
Module 20: Win32 Memory Management 

  
Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack 
2. Topics and sub topics for this Tutorial are listed below. C language for the memory and compiler story can be found 
in Module W, Module Z and Buffer overflow (quite complete). 
  
Win32 Memory Management 
Processes and Memory Space
The Windows 95 Process Address Space 
The Windows NT Process Address Space 
How Virtual Memory Works 
For Win32 Programmers: Segment Registers in Win32  
The VirtualAlloc() Function: Committed and Reserved Memory 
The Windows Heap and the GlobalAlloc() Function Family 
The Small-Block Heap, the C++ new and delete Operators, and _heapmin() 
Memory-Mapped Files 
Accessing Resources 
Some Tips for Managing Dynamic Memory 
Optimizing Storage for Constant Data 
  
  
Win32 Memory Management 
  
Forget everything you ever knew about Win16 memory management. Some of the Win16 memory management 
functions, such as GlobalAlloc(), were carried forward into Win32, but this was done to enable developers to port 
source code quickly. Underneath, the original functions work very differently, and many new ones have been added.  
This module starts out with a dose of Win32 memory management theory, which includes coverage of the fundamental 
heap management functions. Then you'll see how the C++ new and delete operators connect with the underlying heap 
functions. Finally, you'll learn how to use the memory-mapped file functions, and you'll get some practical tips on 
managing dynamic memory. In no way is this module intended to be a definitive description of Win32 memory 
management. For that, you'll have to read Jeffrey Richter's Advanced Windows (Microsoft Press, 1997). Be sure you 
have the latest edition, a new version may be in the works that covers Microsoft Windows 98/NT 5.0. At the time this 
edition was written, both Windows 98 and Windows NT 5.0 (Windows 2000) were in beta and not released. Our 
examination of these betas indicates that the memory management has not changed significantly. 
  
Processes and Memory Space
  
Before you learn how Microsoft Windows manages memory, you must first understand what a process is. If you already 
know what a program is, you're on your way. A program is an EXE file that you can launch in various ways in 
Windows. Once a program is running, it's called a process. A process owns its memory, file handles, and other system 
resources. If you launch the same program twice in a row, you have two separate processes running simultaneously. 
Both the Microsoft Windows NT Task Manager (right-click the taskbar) and the Microsoft Windows 95 PVIEW95 
program give you a detailed list of processes that are currently running, and they allow you to kill processes that are not 
responding. The SPY++ program (Microsoft Visual C++ 6.0 Tools) shows the relationships among processes, tasks, and 
windows. You can also use Windows Task Manager (by pressing Ctrl + Alt + Del). 
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Figure 1: Using SPY++ to see the relationship among processes, tasks and windows. 
  

 
  

Figure 2: Using Windows Task Manager to see the processes and other windows system objects. 
  
  



The Windows taskbar shows main windows, not processes. A single process (such as Windows Explorer) might have 
several main windows, each supported by its own thread, and some processes don't have windows at all. The important 
thing to know about a process is that it has its own "private" 4-gigabyte (GB) virtual address space (which will be 
described in detail in the next section). For now, pretend that your computer has hundreds of gigabytes of RAM and that 
each process gets 4 GB. Your program can access any byte of this space with a single 32-bit linear address. Each 
process's memory space contains a variety of items, including the following: 
  

▪          Your program's EXE image. 
▪          Any non-system DLLs that your program loads, including the MFC DLLs. 
▪          Your program's global data (read-only as well as read/write). 
▪          Your program's stack. 
▪          Dynamically allocated memory, including Windows and C-runtime library (CRT) heaps. 
▪          Memory-mapped files. 
▪          Interprocess shared memory blocks. 
▪          Memory local to specific executing threads. 
▪          All sorts of special system memory blocks, including virtual memory tables. 
▪          The Windows kernel and executive, plus DLLs that are part of Windows. 

  
The Windows 95 Process Address Space 
  
In Windows 95, only the bottom 2 GB (0 to 0x7FFFFFFF) of address space is truly private, and the bottom 4 MB of that 
is off-limits. The stack, heaps, and read/write global memory are mapped in the bottom 2 GB along with application 
EXE and DLL files. 
The top 2 GB of space is the same for all processes and is shared by all processes. The Windows 95 kernel, executive, 
virtual device drivers (VxDs), and file system code, along with important tables such as page tables, are mapped to the 
top 1 GB (0xC0000000 to 0xFFFFFFFF) of address space. Windows DLLs and memory-mapped files are located in the 
range 0x80000000 to 0xBFFFFFFF. Figure 3 shows a memory map of two processes using the same program. 
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Figure 3: A typical Windows 95 virtual memory map for two processes linked to the same EXE file. 
  
How safe is all this? It's next to impossible for one process to overwrite another process's stack, global, or heap memory 
because this memory, located in the bottom 2 GB of virtual address space, is assigned only to that specific process. 
All EXE and DLL code is flagged as read-only, so there's no problem if the code is mapped in several processes.  
However, because important Windows read/write data is mapped there, the top 1 GB of address space is vulnerable. 
An errant program could wipe out important system tables located in this region. In addition, one process could mess up 



another process's memory-mapped files in the range 0x80000000 through 0xBFFFFFFF because this region is shared 
by all processes. 
  
The Windows NT Process Address Space 
  
A process in Windows NT can access only the bottom 2 GB of its address space and the lowest and highest 64 KB of 
that is inaccessible. The EXE, the application's DLLs and Windows DLLs, and memory-mapped files all reside in this 
space between 0x00010000 and 0x7FFEFFFF. The Windows NT kernel, executive, and device drivers all reside in the 
upper 2 GB, where they are completely protected from any tampering by an errant program. Memory-mapped files are 
safer, too. One process cannot access another's memory-mapped file without knowing the file's name and explicitly 
mapping a view. 
  
How Virtual Memory Works 
  
You know that your computer doesn't really have hundreds of gigabytes of RAM. Windows uses some smoke and 
mirrors here. First of all, a process's 4-GB address space is going to be used sparsely. Various programs and data 
elements will be scattered throughout the 4-GB address space in 4-KB units starting on 4-KB boundaries. Each 4-KB 
unit, called a page, can hold either code or data. When a page is being used, it occupies physical memory, but you 
never see its physical memory address. The Intel microprocessor chip efficiently maps a 32-bit virtual address to both 
a physical page and an offset within the page, using two levels of 4-KB page tables, as shown in Figure 4. Note that 
individual pages can be flagged as either read-only or read/write. Also note that each process has its own set of page 
tables. The chip's CR3 register (Control Register) holds a pointer to the directory page, so when Windows switches 
from one process to another, it simply updates CR3. 
  

 
  

Figure 4: Win32 virtual memory management (Intel). 
  
So now our process is down from 4 GB to maybe 5 MB, a definite improvement. But if we're running several programs, 
along with Windows itself, we'll still run out of RAM. If you look at Figure 10-2 again, you'll notice that the page table 
entry has a "present" bit that indicates whether the 4-KB page is currently in RAM. If we try to access a page that's not 
in RAM, an interrupt fires and Windows analyzes the situation by checking its internal tables. If the memory reference 



was bogus, we'll get the dreaded "page fault" message and the program will exit. Otherwise, Windows reads the page 
from a disk file into RAM and updates the page table by loading the physical address and setting the present bit. This is 
the essence of Win32 virtual memory. 
The Windows virtual memory manager figures out how to read and write 4-KB pages so that it optimizes performance. 
If one process hasn't used a page for a while and another process needs memory, the first page is swapped out or 
discarded and the RAM is used for the new process's page. Your program isn't normally aware that this is going on. The 
more disk I/O that happens, however, the worse your program's performance will be, so it stands to reason that more 
RAM is better. 
I mentioned the word "disk," but I haven't talked about files yet. All processes share a big system wide swap file that's 
used for all read/write data and some read-only data. Windows NT supports multiple swap files. Windows determines 
the swap file size based on available RAM and free disk space, but there are ways to fine-tune the swap file's size and 
specify its physical location on disk. 
The swap file isn't the only file used by the virtual memory manager, however. It wouldn't make sense to write code 
pages back to the swap file, so instead of using the swap file, Windows maps EXE and DLL files directly to their files 
on disk. Because the code pages are marked read-only, there's never a need to write them back to disk. If two processes 
use the same EXE file, that file is mapped into each process's address space. The code and constants never change 
during program execution, so the same physical memory can be mapped for each process. The two processes cannot 
share global data, however, and Windows 95 and Windows NT handle this situation differently. Windows 95 maps 
separate copies of the global data to each process. In Windows NT, both processes use the same copy of each page of 
global data until one process attempts to write to that page. At that point the page is copied; as a result, each process has 
its own private copy stored at the same virtual address. 
A dynamic link library can be mapped directly to its DLL file only if the DLL can be loaded at its designated base 
address. If a DLL were statically linked to load at, say, 0x10000000 but that address range is already occupied by 
another DLL, Windows must "fix up" the addresses within the DLL code. Windows NT copies the altered pages to the 
swap file when the DLL is first loaded, but Windows 95 can do the fix up "on the fly" when the pages are brought into 
RAM. Needless to say, it's important to build your DLLs with non-overlapping address ranges. If you're using the MFC 
DLLs, set the base address of your own DLLs outside the range 0x5F400000 through 0x5FFFFFFF. Memory-mapped 
files, which I'll talk about later, are also mapped directly. These can be flagged as read/write and made available for 
sharing among processes. 
  
For Win32 Programmers: Segment Registers in Win32  
  
If you've experimented with the debugger in Win32, you may have noticed the segment registers, particularly CS, DS, 
and SS. These 16-bit relics haven't gone away, but you can mostly ignore them. In 32-bit mode, the Intel microprocessor 
still uses segment registers, which are 16 bits long, to translate addresses prior to sending them through the virtual 
memory system. A table in RAM, called the descriptor table, has entries that contain the virtual memory base address 
and block size for code, data, and stack segments. In 32-bit mode, these segments can be up to 4 GB in size and can be 
flagged as read-only or read/write. For every memory reference, the chip uses the selector, the contents of a segment 
register, to look up the descriptor table entry for the purpose of translating the address. 
Under Win32, each process has two segments, one for code and one for data and the stack. You can assume that both 
have a base value of 0 and a size of 4 GB, so they overlap. The net result is no translation at all, but Windows uses some 
tricks that exclude the bottom 16 KB from the data segment. If you try to access memory down there, you get a 
protection fault instead of a page fault, which is useful for debugging null pointers. Some future operating system 
might someday use segments to get around that annoying 4-GB size limitation, but by then we'll have Win64 to worry 
about! 
  
The VirtualAlloc() Function: Committed and Reserved Memory 
  
If your program needs dynamic memory, sooner or later the Win32 VirtualAlloc() function will be called. 
Chances are that your program will never call VirtualAlloc(); instead you'll rely on the Windows heap or the C-
Run Time (CRT) heap functions to call it directly. Knowing how VirtualAlloc() works, however, will help you 
better understand the functions that call it. 
First you must know the meanings of reserved and committed memory. When memory is reserved, a contiguous virtual 
address range is set aside. If, for example, you know that your program is going to use a single 5-MB memory block 
(known as a region) but you don't need to use it all right away, you call VirtualAlloc() with a MEM_RESERVE 
allocation type parameter and a 5-MB size parameter. Windows rounds the start address of the region to a 64-KB 
boundary and prevents your process from reserving other memory in the same range. You can specify a start address for 



your region, but more often you'll let Windows assign it for you. Nothing else happens. No RAM is allocated, and no 
swap file space is set aside. 
When you get more serious about needing memory, you call VirtualAlloc() again to commit the reserved 
memory, using a MEM_COMMIT allocation type parameter. Now the start and end addresses of the region are rounded to 
4-KB boundaries, and corresponding swap file pages are set aside together with the required page table. The block is 
designated either read-only or read/write. Still no RAM is allocated, however; RAM allocation occurs only when you try 
to access the memory. If the memory was not previously reserved, no problem. If the memory was previously 
committed, still no problem. The rule is that memory must be committed before you can use it. You call the 
VirtualFree() function to "decommit" committed memory, thereby returning the designated pages back to reserved 
status. VirtualFree() can also free a reserved region of memory, but you have to specify the base address you got 
from a previous VirtualAlloc() reservation call. 
  
The Windows Heap and the GlobalAlloc() Function Family 
  
A heap is a memory pool for a specific process. When your program needs a block of memory, it calls a heap 
allocation function, and it calls a companion function to free the memory. There's no assumption about 4-KB page 
boundaries; the heap manager uses space in existing pages or calls VirtualAlloc() to get more pages. First we'll 
look at Windows heaps. Next we'll consider heaps managed by the CRT library for functions like malloc() and new.  
Windows provides each process with a default heap, and the process can create any number of additional Windows 
heaps. The HeapAlloc() function allocates memory in a Windows heap, and HeapFree() releases it.  
You might never need to call HeapAlloc() yourself, but it will be called for you by the GlobalAlloc() function 
that's left over from Win16. In the ideal 32-bit world, you wouldn't have to use GlobalAlloc(), but in this real 
world, we're stuck with a lot of code ported from Win16 that uses "memory handle" (HGLOBAL) parameters instead of 
32-bit memory addresses. 
GlobalAlloc() uses the default Windows heap. It does two different things, depending on its attribute parameter. If 
you specify GMEM_FIXED, GlobalAlloc() simply calls HeapAlloc() and returns the address cast as a 32-bit 
HGLOBAL value. If you specify GMEM_MOVEABLE, the returned HGLOBAL value is a pointer to a handle table entry in 
your process. That entry contains a pointer to the actual memory, which is allocated with HeapAlloc(). 
Why bother with "moveable" memory if it adds an extra level of indirection? You're looking at an artifact from Win16, 
in which, once upon a time, the operating system actually moved memory blocks around. In Win32, moveable blocks 
exist only to support the GlobalReAlloc() function, which allocates a new memory block, copies bytes from the 
old block to the new, frees the old block, and assigns the new block address to the existing handle table entry. If nobody 
called GlobalReAlloc(), we could always use HeapAlloc() instead of GlobalAlloc(). 
Unfortunately, many library functions use HGLOBAL return values and parameters instead of memory addresses. If such 
a function returns an HGLOBAL value, you should assume that memory was allocated with the GMEM_MOVEABLE 
attribute, and that means you must call the GlobalLock() function to get the memory address. If the memory was 
fixed, the GlobalLock() call just returns the handle as an address. Call GlobalUnlock() when you're finished 
accessing the memory. If you're required to supply an HGLOBAL parameter, to be absolutely safe you should generate it 
with a GlobalAlloc(GMEM_MOVEABLE, ...) call in case the called function decides to call 
GlobalReAlloc() and expects the handle value to be unchanged. 
  
The Small-Block Heap, the C++ new and delete Operators, and _heapmin() 
  
You can use the Windows HeapAlloc() function in your programs, but you're more likely to use the malloc() and 
free() functions supplied by the CRT. If you write C++ code, you won't call these functions directly; instead, you'll 
use the new and delete operators, which map directly to malloc() and free(). If you use new to allocate a block 
larger than a certain threshold (480 bytes is the default), the CRT passes the call straight through to HeapAlloc() to 
allocate memory from a Windows heap created for the CRT. For blocks smaller than the threshold, the CRT manages a 
small-block heap, calling VirtualAlloc() and VirtualFree() as necessary. Here is the algorithm: 
  

1. Memory is reserved in 4-MB regions. 
2. Memory is committed in 64-KB blocks (16 pages). 
3. Memory is decommitted 64 KB at a time. As 128 KB becomes free, the last 64 KB is decommitted. 
4. A 4-MB region is released when every page in that region has been decommitted. 

  



As you can see, this small-block heap takes care of its own cleanup. The CRT's Windows heap doesn't automatically 
decommit and un-reserve pages, however. To clean up the larger blocks, you must call the CRT _heapmin() function, 
which calls the windows HeapCompact() function. Unfortunately, the Windows 95 version of HeapCompact() 
doesn't do anything, all the more reason to use Windows NT. Once pages are decommitted, other programs can reuse the 
corresponding swap file space. 
In previous versions of the CRT, the free list pointers were stored inside the heap pages. This strategy required the 
malloc() function to "touch" (read from the swap file) many pages to find free space, and this degraded performance. 
The current system, which stores the free list in a separate area of memory, is faster and minimizes the need for third-
party heap management software. If you want to change or access the block size threshold, use the CRT functions 
_set_sbh_threshold() and _get_sbh_threshold(). A special debug version of malloc(), 
_malloc_dbg(), adds debugging information inside allocated memory blocks. The new operator calls 
_malloc_dbg() when you build an MFC project with _DEBUG defined. Your program can then detect memory 
blocks that you forgot to free or that you inadvertently overwrote. 
  
Memory-Mapped Files 
  
In case you think you don't have enough memory management options already, I'll toss you another one. Suppose your 
program needs to read a DIB (device-independent bitmap) file. Your instinct would be to allocate a buffer of the correct 
size, open the file, and then call a read function to copy the whole disk file into the buffer. The Windows memory-
mapped file is a more elegant tool for handling this problem, however. You simply map an address range directly to the 
file. When the process accesses a memory page, Windows allocates RAM and reads the data from disk. Here's what the 
code looks like: 
  

HANDLE hFile = ::CreateFile(strPathname, GENERIC_READ, FILE_SHARE_READ, NULL, 
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); 
ASSERT(hFile != NULL); 
HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL); 
ASSERT(hMap != NULL); 
LPVOID lpvFile = ::MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0); // Map whole file 
DWORD dwFileSize = ::GetFileSize(hFile, NULL);  // useful info 
// Use the file 
::UnmapViewOfFile(lpvFile); 
::CloseHandle(hMap); 
::CloseHandle(hFile); 

  
Here you're using virtual memory backed by the DIB file. Windows determines the file size, reserves a corresponding 
address range, and commits the file's storage as the physical storage for this range. In this case, lpvFile is the start 
address. The hMap variable contains the handle for the file mapping object, which can be shared among processes if 
desired. 
The DIB in the example above is a small file that you could read entirely into a buffer. Imagine a larger file for which 
you would normally issue seek commands. A memory-mapped file works for such a file, too, because of the underlying 
virtual memory system. RAM is allocated and pages are read when you access them, and not before. By default, the 
entire file is committed when you map it, although it's possible to map only part of a file. If two processes share a file 
mapping object (such as hMap in the sample code above), the file itself is, in effect, shared memory, but the virtual 
addresses returned by MapViewOfFile() might be different. Indeed, this is the preferred Win32 method of sharing 
memory. (Calling the GlobalAlloc() function with the GMEM_SHARE flag doesn't create shared memory as it did in 
Win16.) If memory sharing is all you want to do and you don't need a permanent disk file, you can omit the call to 
CreateFile() and pass 0xFFFFFFFF as the CreateFileMapping() hFile parameter. Now the shared 
memory will be backed by pages in the swap file. Consult Richter for details on memory-mapped files. If you intend to 
access only a few random pages of a file mapping object that is backed by the swap file, you can use a technique that 
Jeffrey Richter describes in Advanced Windows under the heading "Sparsely Committed Memory-Mapped Files." In 
this case, you call CreateFileMapping() with a special flag and then you commit specific address ranges later 
with the VirtualAlloc() function. You might want to look carefully at the Windows message WM_COPYDATA. 
This message lets you transfer data between processes in shared memory without having to deal with the file mapping 
API. You must send this message rather than post it, which means the sending process has to wait while the receiving 
process copies and processes the data. Unfortunately, there's no direct support for memory-mapped files or shared 
memory in MFC. The CSharedFile() class supports only clipboard memory transfers using HGLOBAL handles, so 
the class isn't as useful as its name implies. 
  



Accessing Resources 
  
Resources are contained inside EXEs and DLLs and thus occupy virtual address space that doesn't change during the life 
of the process. This fact makes it easy to read a resource directly. If you need to access a bitmap, for example, you can 
get the DIB address with code like this: 
  

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL, ::FindResource(NULL, 
MAKEINTRESOURCE(IDB_REDBLOCKS), RT_BITMAP)); 

  
The LoadResource() function returns an HGLOBAL value, but you can safely cast it to a pointer. 
  
Some Tips for Managing Dynamic Memory 
  
The more you use the heap, the more fragmented it gets and the more slowly your program runs. If your program is 
supposed to run for hours or days at a time, you have to be careful. It's better to allocate all the memory you need when 
your program starts and then free it when the program exits, but that's not always possible. The CString class is a 
nuisance because it's constantly allocating and freeing little bits of memory. Fortunately, MFC developers have recently 
made some improvements. 
Don't forget to call _heapmin() every once in a while if your program allocates blocks larger than the small-block 
heap threshold. And be careful to remember where heap memory comes from. You'd have a big problem, for instance, if 
you called HeapFree() on a small-block pointer you got from new. 
Be aware that your stack can be as big as it needs to be. Because you no longer have a 64-KB size limit, you can put 
large objects on the stack, thereby reducing the need for heap allocations. 
As in Win16, your program doesn't run at full speed and then suddenly throw an exception when Windows runs out of 
swap space. Your program just slowly grinds to a halt, making your customer unhappy. And there's not much you can do 
except try to figure out which program is eating memory and why. Because the Windows 95 USER and GDI modules 
still have 16-bit components, there is some possibility of exhausting the 64-KB heaps that hold GDI objects and window 
structures. This possibility is pretty remote, however, and if it happens, it probably indicates a bug in your program. 
  
Optimizing Storage for Constant Data 
  
Remember that the code in your program is backed not by the swap file but directly by its EXE and DLL files. If several 
instances of your program are running, the same EXE and DLL files will be mapped to each process's virtual address 
space. What about constant data? You would want that data to be part of the program rather than have it copied to 
another block of address space that's backed by the swap file. You've got to work a little bit to ensure that constant data 
gets stored with the program. First consider string constants, which often permeate your programs. You would think that 
these would be read-only data, but guess again. Because you're allowed to write code like this: 
  

char* pch = "test"; 
*pch = 'x'; 

  
"test" can't possibly be constant data, and it isn't. 
  
If you want "test" to be a constant, you must declare it as an initialized const static or global variable. Here's the 
global definition: 
  

const char g_pch[] = "test"; 
  
Now g_pch is stored with the code, but where, specifically? To answer that, you must understand the "data sections" 
that the Visual C++ linker generates. If you set the link options to generate a map file, you'll see a long list of the 
sections (memory blocks) in your program. Individual sections can be designated for code or data, and they can be read-
only or read/write. The important sections and their characteristics are listed here. 
  

Name Type Access Contents 
.text Code Read-only Program code. 
.rdata Data Read-only Constant initialized data. 
.data Data Read/write Non-constant initialized data. 
.bss Data Read/write Non-constant uninitialized data. 



  
Table 1. 

  
The .rdata section is part of the EXE file, and that's where the linker puts the g_pch variable. The more stuff you put 
in the .rdata section, the better. The use of the const modifier does the trick. You can put built-in types and even 
structures in the .rdata section, but you can't put C++ objects there if they have constructors. If you write a statement 
like the following one: 
  

const CRect g_rect(0, 0, 100, 100); 
  
the linker puts the object into the .bss section, and it will be backed separately to the swap file for each process. If you 
think about it, this makes sense because the compiler must invoke the constructor function after the program is loaded.  
Now suppose you wanted to do the worst possible thing. You'd declare a CString global variable (or static class data 
member) like this: 
  

const CString g_str("this is the worst thing I can do"); 
  
Now you've got the CString object (which is quite small) in the .bss section and you've also got a character array in 
the .data section, neither of which can be backed by the EXE file. To make matters worse, when the program starts, 
the CString class must allocate heap memory for a copy of the characters. You would be much better off using a 
const character array instead of a CString object. 
  
Further reading and digging: 
 

1. C language for the memory and compiler story can be found in Module W, Module Z and Buffer overflow 
(quite complete). 

2. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial. 
3. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible 

with 6.0 class library 
4. MSDN Library 
5. Windows data type. 
6. Win32 programming Tutorial. 
7. The best of C/C++, MFC, Windows and other related books. 
8. Unicode and Multibyte character set: Story and program examples.  
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