izeTotal (30000, 40000%): . F0-by—40 cm

CS5ize sizeline = CSize(=sizeTotal cocx ~ 100, =izeTotal cow ~ 1007 ;
SetScrollSizes(MM_HIMETRIC, =izeTotal. =izeTotal. sizeline):

LEVOID lpvResource = (LEPVOID) . LoadResource{HULL.
. :FindResource(HULL, MAKEINTEESOURCE(IDE_SOAPBUBELE). [RT_EITHAP))
n_dibFezource . AttachMenorv( lpvREesource): « no need for
A . :LockResource
CZlientDC doithis):
TEACE({ "bit=s per pizel = Xd~n". dc. GetDeviceCaps(BITSPIXEL)D

Listing 18.

Edit the OnDraw() member function in the file mymfc26CView.cpp. This code calls CDib: :Draw for each of the
DIBs. The UsePalette() calls should really be made by message handlers for the W_QUERYNEWPALETTE and
WM_PALETTECHANGED messages. These messages are hard to deal with because they don't go to the view directly, so
we'll take a shortcut. Add the following code:

void CMymfc26CView: :OnDraw(CDC* pDC)

{
BeginWaitCursor();
m_dibResource.UsePalette(pDC); // should be in palette
m_dibFile_UsePalette(pDC); // message handlers, not here

pDC->TextOut(0, O,
"Press the left mouse button here to load a file.™);
CSize sizeResourceDib = m_dibResource.GetDimensions();



sizeResourceDib.cx *= 30;
sizeResourceDib.cy *= -30;
m_dibResource.Draw(pDC, CPoint(0, -800), sizeResourceDib);
CSize sizeFileDib = m_dibFile.GetDimensions();
sizeFileDib.cx *= 30;
sizeFileDib.cy *= -30;
m_dibFile.Draw(pDC, CPoint(1800, -800), sizeFileDib);
EndWaitCursor();

}

S CHymfc2eCView drawing

vold CHymfcZeCView:  OnDraw(CDC* pDC)

{
BeginWaitCursor():
n_dibReszource . TzeFalette(pDl); . should be in palette
n_dibFile. UsePalette(pll); < neszage handlers, not here
pDC—:TextOut{0, 0.

"Pres= the left mousze button here to load a file. ");

CSize sizeResourcelib = n_dibPReszource. GetDimensions=():
zizeRezourcelib. cx *= 30;
zizeResourcelib. oy *= -30;
n_dibResource . Drawv(pDC, CPoint{0, —-8300), =izeResourcelib):
CSize =izeFilelDib = n_dibFile. GetDimen=s=ions():
zizeFilelib . cx *= 30;
zizeFileDibh . cw == —30;
n_dibFile . Draw({pDZ, CPoint{l18300, —-800), =izeFileDib}:
EndWaitCursor():

1

Listing 19.

Map the WM_LBUTTONDOWN message in the CMymFc26CView class. Edit the file mymfc26CView.cpp.
OnLButtonDown() contains code to read a DIB in two different ways. If you leave the MEMORY_MAPPED_FILES
definition intact, the AttachMapFile() code is activated to read a memory-mapped file. If you comment out the first
line, the Read () call is activated. The SetSystemPalette() call is there for DIBs that don't have a color table.



MFEC ClassWizard

ID_&PP_ExIT
ID_EDIT_COPY
ID_EDIT_CUT
ID_EDIT_PASTE

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |
Project; Clazz name: Add Class..
mymic2EC v| | CMymicZECYiew |

Foh . Amymfe2BChmpmfc 260N iew b, Fh . smymfc 260 iew. cpp

Object |0 Mezzages: Delete Function
Chymfc2BC iew A Wikd_KEYLIP AT :
ID_aAPP_ABOUT 3 Wid_KILLFOCUS 0

[ s

WWid_LBUTTOMNDELCLE

W LEUTTONDOWN
W_LBUTTOMUP
Wwid_MOUSEMOVE

ID_EDIT_UMDO
kember functians:

£

Wwid_MOUSEWHEEL

OnDraw
OnEndFrinting
Onlnitiallpdate
OrLButtanCrawn
OnPreparePrinting

O b _LBUTTOMDOW M

Description: |ndicates when left mouze button iz prezsed

0k, Cancel

Figure 21: Mapping the WM_LBUTTONDOWN message in the CMymFfc26CView class for left mouse button click.
Then, add the following code:
#define MEMORY_MAPPED_FILES

void CMymfc26CView: :OnLButtonDown(UINT nFlags, CPoint point)

CFileDialog dlg(TRUE, "bmp™, "*._bmp');
if (dlg-DoModal() != IDOK) {

return;
}

#ifdef MEMORY_MAPPED_FILES
if (m_dibFile.AttachMapFile(dlg.GetPathName(),
TRUE) == TRUE) { // share
Invalidate();

#else
CFile fTile;
file.Open(dlg.GetPathName(), CFile::modeRead);
if (n_dibFile.Read(&File) == TRUE) {
Invalidate();

}

#endif // MEMORY_MAPPED_FILES
CClientDC dc(this);
m_dibFile.SetSystemPalette(&dc);



A CHymfc?26CView messzage handlers
#define MEHMCORY MAFPPED FILES
vold CHymfcZ6CView: :OnlButtonDown(TIHNT nFlags. CPoint point)

CFilelialog dlg{TRUE. "bmp". "#* . bmp"}:
if (dlg.DoModal() = IDOK) {

return;
b

#ifdef MEMORY HMAPFED FILES
if (m_dibFile. AttachMapFile(dlg. GetPathHame().
TEUE) == TRUE) { .~ share
Invalidatel);

tel=e
CFile file;
file. Openidlg. GetPathHame(). CFile: modeFesad):
if (m_dibFile Readi&file) == TRUE) {
Invalidate():

T
#endif - MEMORY _MAPPED FILES

CClientDC de{this):
n_dibFile . SetSy=temPalette(fdc)

Listing 20.

Build and run the application. Try some other BMP files if you have them. Note that Soap Bubbles is a 16-color DIB
that uses standard colors, which are always included in the system palette.

++ Untitled - mymfc26C
File  Edit
O = & S %

Press the left mouse button here to load a file. -

Wiew  Help

Figure 22: MYMFC26C program output.

Going Further with DIBs



Each new version of Windows offers more DIB programming choices. Both Windows 95 and Microsoft Windows NT
4.0 provide the Load Image () and DrawDibDraw() functions, which are useful alternatives to the DIB functions
already described. Experiment with these functions to see if they work well in your applications.

The Loadlmage() Function

The Load Image () function can read a bitmap directly from a disk file, returning a DIB section handle. It can even
process OS/2 (already discontinued OS) format DIBs. Suppose you wanted to add an ImageLoad() member function
to CDib that would work like ReadSection(). This is the code you would add to cdib.cpp:

BOOL CDib: :ImageLoad(const char* IpszPathName, CDC* pDC)
{
Empty();
m_hBitmap = (HBITMAP) ::Loadlmage(NULL, IpszPathName, IMAGE_BITMAP, O, O,
LR_LOADFROMFILE | LR_CREATEDIBSECTION | LR_DEFAULTSIZE);
DIBSECTION ds;
VERIFY(: :GetObject(m_hBitmap, sizeof(ds), &ds) == sizeof(ds));
// Allocate memory for BITMAPINFOHEADER
// and biggest possible color table
m_IpBMIH = (LPBITMAPINFOHEADER) new
char[sizeof(BITMAPINFOHEADER) + 256 * sizeof(RGBQUAD)];
memcpy(m_IpBMIH, &ds.dsBmih, sizeof(BITMAPINFOHEADER));
TRACE(*'CDib::Loadlmage, biClrUsed = %d, biClrImportant = %d\n",
m_IpBMIH->biClrUsed, m_IpBMIH->biClrimportant);
ComputeMetrics(); // sets m_IpvColorTable
m_nBmihAlloc = crtAlloc;
m_Iplmage = (LPBYTE) ds.dsBm.bmBits;
m_nlmageAlloc = noAlloc;
// Retrieve the DIB section®s color table
// and make a palette from it
CDC memdc;
memdc .CreateCompatibleDC(pDC) ;
::SelectObject(memdc.GetSafeHdc(), m_hBitmap);
UINT nColors = ::GetDIBColorTable(memdc.GetSafeHdc(), 0, 256, (RGBQUAD*)
m_IpvColorTable);
it (nColors = 0) {
ComputePaletteSize(m_IpBMIH->biBitCount);
MakePalette();

// memdc deleted and bitmap deselected
return TRUE;

}

Note that this function extracts and copies the BITMAP INFOHEADER structure and sets the values of the CDib pointer
data members. You must do some work to extract the palette from the DIB section, but the Win32
GetDIBColorTable() function gets you started. It's interesting that GetDI1BColorTable() can't tell you how
many palette entries a particular DIB uses. If the DIB uses only 60 entries, for example, GetDIBColorTable()
generates a 256-entry color table with the last 196 entries set to 0.

The DrawDibDraw() Function

Windows includes the Video for Windows (VFW) component, which is supported by Visual C++. The VFW
DrawDibDraw() function is an alternative to StretchDIBits(). One advantage of DrawDibDraw() is its
ability to use dithered colors. Another is its increased speed in drawing a DIB with a bpp value that does not match the
current video mode. The main disadvantage is the need to link the VFW code into your process at runtime. Shown below
is a DrawDib () member function for the CDib class that calls DrawDibDraw():

BOOL CDib: :DrawDib(CDC* pDC, CPoint origin, CSize size)
{

it (m_IpBMIH == NULL) return FALSE;

if (n_hPalette '= NULL) {



::SelectPalette(pDC->GetSafeHdc(), m_hPalette, TRUE);

}

HDRAWDIB hdd = ::DrawDibOpen();

CRect rect(origin, size);

pDC->LPtoDP(rect); // Convert DIB"s rectangle

// to MM_TEXT coordinates

rect -= pDC->GetViewportOorg();

int nMapModeOld = pDC->SetMapMode(MM_TEXT) ;

::DrawDibDraw(hdd, pDC->GetSafeHdc(), rect.left, rect.top, rect.Width(),

rect.Height(), m_IpBMIH, m_Iplmage, O, O,

m_IpBMIH->biWidth, m_IpBMIH->biHeight, 0);

pDC->SetMapMode (nMapModeOld) ;

VERIFY(: :DrawDibClose(hdd));

return TRUE;

}

Note that DrawDibDraw() needs MM_TEXT coordinates and the MM_TEXT mapping mode. Thus, logical coordinates
must be converted not to device coordinates but to pixels with the origin at the top left of the scrolling window. To use
DrawDibDraw(), your program needs an #include <vfw.h> statement, and you must add vfw32.lib to the list of
linker input files. DrawDibDraw() might assume the bitmap it draws is in read/write memory, a fact to keep in mind
if you map the memory to the BMP file.

Putting Bitmaps on Pushbuttons

The MFC library makes it easy to display a bitmap (instead of text) on a pushbutton. If you were to program this from
scratch, you would set the Owner Draw property for your button and then write a message handler in your dialog class
that would paint a bitmap on the button control's window. If you use the MFC CBitmapButton class instead, you end
up doing a lot less work, but you have to follow a kind of "cookbook" procedure. Don't worry too much about how it all
works (but be glad that you don't have to write much code!).

To make a long story short, you lay out your dialog resource as usual with unique text captions for the buttons you
designate for bitmaps. Next you add some bitmap resources to your project, and you identify those resources by name
rather than by numeric ID. Finally you add some CBitmapButton data members to your dialog class, and you call the
AutoLoad () member function for each one, which matches a bitmap name to a button caption. If the button caption is
"Copy", you add two bitmaps: "COPYU" for the up state and "COPYD" for the down state. By the way, you must still set
the button's Owner Draw property. This will all make more sense when you write a program.

If you look at the MFC source code for the CBitmapButton class, you'll see that the bitmap is an ordinary GDI
bitmap painted with a BitBIt() call. Thus, you can't expect any palette support. That's not often a problem because
bitmaps for buttons are usually 16-color bitmaps that depend on standard VGA colors.

The MYMFC26D Example

Here are the steps for building MYMFC26D:

Run AppWizard to produce \mfcprojectimymfc26D. Accept all the defaults but three: select Single Document, deselect
Printing And Print Preview, and select Context-Sensitive Help.



MFC AppWizard - 5tep 4 of &

YWhat featurez would you like to include?

[File Edit Yiew Window

lv Docking toolbar
[v Iritial status bar

U=ing Help
About App...

[ Printing and print presvies

[v Context-zensitive Help
[v 30 controls
[ MAFI [Meszaging AP
[ windows Sockets
Howw do wou want your toolbars ko look?
i+ Marmal

" Intermet Explorer BeBars

Ready

Editing Constrol: IHtcord

IF Check Box @ Radic Button
O Radio Button

How many files would pou like on pour recent file list?

4 _:I Advanced...
< Back | Hewt > | Einizh | Cancel |

Figure 23: Step 4 of 6 AppWizard for MYMFC26D project, selecting the Context-sensitive Help.

The options and the default class names are shown in the illustration below.

New Project Information E|

Appiwfizard will create a new skeleton project with the following specifications:

Application twpe of mymfc2B6D:
Single Document Interface Application targeting:
Wihd2

Clazzes to be created:
Application: Ckymfc26DApp in mymfeZB0.h and mumfc26D . cpp
Frame: CMainFrame in MainFrm b and bMainFrm.cpp
Document: CMymfcZE0Doc in mymfc2B00Doc. b and mymfc2EDDoc.cpp
Wiew: Chymfc2B0Niew in mymfc2600iew. b and mymfc260DNiew. cpp

Features:
+ |nitial toolbar in main frame
+ [nihal ztatus bar in main frame
+ Context-Senszitive Help and initial BTF filez
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Activer Controlz zupport enabled
+ Localizable text in:
Englizh [United States]

Froject Directory:
F:smfcprojectsmymfc260

Cancel




Figure 24: MYMFC26D project summary.

The Context-Sensitive Help option was selected for one reason only: it causes AppWizard to copy some bitmap files
into your project's \hlp subdirectory. These bitmaps are supposed to be bound into your project's help file.

Modify the project's IDD_ABOUTBOX dialog resource. It's too much hassle to create a new dialog resource for a few
buttons, so we'll use the About dialog that AppWizard generates for every project. Add three pushbuttons with captions,
as shown below, accepting the default IDs IDC_BUTTON1, IDC_BUTTONZ2, and 1DC_BUTTONS. The size of the
buttons isn't important because the framework adjusts the button size at runtime to match the bitmap size.

3 mymfc26D resources =
+--[_7] Accelerator About mym q
=143 Dialog -
IDD_ABOUTEDX | - ;
JUER-ERCIEE . mymfc2B0 Yersion 1.0 | k.
+[_J lcan - -
+-[_7] Menu . Copyright [C) 2006
+--|7] String T able -
+--_7] Toolbar .
+ DVETSiDﬂ N i | EXRRIOOS
: Copy | ] ot F Pazte
N [ copooore [_popooooo |
Push Button Properties X
A ? General  Stolez | Extended Styles |
[ Default button [ Mulkiline Harizontal alignment;
[ Muotify |Default j
c [ Flat Yertical alignment:
[ Bitmap |Default j

Figure 25: Using the About dialog, adding button controls and modifying their properties.
Select the Owner Draw property for all three buttons.

Import three bitmaps from the project's \hlp subdirectory. Choose Resource from Visual C++'s Insert menu, select the
Bitmap and then click the Import button. Start with EditCopy.bmp, as shown below.



Import Resource E]
Lack in: | 3 Hp ME: cF B2~

IEIJ AfxCore.rtf |@Eu:IiI:F‘.EnsI:.IJmpu QﬂlmymfczﬁD.cnt |@Scmin.l:ump
@ AppExit.brp I@Eu:litunu:h:u.I:|m|:| %mymfczﬁD.hpj

Ll Bullet. brnp ElFiemew bmp  EL]recFirst.bmp

@ Curfrwz . bmp @File@pen.bmp IgF{En:LasI:.I:ump

Ll curarwd.bmp  BlFileprmt.bmp  Bl]Rechext.bmp

@ CurHelp. bmp @F“ESEVE.bI‘I‘Ip @REEPrEV.bmp

E‘ EditCopy, brnp @HIDSBar.bmp |g&:max.l:ump

@ EditCut, brip I@HlpuTEhar.l:urm:u I@Suzl"-“lenu.I:ur|'||:|

Dimensions: 433 x 32
Twpe: Bitmap Image

File narne: EditCopy.bmp | Size: £.99 KB Irnpirt

Files of type: | &l Files [*.7] | Cancel

il

Open gz |.-'1'-.ut|:| j

Figure 26: Importing three bitmaps from the project's \hlp subdirectory.

2| =
£ mymfc26D resources =
+-[_7] Accelerator
—-4=5 Bitmap
IDE_BITHAR
=425 Dialog
IDD_ABOUTEOMN
+-[Z7] loon
+-[Z7] Menu
i [:I Siring T able Bitmap Properties IE
+--[_7] Toolbar
+--[_7] Wersion & ? Rezource |
105 w | Presiew:
Languange: |English [LULE.] ﬂ
LCondition: |
File narme: |h|p'\EditEu:up_l,l.|:ump

Figure 27: Modifying the properties of the imported bitmaps.

Assign the name "COPYU" as shown.

Be sure to use quotes around the name in order to identify the resource by name rather than by ID. This is now the
bitmap for the button's up state. Close the bitmap window and, from the ResourceView window, use the clipboard (or
drag and drop or Edit, Copy/Paste menu) to make a copy of the bitmap. Rename the copy "COPYD" (down state), and
then edit this bitmap. Choose Invert Colors from the Image menu. There are other ways of making a variation of the up
image, but inversion is the quickest.

Repeat the steps listed above for the EditCut and EditPast bitmaps. When you're finished, you should have the
following bitmap resources in your project.



Resource Invert
Name Colors

""COPYU" EditCopy.bmp | no
""COPYD" EditCopy.bmp | yes
"CUTU™ EditCut.bmp no
"CUTD" EditCut.bmp | yes
""PASTEU"™ | EditPast.bmp | no
"PASTED" [ EditPast.bmp | yes

Original File

Table 18.

Image Tools ‘Window Help

Invert Colors

Flip Horizonkal b3

Flip Yertical ¥

Rotate 90 degrees z
I adjust Colors, .

Load Palette, .

Save Palette, ..

Draw Opaque o]
Toolbar Editar, ..
Grid Setkings. ..

Figure 28: Using the image editor utility to invert color.

WizardBar C4++ Class| ] x|

£ mymfc26D resources
+--[_7] Accelerator
--4=3 Bitmap

[f "coPvD

[feg] "coPL

g "cuTD

] "cuTU

e PasTED”

[fe] "PasSTEL"
=-4=5] Dialog

IDD_&BOUTBOX

Figure 29: The inverted bitmap color.

Edit the code for the CAboutD1 g class. Both the declaration and the implementation for this class are contained in the
mymfc26D.cpp file. First add the three private data members shown here in the class declaration:



<« Dialog Dad
SEATTATW T

= - mymfc26D clazses

+

B Chdainf i30 ko Definition

5
+ ™% CMymf  Go To Dialog Editor
#8153 Chymf &dd Member Funckion. .
-5 Chymif

5

3 Global: &dd Member Yariable. ..
&dd virtual Funckion. .
&dd Windows Message Handler...
E References. .,

i-. Cerjpved Classes, ..

'-F Base Classes, ..
&dd ko Gallery:

5 Mew Folder, ..

Group by Access

v Docking Migw
Hide

Properties

Figure 30: Adding three private data members to CAboutDI g class.

Add Member Variable

Yanable Tupe:
|EE itmapE utton
Cancel
Varnable Name:
|m_eu:|itE|:||:|_l,l
Access

" Public " Proteched (¢ Private

Figure 31: Entering the member variable type and name.

CBitmapButton m_editCopy;
CBitmapButton m_editCut;
CBitmapButton m_editPaste;

ERE I o o - ¥ S LA ¥ K.
DECLARE_HMESSAGE MAP()
private:
CBitmapButton m_sditPa=te;
CBitmapButton m_editCut;
CBitmapButton m_editCopy:

Listing 21.

Then you use ClassWizard to map the WM_INITDIALOG message in the dialog class. Be sure that the CAboutDIlg
class is selected. Then click the Edit Code button.



MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project: Class namme: Add Class.. ~
ryrfc2E0 ~| |CabautDlg | :

Fh smprnfo2B0myrfc260. cpp g

Object |0 Mezzages: Delete Function

~| [wM_DESTROY ~
ID_APP_ABOUT — |wH_DRAWITEM 7
ID_&PP_EXIT — |WM_HELPINFO

ID_CONTEXT_HELP wh_HSCROLL

ID_EDIT_COPY WM INITDIALOG |y
ID_EDIT_CUT W_KETDOWN

ID_EDIT_PASTE ¥|  |whM_KEYUP v

kember functians:

Y DaoDataExchange
OnlnitDialog OM_wikd_IMITDIALOG

Description: Sent to a dialog box befare the dialog box iz dizplayed

0k, Cancel

Figure 32: Using ClassWizard to map the WM_INITDIALOG message in the dialog class.

The message handler (actually a virtual function) is coded as follows:

BOOL CAboutDIg::OnlnitDialog()
{
CDialog::OnlnitDialog();
VERIFY(m_editCopy.AutoLoad(IDC_BUTTON1, this));
VERIFY(m_editCut.AutoLoad(IDC_BUTTON2, this));
VERIFY(m_editPaste.AutoLoad(IDC_BUTTON3, this));
return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE
}

BOOL CAhboutDlg: :OnInitDialog()

1
CDialog: :OnInitDialogi);
YERIFY(m_editCopy. dutoload{IDC_BUTTOHL, thi=));
VERIFY(m_editCut Autoload{IDC_BUTTOHZ, thi=s)):
YERIFY(m_editPaste. Autoload{IDC_BUTTONI, thi=)i):
return TRUE: .~ return TREUE unless vou ==t the focus to a control
< BEXCEFTION: QOCE Property Pages should return FALSE

Listing 22.

The AutoLoad() function connects each button with the two matching resources. The VERIFY macro is an MFC
diagnostic aid that displays a message box if you didn't code the bitmap names correctly.

Edit the OnDraw() function in mymfc26DView.cpp. Replace the AppWizard-generated code with the following line:

pDC->TextOut(30, 30, "Choose About from the Help menu.");



S CHymfc26DView drawing
vold CHymfcZeDView: :OnDraw(CDC* pDC)

pDC—:TextOut (30, 30, "Choo=e About from the Help menu. ")

Listing 23.

Build and test the application. When the program starts, choose About from the Help menu and observe the button
behavior. The image below shows the CUT button in the down state.

<+ Untitled - mymfc26D M=1E3
File Edit Mew Help
0= = T N2

Choose About from the Help menu.

Faor Help, press F1

Figure 33: MYMFC26D program output.
About mymfc26D X
mymfc260 Yerzion 1.0

Copyright [C] 2006

3]

Figure 34: MYMFC26D program output with bitmap.

Note that bitmap buttons send BN_CL I CKED notification messages just as ordinary buttons do. ClassWizard can, of
course, map those messages in your dialog class.

Going Further with Bitmap Buttons

You've seen bitmaps for the buttons' up and down states. The CBitmapButton class also supports bitmaps for the
focused and disabled states. For the Copy button, the focused bitmap name would be "COPYF", and the disabled bitmap
name would be "COPYX". If you want to test the disabled option, make a "COPYX" bitmap, possibly with a red line
through it, and then add the following line to your program:

m_editCopy-EnableWindow(FALSE) ;



Further reading and digging:

—_—

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

L

Nk w


http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

