
Module 19: Internet Explorer 4 Common Controls

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Internet Explorer 4 Common Controls
The Common Control Description
The Date and Time Picker
CTime vs. COleDateTime Class
The Month Calendar
The Internet Protocol (IP) Address Control
The Extended Combo Box
The MYMFC25A Example

Internet Explorer 4 Common Controls

When Microsoft developers released Internet Explorer 4 (IE4), they included a new and improved version of the
COMCTL32.DLL, which houses Microsoft Windows Common Controls. Since this update to the common controls was
not part of an operating system release, Microsoft calls the update Internet Explorer 4 Common Controls. IE4 Common
Controls updates all of the existing controls and adds a variety of advanced new controls. Microsoft Visual C++ 6.0 and
Microsoft Foundation Class (MFC) 6.0 have added a great deal of support for these new controls. In this module, we'll
look at the new controls and show examples of how to use each one. If you haven't worked with Windows controls or
Windows Common Controls, be sure you read Module 5 before proceeding with IE4 Common Controls. While
Microsoft Windows 95 and Microsoft Windows NT 4.0 do not include the new COMCTL32.DLL, future versions of
Windows will. To be safe, you will need to redistribute the COMCTL32.DLL for these existing operating systems as
part of your installation. Currently you must ship a "developer's edition" of Internet Explorer to be able to redistribute
these controls. However, this might change once a version of Windows ships with the updated controls. Currently we
have IE 6 and IE 7 in beta mode.

The Common Control Description

Example MYMFC25A uses each of the IE4 common controls. Figure 1 shows the dialog from that example. Refer to it
when you read the control descriptions that follow.

http://tenouk.com/visualcplusmfc/visualcplusmfc5.html

Figure 1: The Internet Explorer 4 Common Controls dialog.

The Date and Time Picker

A common field on a dialog is a place for the user to enter a date and time. Before IE4 controls provided the date and
time picker, developers had to either use a third-party control or subclass an MFC edit control to do significant data
validation to ensure that the entered date was valid. Fortunately, the new date and time picker control is provided as an
advanced control that prompts the user for a date or time while offering the developer a wide variety of styles and
options. For example, dates can be displayed in short formats (8/14/68) or long formats (August 14, 1968). A time mode
lets the user enter a time using a familiar hours/minutes/seconds AM/PM format.
The control also lets you decide if you want the user to select the date via in-place editing, a pull-down calendar, or a
spin button. Several selection options are available including single and multiple select (for a range of dates) and the
ability to turn on and off the "circling" in red ink of the current date. The control even has a mode that lets the user select
"no date" via a check box. In Figure 1, the first four controls on the left illustrate the variety of configurations available
with the date and time picker control.
The new MFC 6.0 class CDateTimeCtrl provides the MFC interface to the IE4 date and time picker common
control. This class provides a variety of notifications that enhance the programmability of the control.
CDateTimeCtrl provides member functions for dealing with either CTime or COleDateTime time structures.
You set the date and time in a CDateTimeCtrl using the SetTime() member function. You can retrieve the date
and time via the GetTime() function. You can create custom formats using the SetFormat() member function and
change a variety of other configurations using the CDateTimeCtrl interface.

CTime vs. COleDateTime Class

Most "longtime" MFC developers are accustomed to using the CTime class. However, since CTime's valid dates are
limited to dates between January 1, 1970, and January 18, 2038, many developers are looking for an alternative. One

popular alternative is COleDateTime, which is provided for OLE automation support and handles dates from 1
January 100 through 31 December 9999. Both classes have various pros and cons. For example, CTime handles all the
issues of daylight savings time, while COleDateTime does not. Many developers choose COleDateTime because
of its much larger range. Any application that uses CTime will need to be reworked in approximately 40 years, since the
maximum value is the year 2038. To see this limitation in action, select a date outside the CTime range in
MYMFC25A. The class you decide to use will depend on your particular needs and the potential longevity of your
application.

The Month Calendar

The large display at the bottom left of Figure 1 is a Month Calendar. Like the date and time picker control, the month
calendar control lets the user choose a date. However, the month calendar control can also be used to implement a small
Personal Information Manager (PIM) in your applications. You can show as many months as room provides, from
one month to a year's worth of months, if you want. MYMFC25A uses the month calendar control to show only two
months. The month calendar control supports single or multiple selection and allows you to display a variety of different
options such as numbered months and a circled "today's date." Notifications for the control let the developer specify
which dates are in boldface. It is entirely up to the developer to decide what boldface dates might represent. For
example, you could use the bold feature to indicate holidays, appointments, or unusable dates. The MFC 6.0 class
CMonthCalCtrl implements this control.
To initialize the CMonthCalCtrl class, you can call the SetToday() member function. CMonthCalCtrl
provides members that deal with both CTime and COleDateTime, including SetToday().

The Internet Protocol (IP) Address Control

If you write an application that uses any form of Internet or TCP/IP functionality, you might need to prompt the user for
an Internet Protocol (IP) Address. The IE4 common controls include an IP address edit control as shown in the top right
of Figure 1. In addition to letting the user enter a 4-byte IP address, this control performs an automatic validation of the
entered IP address. CIPAddressCtrl provides MFC support for the IP address control. An IP address consists of four
"fields" as shown in Figure 2. The fields are numbered from left to right.

Figure 2: The fields of an Internet Protocol (IP) address control.

To initialize an IP address control, you call the SetAddress() member function in your OnInitDialog()
function. SetAddress() takes a DWORD, with each BYTE in the DWORD representing one of the fields. In your
message handlers, you can call the GetAddress() member function to retrieve a DWORD or a series of BYTES to
retrieve the various values of the four IP address fields.

The Extended Combo Box

The "old-fashioned" combo box was developed in the early days of Windows. Its age and inflexible design have been
the source of a great deal of developer confusion. With the IE4 controls, Microsoft has decided to release a much more
flexible version of the combo box called the extended combo box.
The extended combo box gives the developer much easier access to and control over the edit-control portion of the
combo box. In addition, the extended combo box lets you attach an image list to the items in the combo box. You can
display graphics in the extended combo box easily, especially when compared with the old days of using owner-drawn
combo boxes. Each item in the extended combo box can be associated with three images: a selected image, an
unselected image, and an overlay image. These three images can be used to provide a variety of graphical displays in the

combo box, as we'll see in the MYMFC25A sample. The bottom two combo boxes in Figure 1 are both extended combo
boxes. The MFC CComboBoxEx class provides comprehensive extended combo box support.
Like the list control introduced in Module 6, CComboBoxEx can be attached to a CImageList that will automatically
display graphics next to the text in the extended combo box. If you are already familiar with CComboBox,
CComboBoxEx might cause some confusion: instead of containing strings, the extended combo box contains items of
type COMBOBOXEXITEM, a structure that consists of the following fields:

▪ UINT mask: A set of bit flags that specify which operations are to be performed using the structure. For
example, set the CBEIF_IMAGE flag if the image field is to be set or retrieved in an operation.

▪ int iItem: The extended combo box item number. Like the older style of combo box, the extended
combo box uses zero-based indexing.

▪ LPSTR pszText: The text of the item.
▪ int cchTextMax: The length of the buffer available in pszText.
▪ int iImage: Zero-based index into an associated image list.
▪ int iSelectedImage: Index of the image in the image list to be used to represent the "selected"

state.
▪ int iOverlay: Index of the image in the image list to be used to overlay the current image.
▪ int iIndent: Number of 10-pixel indentation spaces.
▪ LPARAM lParam: 32-bit parameter for the item.

You will see first-hand how to use this structure in the MYMFC25A example.

The MYMFC25A Example

To illustrate how to take advantage of the Internet Explorer 4 Common Controls, we'll build a dialog that demonstrates
how to create and program each control type. The steps required to create the dialog are shown below.

Run AppWizard to generate the MYMFC25A project. Choose New from the Visual C++ File menu, and then select
Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but one: choose Single Document
Interface (SDI). The options and the default class names are shown here.

http://tenouk.com/visualcplusmfc/visualcplusmfc6.html

Figure 3: MYMFC25A IE4 common controls project summary.

Create a new dialog resource with ID IDD_DIALOG1. Place the controls as shown in Figure 1.
You can drag the controls from the control palette. Remember that IE4 Common Controls are at the bottom part of the
palette. The following table lists the control types and their IDs.

Tab Sequence Control Type Child Window ID
1 Group Box IDC_STATIC
2 Static IDC_STATIC
3 Date Time Picker IDC_DATETIMEPICKER1
4 Static IDC_STATIC1
5 Static IDC_STATIC
6 Date Time Picker IDC_DATETIMEPICKER2
7 Static IDC_STATIC2
8 Static IDC_STATIC
9 Date Time Picker IDC_DATETIMEPICKER3
10 Static IDC_STATIC3
11 Static IDC_STATIC
12 Date Time Picker IDC_DATETIMEPICKER4
13 Static IDC_STATIC4
14 Static IDC_STATIC
15 Month Calendar IDC_MONTHCALENDAR1
16 Static IDC_STATIC5
17 Group Box IDC_STATIC
18 Static IDC_STATIC
19 IP Address IDC_IPADDRESS1
20 Static IDC_STATIC6

21 Group Box IDC_STATIC
22 Static IDC_STATIC
23 Extended Combo Box IDC_COMBOBOXEX1
24 Static IDC_STATIC7
25 Static IDC_STATIC
26 Extended Combo Box IDC_COMBOBOXEX2
27 Static IDC_STATIC8
28 Pushbutton IDOK
29 Pushbutton IDCANCEL

Table 1: MYMFC25A controls and their IDs.

The following figure shows each control and its appropriate tab order.

Figure 4: MYMFC25A controls and their tab order.

Until we set some properties, your dialog will not look exactly like the one in Figure 1.

Use ClassWizard to create a new class, CDialog1, derived from CDialog. ClassWizard will automatically prompt
you to create this class because it knows that the IDD_DIALOG1 resource exists without an associated C++ class and
just go ahead.

Figure 5: A new class creation dialog prompt for IDD_DIALOG1.

Figure 6: CDialog1 class information.

Then, create a message handler for the WM_INITDIALOG message.

Figure 7: Creating a message handler for the WM_INITDIALOG message.

Set the properties for the dialog's controls. To demonstrate the full range of controls, we will need to set a variety of
properties on each of the IE4 common controls in the example. Here is a brief overview of each property you will need
to set:

▪ The Short Date and Time Picker. To set up the first date and time picker control to use the short format,
select the properties for IDC_DATETIMEPICKER1, as shown in the following figure.

Figure 8: Modifying Date Time Picker control properties.

▪ The Long Date and Time Picker. Now configure the second date and time picker control
(IDC_DATETIMEPICKER2) to use the long format as shown below.

Figure 9: Modifying Date Time Picker control properties.

▪ The Short and NULL Date and Time Picker. This is the third date and time picker control,
IDC_DATETIMEPICKER3. Configure this third date and time picker to use the short format and the
styles shown here.

Figure 10: Modifying Date Time Picker control properties.

▪ The Time Picker. The fourth date and time picker control, IDC_DATETIMEPICKER4, is configured to
let the user choose time. To configure this control, select Time from the Format combo box on the Styles
tab as shown.

Figure 11: Modifying Date Time Picker control properties.

▪ The Month View. To configure the month view, you will need to set a variety of styles. First, from the
Styles tab, choose Day States, as shown here.

Figure 12: Modifying Month Calendar control properties.

If we leave the default styles, the month view does not look like a control on the dialog. There are no
borders drawn at all. To make the control fit in with the other controls on the dialog, select Client
Edge and Static Edge from the Extended Styles tab, as shown below.

Figure 13: Modifying Month Calendar control properties.

▪ The IP Address. This control (IDC_IPADDRESS1) does not require any special properties.
▪ The First Extended Combo Box. Make sure that you enter some items, as shown here, and also make

sure the list is tall enough to display several items. Use Ctrl + Enter to go to new line.

Figure 14: Modifying Extended Combo Box control properties.

▪ The Second Extended Combo Box. Enter three items: Doremon, Tweety, Mack, Pink Panther,
Ultraman Ace and Jaws. Later in the example, we will use these items to show one of the ways to draw
graphics in an extended combo box.

Figure 15: Modifying Extended Combo Box control properties.

Add the CDialog1 variables. Start ClassWizard and click on the Member Variables tab to view the Member
Variables page. Enter the following member variables for each control listed.

Control ID Data Member Type
IDC_DATETIMEPICKER1 m_MonthCal1 CDateTimeCtrl
IDC_DATETIMEPICKER2 m_MonthCal2 CDateTimeCtrl
IDC_DATETIMEPICKER3 m_MonthCal3 CDateTimeCtrl
IDC_DATETIMEPICKER4 m_MonthCal4 CDateTimeCtrl
IDC_IPADDRESS1 m_ptrIPCtrl CIPAddressCtrl
IDC_MONTHCALENDAR1 m_MonthCal5 CMonthCalCtrl
IDC_STATIC1 m_strDate1 CString
IDC_STATIC2 m_strDate2 CString
IDC_STATIC3 m_strDate3 CString
IDC_STATIC4 m_strDate4 CString
IDC_STATIC5 m_strDate5 CString
IDC_STATIC6 m_strIPValue CString
IDC_STATIC7 m_strComboEx1 CString
IDC_STATIC8 m_strComboEx2 CString

Table 2.

Figure 16: Adding the CDialog1 variables.

Program the short date time picker. In this example, we don't mind if the first date time picker starts with the current
date, so we don't have any OnInitDialog() handling for this control. However, if we wanted to change the date, we
would make a call to SetTime() for the control in OnInitDialog(). At runtime, when the user selects a new date
in the first date and time picker, the companion static control should be automatically updated.

To achieve this, we need to use ClassWizard to add a handler for the DTN_DATETIMECHANGE message. Start
ClassWizard (or CTRL-W) and choose IDC_DATETIMEPICKER1 from the Object IDs list and
DTN_DATETIMECHANGE from the Messages list. Accept the default message name and click OK. Repeat this step for
each of the other three IDC_DATETIMEPICKER IDs. Your ClassWizard should look like the illustration here.

Figure 17: Adding a handler for the DTN_DATETIMECHANGE message.

Next add the following code to the handler for Datetimepicker1 created by ClassWizard:

void CDialog1::OnDatetimechangeDatetimepicker1(NMHDR* pNMHDR, LRESULT* pResult)
{
 CTime ct;
 m_MonthCal1.GetTime(ct);
 m_strDate1.Format(_T("%02d/%02d/%2d"), ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

Listing 1.

This code uses the m_MonthCal1 data member that maps to the first date time picker to retrieve the time into the
CTime object variable ct. It then calls the CString::Format member function to set the companion static string.
Finally the call to UpdateData(FALSE) triggers MFC's DDX and causes the static to be automatically updated to
m_strDate1.
Program the long date time picker. Now we need to provide a similar handler for the second date time picker.

void CDialog1::OnDatetimechangeDatetimepicker2(NMHDR* pNMHDR, LRESULT* pResult)

{
 CTime ct;
 m_MonthCal2.GetTime(ct);
 m_strDate2.Format(_T("%02d/%02d/%2d"), ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);

 *pResult = 0;
}

Listing 2.

Program the third date time picker. The third date time picker needs a similar handler, but since we set the Show None
style in the dialog properties, it is possible for the user to specify a NULL date by checking the inline check box. Instead
of blindly calling GetTime(), we have to check the return value. If the return value of the GetTime() call is
nonzero, the user has selected a NULL date. If the return value is zero, a valid date has been selected. As in the previous
two handlers, when a CTime object is returned, it is converted into a string and automatically displayed in the
companion static control.

void CDialog1::OnDatetimechangeDatetimepicker3(NMHDR* pNMHDR, LRESULT* pResult)
{
 //NOTE: this one can be null!
 CTime ct;
 int nRetVal = m_MonthCal3.GetTime(ct);
 if (nRetVal) //If not zero, it's null; and if it is,
 // do the right thing.
 {
 m_strDate3 = "NO DATE SPECIFIED!!";
 }
 else
 {
 m_strDate3.Format(_T("%02d/%02d/%2d"),ct.GetMonth(),
ct.GetDay(),ct.GetYear());
 }
 UpdateData(FALSE);
 *pResult = 0;
}

Listing 3.

Program the time picker. The time picker needs a similar handler, but this time the format displays
hours/minutes/seconds instead of months/days/years:

void CDialog1::OnDatetimechangeDatetimepicker4(NMHDR* pNMHDR, LRESULT* pResult)
{
 CTime ct;
 m_MonthCal4.GetTime(ct);
 m_strDate4.Format(_T("%02d:%02d:%2d"), ct.GetHour(), ct.GetMinute(),
ct.GetSecond());
 UpdateData(FALSE);
 *pResult = 0;
}

Listing 4.

Program the Month Selector. You might think that the month selector handler is similar to the date time picker's
handler, but they are actually somewhat different. First of all, the message you need to handle for detecting when the
user has selected a new date is the MCN_SELCHANGE message. Select this message in the ClassWizard, as shown here.

Figure 18: Adding message handler for IDC_MONTHCALENDAR1 ID.

In addition to the different message handler, this control uses GetCurSel() as the date time picker instead of
GetTime(). The code below shows the MCN_SELCHANGE handler for the month calendar control.

void CDialog1::OnSelchangeMonthcalendar1(NMHDR* pNMHDR, LRESULT* pResult)
{
 CTime ct;
 m_MonthCal5.GetCurSel(ct);
 m_strDate5.Format(_T("%02d/%02d/%2d"), ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

Listing 5.

Program the IP control. First we need to make sure the control is initialized. In this example, we initialize the control to
0 by giving it a 0 DWORD value. If you do not initialize the control, each segment will be blank. To initialize the control,
add this call to the CDialog1::OnInitDialog function:

m_ptrIPCtrl.SetAddress(0L);

Listing 6.

Now we need to add a handler to update the companion static control whenever the IP address control changes. First we
need to add a handler for the IPN_FIELDCHANGED notification message using ClassWizard, as shown here.

Figure 19: Adding a handler for the IPN_FIELDCHANGED notification message using ClassWizard.

Next we need to implement the handler as follows:

void CDialog1::OnFieldchangedIpaddress1(NMHDR* pNMHDR, LRESULT* pResult)
{
 DWORD dwIPAddress;
 m_ptrIPCtrl.GetAddress(dwIPAddress);

 m_strIPValue.Format("%d.%d.%d.%d %x.%x.%x.%x",
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)),
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),

 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)));
 UpdateData(FALSE);
 *pResult = 0;
}

Listing 7.

The first call to CIPAddressCtrl::GetAddress retrieves the current IP address into the local dwIPAddress
DWORD variable. Next we make a fairly complex call to CString::Format to deconstruct the DWORD into the
various fields. This call uses the LOWORD macro to first get to the bottom word of the DWORD and the HIBYTE/LOBYTE
macros to further deconstruct the fields in order from field 0 to field 3.

Add a handler for the first extended combo box. No special initialization is required for the extended combo box, but we
do need to handle the CBN_SELCHANGE message. The following code shows the extended combo box handler. Can
you spot the ways that this differs from a "normal" combo box control?

Figure 20: Adding a handler for the first extended combo box, IDC_COMBOBOXEX1.

void CDialog1::OnSelchangeComboboxex1()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX1);

 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC7,str);
 return;
}

Listing 8.

The first thing you probably noticed is the use of the COMBOBOXEXITEM structure for the extended combo box instead
of the plain integers used for items in an older combo box. Once the handler retrieves the item, it extracts the string and
calls SetDlgItemText() to update the companion static control.

Add Images to the Items in the second extended combo box. The first extended combo box does not need any special
programming. It is used to demonstrate how to implement a simple extended combo box very similar to the older, non-
extended combo box. The second combo box requires a good bit of programming. First we created six bitmaps and eight
icons that we need to add to the resources for the project, as shown in the following illustration.

Figure 21: A complete bitmap and icon set that you have to create.

Of course, you are free to use any bitmaps and icons.

Figure 22: Inserting new resource, a bitmap.

Figure 23: Selecting the bitmap resource.

Figure 24: Inserting a new icon.

Figure 25: Editing the icon and modifying the properties.

Figure 26: A completed set of the bitmaps and icons for MYMFC25A project.

There are two ways to add our graphics to an extended combo box. The first method is to attach images to existing
combo box items. Remember that we used the dialog editor to add the Doremon, Tweety, Mack, etc. items to the
combo box. The second method is to add new items and specify their corresponding images at the time of addition.
Before we start adding graphics to the extended combo box, let's create a public CImageList data member in the
CDialog1 class named m_imageList. Be sure you add the data member to the header file (Dialog1.h) for the class.

Figure 27: Adding a public CImageList data member to the CDialog1 class.

Figure 28: Entering the variable type and name.

Now we can add some of the bitmap images to the image list and then "attach" the images to the three items already in
the extended combo box. Add the following code to your CDialog1's OnInitDialog() method to achieve this:

 //Initialize the IDC_COMBOBOXEX2
 CComboBoxEx* pCombo = (CComboBoxEx*) GetDlgItem(IDC_COMBOBOXEX2);
 //First let's add images to the items there.
 //We have six images in bitmaps to match to our strings:

 //CImageList * pImageList = new CImageList();
 m_imageList.Create(32,16,ILC_MASK,12,4);

 CBitmap bitmap;

 bitmap.LoadBitmap(IDB_BMBIRD);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMBIRDSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOG);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOGSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISH);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISHSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 //Set the imagelist
 pCombo->SetImageList(&m_imageList);
 //Now attach the images to the items in the list.
 COMBOBOXEXITEM cbi;
 cbi.mask = CBEIF_IMAGE|CBEIF_SELECTEDIMAGE|CBEIF_INDENT;
 CString strTemp;
 int nBitmapCount = 0;
 for (int nCount = 0;nCount < 3;nCount++)
 {
 cbi.iItem = nCount;
 cbi.pszText = (LPTSTR)(LPCTSTR)strTemp;
 cbi.cchTextMax = 256;
 pCombo->GetItem(&cbi);
 cbi.iImage = nBitmapCount++;
 cbi.iSelectedImage = nBitmapCount++;
 cbi.iIndent = (nCount & 0x03);
 pCombo->SetItem(&cbi);

 }

Listing 9.

First the extended combo box initialization code creates a pointer to the control using GetDlgItem(). Next it calls
Create() to create memory for the images to be added and to initialize the image list. The next series of calls loads
each bitmap, adds them to the image list, and then deletes the resource allocated in the load.
CComboBoxEx::SetImageList is called to associate the m_imageList with the extended combo box. Next a
COMBOBOXEXITEM structure is initialized with a mask, and then the for loop iterates from 0 through 2, setting the
selected and unselected images with each pass through the loop. The variable nBitmapCount increments through the
image list to ensure that the correct image ID is put into the COMBOBOXEXITEM structure. The for loop makes a call
to CComboBoxEx::GetItem to retrieve the COMBOBOXEXITEM structure for each item in the extended combo box.
Then the loop sets up the images for the list item and finally calls CComboBoxEx::SetItem to put the modified
COMBOBOXEXITEM structure back into the extended combo box and complete the association of images with the
existing items in the list.
Add Items to the Extended Combobox. The other technique available for putting images into an extended combo box
is to add them dynamically, as shown in the code added to OnInitDialog() below:

 HICON hIcon[8];
 int n;
 //Now let's insert some color icons
 hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
 hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
 hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
 hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
 hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
 hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
 hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
 hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
 for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
 }

 static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};

 cbi.mask = CBEIF_IMAGE|CBEIF_TEXT|CBEIF_OVERLAY|CBEIF_SELECTEDIMAGE;

 for (n = 0; n < 8; n++) {
 cbi.iItem = n;
 cbi.pszText = color[n];
 cbi.iImage = n+6; // 6 is the offset into the image list from
 cbi.iSelectedImage = n+6; // the first six items we added...
 cbi.iOverlay = n+6;
 int nItem = pCombo->InsertItem(&cbi);
 ASSERT(nItem == n);
 }

Listing 10.

The for loop fills out the COMBOBOXEXITEM structure and then calls CComboBoxEx::InsertItem with each
item to add it to the list.

Add a handler for the second extended combo box. The second extended combo box handler is essentially the same as
the first:

Figure 29: Adding a handler for the second extended combo box, IDC_COMBOBOXEX2.

void CDialog1::OnSelchangeComboboxex2()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX2);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC8, str);

 return;
}

Listing 11.

Connect the view and the dialog. Add code to the virtual OnDraw() function in mymfc25AView.cpp. The following
code replaces the previous code:

void CMymfc25AView::OnDraw(CDC* pDC)
{
 pDC->TextOut(30, 30, "Press the left mouse button here.");
}

Listing 12.

Use ClassWizard to add the OnLButtonDown() member function to the CMymfc25AView class. Edit the
AppWizard-generated code as follows:

Figure 30: Adding the OnLButtonDown() member function to the CMymfc25AView class to handle the left mouse

click.

void CMymfc25AView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CDialog1 dlg;
 dlg.DoModal();
}

Listing 13.

Add a statement to include Dialog1.h in file mymfc25AView.cpp.

Listing 14.

Compile and run the program. Now you can experiment with the various IE4 common controls to see how they work
and how you can apply them in your own applications.

Figure 31: MYMFC25A program output.

Figure 32: MYMFC25A program output, full of Internet Explorer 4 common controls.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

