
Module 18: Using ActiveX Controls

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Using ActiveX Controls
ActiveX Controls vs. Ordinary Windows Controls
Ordinary Controls: A Frame of Reference
How ActiveX Controls Are Similar to Ordinary Controls
How ActiveX Controls Are Different from Ordinary Controls: Properties and Methods
Installing ActiveX Controls
The Calendar Control
ActiveX Control Container Programming
Property Access
ClassWizard's C++ Wrapper Classes for ActiveX Controls
AppWizard Support for ActiveX Controls
ClassWizard and the Container Dialog
Dialog Class Data Members vs. Wrapper Class Usage
Mapping ActiveX Control Events
Locking ActiveX Controls in Memory
The MYMFC24 Example: An ActiveX Control Dialog Container
For Win32 Programmers
ActiveX Controls in HTML Files
Creating ActiveX Controls at Runtime
The MYMFC24B Example: The Web Browser ActiveX Control
Picture Properties
Bindable Properties: Change Notifications
Other ActiveX Controls

Using ActiveX Controls

Microsoft Visual Basic (VB) was introduced in 1991 and has proven to be a wildly popular and successful application
development system for Microsoft Windows. Part of its success is attributable to its open-ended nature. The 16-bit
versions of VB (versions 1 through 3) supported Visual Basic controls (VBXs), ready-to-run software components that
VB developers could buy or write themselves. VBXs became the center of a whole industry, and pretty soon there were
hundreds of them. At Microsoft, the Microsoft Foundation Class (MFC) team figured out a way for Microsoft Visual
C++ programmers to use VBXs in their programs, too.
The VBX standard, which was highly dependent on the 16-bit segment architecture, did not make it to the 32-bit world.
Now ActiveX Controls (formerly known as Object Linking and Embedding (OLE) controls or OCXs) are the
industrial-strength replacement for VBXs based on Microsoft Component Object Model (COM) technology. ActiveX
controls can be used by application developers in both VB and Visual C++ 6.0. While VBXs were written mostly in
plain C, ActiveX controls can be written in C++ with the help of the MFC library or with the help of the ActiveX
Template Library (ATL).
This module is not about writing ActiveX controls; it's about using them in a Visual C++ application. The premise here
is that you can learn to use ActiveX controls without knowing much about the COM on which they're based. After all,
Microsoft doesn't require that VB programmers be COM experts. To effectively write ActiveX controls, however, you
need to know a bit more, starting with the fundamentals of COM. Consider picking up a copy of Adam Denning's
ActiveX Controls Inside Out (Microsoft Press, 1997) if you're serious about creating ActiveX controls. Of course,
knowing more ActiveX Control theory won't hurt when you're using the controls in your programs.

ActiveX Controls vs. Ordinary Windows Controls

An ActiveX control is a software module that plugs into your C++ program the same way a Windows control does. At
least that's the way it seems at first. It's worthwhile here to analyze the similarities and differences between ActiveX
controls and the controls you already know.

Ordinary Controls: A Frame of Reference

In Module 5, you used ordinary Windows controls such as the edit control and the list box, and you saw the Windows
common controls that work in much the same way. These controls are all child windows that you use most often in
dialogs, and they are represented by MFC classes such as CEdit and CTreeCtrl. The client program is always
responsible for the creation of the control's child window.
Ordinary controls send notification command messages (standard Windows messages), such as BN_CLICKED, to the
dialog. If you want to perform an action on the control, you call a C++ control class member function, which sends a
Windows message to the control. The controls are all windows in their own right. All the MFC control classes are
derived from CWnd, so if you want to get the text from an edit control, you call CWnd::GetWindowText. But even
that function works by sending a message to the control.
Windows controls are an integral part of Windows, even though the Windows common controls are in a separate DLL.
Another species of ordinary control, the so-called custom control, is a programmer-created control that acts as an
ordinary control in that it sends WM_COMMAND notifications to its parent window and receives user-defined messages.
You'll see one of these in Module 16. So many controls huh!

How ActiveX Controls Are Similar to Ordinary Controls

You can consider an ActiveX control to be a child window, just as an ordinary control is. If you want to include an
ActiveX control in a dialog, you use the dialog editor to place it there, and the identifier for the control turns up in the
resource template. If you're creating an ActiveX control on the fly, you call a Create() member function for a class
that represents the control, usually in the WM_CREATE handler for the parent window. When you want to manipulate an
ActiveX control, you call a C++ member function, just as you do for a Windows control. The window that contains a
control is called a container.

How ActiveX Controls Are Different from Ordinary Controls: Properties and Methods

The most prominent ActiveX Controls features are properties and methods. Those C++ member functions that you call
to manipulate a control instance all revolve around properties and methods. Properties have symbolic names that are
matched to integer indexes. For each property, the control designer assigns a property name, such as BackColor or
GridCellEffect, and a property type, such as string, integer, or double. There's even a picture type for bitmaps and
icons. The client program can set an individual ActiveX control property by specifying the property's integer index and
its value. The client can get a property by specifying the index and accepting the appropriate return value. In certain
cases, ClassWizard lets you define data members in your client window class that are associated with the properties of
the controls the client class contains. The generated Dialog Data Exchange (DDX) code exchanges data between the
control properties and the client class data members.
ActiveX Controls methods are like functions. A method has a symbolic name, a set of parameters, and a return value.
You call a method by calling a C++ member function of the class that represents the control. A control designer can
define any needed methods, such as PreviousYear(), LowerControlRods(), and so forth.
An ActiveX control doesn't send WM_ notification messages to its container the way ordinary controls do; instead, it
"fires events." An event has a symbolic name and can have an arbitrary sequence of parameters; it's really a container
function that the control calls. Like ordinary control notification messages, events don't return a value to the ActiveX
control. Examples of events are Click, KeyDown, and NewMonth. Events are mapped in your client class just as
control notification messages are.
In the MFC world, ActiveX controls act just like child windows, but there's a significant layer of code between the
container window and the control window. In fact, the control might not even have a window. When you call
Create(), the control's window isn't created directly; instead, the control code is loaded and given the command for
"in-place activation." The ActiveX control then creates its own window, which MFC lets you access through a CWnd
pointer. It's not a good idea for the client to use the control's hWnd directly, however.
A DLL is used to store one or more ActiveX controls, but the DLL often has an OCX filename extension instead of a
DLL extension. Your container program loads the DLLs when it needs them, using sophisticated COM techniques that
rely on the Windows Registry. For the time being, simply accept the fact that once you specify an ActiveX control at
design time, it will be loaded for you at runtime. Obviously, when you ship a program that requires special ActiveX
controls, you'll have to include the OCX files and an appropriate setup program.

Installing ActiveX Controls

http://tenouk.com/visualcplusmfc/visualcplusmfc5.html
http://tenouk.com/visualcplusmfc/visualcplusmfc16.html

Let's assume you've found a nifty ActiveX control that you want to use in your project. Your first step is to copy the
control's DLL to your hard disk. You could put it anywhere, but it's easier to track your ActiveX controls if you put
them in one place, such as in the system directory (typically \Windows\System for Microsoft Windows 95, Xp or
\Winnt\System32 for Microsoft Windows NT, 2000). Copy associated files such as help (HLP) or license (LIC) files to
the same directory. Your next step is to register the control in the Windows Registry. Actually, the ActiveX control
registers itself when a client program calls a special exported function. The Windows utility Regsvr32 is a client that
accepts the control name on the command line. Regsvr32 is suitable for installation scripts, but another program,
RegComp. Some controls have licensing requirements, which might involve extra entries to the Registry. Licensed
controls usually come with setup programs that take care of those details. After you register your ActiveX control, you
must install it in each project that uses it. That doesn't mean that the OCX file gets copied. It means that ClassWizard
generates a copy of a C++ class that's specific to the control, and it means that the control shows up in the dialog editor
control palette for that project.

To install an ActiveX control in a project, choose Add To Project from the Project menu and then choose Components
And Controls. Select Registered ActiveX Controls, as shown in the following illustration.

Figure 1: Adding ActiveX controls to a project.

Figure 2: Browsing registered ActiveX controls.

This gets you the list of all the ActiveX controls currently registered on your system. A typical list is shown here.

Figure 3: A list of all the ActiveX controls currently registered on the system.

The Calendar Control

The MSCal.ocx control is a popular Microsoft ActiveX Calendar control that's probably already installed and
registered on your computer. Figure 4 shows the Calendar control inside a modal dialog.

Figure 4: The Calendar control in use.

The Calendar control comes with a help file that lists the control's properties, methods, and events shown here.

Properties Methods Events
BackColor AboutBox AfterUpdate
Day NextDay BeforeUpdate
DayFont NextMonth Click
DayFontColor NextWeek DblClick
DayLength NextYear KeyDown
FirstDay PreviousDay KeyPress
GridCellEffect PreviousMonth KeyUp
GridFont PreviousWeek NewMonth
GridFontColor PreviousYear NewYear
GridLinesColor Refresh
Month Today
MonthLength
ShowDateSelectors
ShowDays
ShowHorizontalGridlines
ShowTitle
ShowVerticalGridlines
TitleFont
TitleFontColor
Value
ValueIsNull
Year

Table 1: ActiveX Calendar’s properties, methods and events.

You'll be using the BackColor, Day, Month, Year, and Value properties in the MYMFC24 example later in this
module. BackColor is an unsigned long, but it is used as an OLE_COLOR, which is almost the same as a COLORREF.
Day, Month, and Year are short integers. Value's type is the special type VARIANT, which holds the entire date as a
64-bit value. Each of the properties, methods, and events listed above has a corresponding integer identifier. Information
about the names, types, parameter sequences, and integer IDs is stored inside the control and is accessible to
ClassWizard at container design time.

ActiveX Control Container Programming

MFC and ClassWizard support ActiveX controls both in dialogs and as "child windows." To use ActiveX controls, you
must understand how a control grants access to properties, and you must understand the interactions between your DDX
code and those property values.

Property Access

The ActiveX control developer designates certain properties for access at design time. Those properties are specified in
the property pages that the control displays in the dialog editor when you right-click on a control and choose Properties.
The Calendar control's main property page looks like the one shown next.

Figure 5: Calendar Control properties.

When you click on the All tab, you will see a list of all the design- time-accessible properties, which might include a
few properties not found on the Control tab. The Calendar control's All page looks like this.

Figure 6: A list of all the design- time-accessible Calendar control properties.

All the control's properties, including the design-time properties, are accessible at runtime. Some properties, however,
might be designated as read-only.

ClassWizard's C++ Wrapper Classes for ActiveX Controls

When you insert an ActiveX control into a project, ClassWizard generates a C++ wrapper class, derived from CWnd,
which is tailored to your control's methods and properties. The class has member functions for all properties and
methods, and it has constructors that you can use to dynamically create an instance of the control. ClassWizard also
generates wrapper classes for objects used by the control. Following are a few typical member functions from the file
Calendar.cpp that ClassWizard generates for the Calendar control:

unsigned long CCalendar::GetBackColor()
{
 unsigned long result;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYGET, VT_I4, (void*)&result,
NULL);
 return result;
}

void CCalendar::SetBackColor(unsigned long newValue)
{
 static BYTE parms[] = VTS_I4;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
newValue);
}

short CCalendar::GetDay()
{
 short result;
 InvokeHelper(0x11, DISPATCH_PROPERTYGET, VT_I2,
 (void*)&result, NULL);
 return result;
}

void CCalendar::SetDay(short nNewValue)
{
 static BYTE parms[] = VTS_I2;
 InvokeHelper(0x11, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms, nNewValue);
}

COleFont CCalendar::GetDayFont()
{
 LPDISPATCH pDispatch;
 InvokeHelper(0x1, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
 return COleFont(pDispatch);
}

void CCalendar::SetDayFont(LPDISPATCH newValue)
{
 static BYTE parms[] = VTS_DISPATCH;
 InvokeHelper(0x1, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms, newValue);
}

VARIANT CCalendar::GetValue()
{
 VARIANT result;
 InvokeHelper(0xc, DISPATCH_PROPERTYGET, VT_VARIANT, (void*)&result, NULL);
 return result;
}

void CCalendar::SetValue(const VARIANT& newValue)
{
 static BYTE parms[] = VTS_VARIANT;
 InvokeHelper(0xc, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms, &newValue);
}

void CCalendar::NextDay()
{
 InvokeHelper(0x16, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CCalendar::NextMonth()
{
 InvokeHelper(0x17, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

You don't have to concern yourself too much with the code inside these functions, but you can match up the first
parameter of each InvokeHelper() function with the dispatch ID for the corresponding property or method in the
Calendar control property list. As you can see, properties always have separate Set() and Get() functions. To call a
method, you simply call the corresponding function. For example, to call the NextDay() method from a dialog class
function, you write code such as this:

m_calendar.NextDay();

In this case, m_calendar is an object of class CCalendar, the wrapper class for the Calendar control.

AppWizard Support for ActiveX Controls

When the AppWizard ActiveX Controls option is checked (the default), AppWizard inserts the following line in your
application class InitInstance() member function:

AfxEnableControlContainer();

It also inserts the following line in the project's StdAfx.h file:

#include <afxdisp.h>

If you decide to add ActiveX controls to an existing project that doesn't include the two lines above, you can simply add
the lines.

ClassWizard and the Container Dialog

Once you've used the dialog editor to generate a dialog template, you already know that you can use ClassWizard to
generate a C++ class for the dialog window. If your template contains one or more ActiveX controls, you can use
ClassWizard to add data members and event handler functions.

Dialog Class Data Members vs. Wrapper Class Usage

What kind of data members can you add to the dialog for an ActiveX control? If you want to set a control property
before you call DoModal() for the dialog, you can add a dialog data member for that property. If you want to change
properties inside the dialog member functions, you must take another approach: you add a data member that is an object
of the wrapper class for the ActiveX control.
Now is a good time to review the MFC DDX logic. Look back at the dialog in Module 5. The
CDialog::OnInitDialog function calls CWnd::UpdateData(FALSE) to read the dialog class data members,
and the CDialog::OnOK function calls UpdateData(TRUE) to write the members. Suppose you added a data
member for each ActiveX control property and you needed to get the Value property value in a button handler. If you
called UpdateData(FALSE) in the button handler, it would read all the property values from all the dialog's controls,
clearly a waste of time. It's more effective to avoid using a data member and to call the wrapper class Get() function
instead. To call that function, you must first tell ClassWizard to add a wrapper class object data member. Suppose you
have a Calendar wrapper class CCalendar and you have an m_calendar data member in your dialog class. If you
want to get the Value property, you do it like this:

COleVariant var = m_calendar.GetValue();

Now consider another case: you want to set the day to the 5th of the month before the control is displayed. To do this by
hand, add a dialog class data member m_sCalDay that corresponds to the control's short integer Day property. Then
add the following line to the DoDataExchange() function:

DDX_OCShort(pDX, ID_CALENDAR1, 0x11, m_sCalDay);

The third parameter is the Day property's integer index (its DispID), which you can find in the GetDay() and
SetDay() functions generated by ClassWizard for the control. Here's how you construct and display the dialog:

CMyDialog dlg;
dlg.m_sCalDay = 5;
dlg.DoModal();

The DDX code takes care of setting the property value from the data member before the control is displayed. No other
programming is needed. As you would expect, the DDX code sets the data member from the property value when the
user clicks the OK button.
Even when ClassWizard correctly detects a control's properties, it can't always generate data members for all of them. In
particular, no DDX functions exist for VARIANT properties like the Calendar's Value property. You'll have to use the
wrapper class for these properties.

Mapping ActiveX Control Events

ClassWizard lets you map ActiveX control events the same way you map Windows messages and command
messages from controls. If a dialog class contains one or more ActiveX controls, ClassWizard adds and maintains an
event sink map that connects mapped events to their handler functions. It works something like a message map. You can
see the code in Listing 4. ActiveX controls have the annoying habit of firing events before your program is ready for
them. If your event handler uses windows or pointers to C++ objects, it should verify the validity of those entities prior
to using them.

Locking ActiveX Controls in Memory

Normally, an ActiveX control remains mapped in your process as long as its parent dialog is active. That means it must
be reloaded each time the user opens a modal dialog. The reloads are usually quicker than the initial load because of disk
caching, but you can lock the control into memory for better performance. To do so, add the following line in the
overridden OnInitDialog() function after the base class call:

http://tenouk.com/visualcplusmfc/visualcplusmfc5.html

AfxOleLockControl(m_calendar.GetClsid());

The ActiveX control remains mapped until your program exits or until you call the AfxOleUnlockControl()
function.

The MYMFC24 Example: An ActiveX Control Dialog Container

Now it's time to build an application that uses a Calendar control in a dialog. Here are the steps to create the
MYMFC24 example:

Run AppWizard to produce \mfcproject\mymfc24. Accept all of the default settings but two: select Single Document
and deselect Printing And Print Preview. In the AppWizard Step 3 dialog, make sure the ActiveX Controls option is
selected, as shown below.

Figure 7: AppWizard step 3 of 6, enabling ActiveX control option.

Figure 8: MYMFC24 ActiveX control project summary.

Verify that the Calendar control is registered. If the control does not appear in the Visual C++ Gallery's Registered
ActiveX Controls page, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt to your system directory and register
the control by running the REGCOMP program.

Install the Calendar control in the MYMFC24 project. Choose Add To Project from Visual C++'s Project menu, and
then choose Components And Controls. Choose Registered ActiveX Controls, and then choose Calendar Control
8.0.

Figure 9: Installing the Calendar control in the MYMFC24 project.

ClassWizard generates two classes in the MYMFC24 directory, as shown here or through the ClassView.

Figure 10: Two classes, CCalendar and COleFont generated in the MYMFC24 directory.

Figure 11: The generated classes viewed in ClassView.

Edit the Calendar control class to handle help messages. Add Calendar.cpp to the following message map code:

BEGIN_MESSAGE_MAP(CCalendar, CWnd)
 ON_WM_HELPINFO()
END_MESSAGE_MAP()

Listing 1.

In the same file, add the OnHelpInfo() function:

BOOL CCalendar::OnHelpInfo(HELPINFO* pHelpInfo)
{
 // Edit the following string for your system
 ::WinHelp(GetSafeHwnd(), "c:\\winnt\\system32\\mscal.hlp", HELP_FINDER, 0);
 return FALSE;
}

Listing 2.

In Calendar.h, add the function prototype and declare the message map:

protected:
 afx_msg BOOL OnHelpInfo(HELPINFO* pHelpInfo);
 DECLARE_MESSAGE_MAP()

Listing 3.

The OnHelpInfo() function is called if the user presses the F1 key when the Calendar control has the input focus.
We have to add the message map code by hand because ClassWizard doesn't modify generated ActiveX classes.

The ON_WM_HELPINFO macro maps the WM_HELP message, which is new to Microsoft Windows 95 and Microsoft
Windows NT 4.0. You can use ON_WM_HELPINFO in any view or dialog class and then code the handler to activate
any help system. Module 15 describes the MFC context-sensitive help system, some of which predates the WM_HELP
message.

Use the dialog editor to create a new dialog resource. Choose Resource from Visual C++'s Insert menu, and then
choose Dialog.

Figure 12: Inserting a new dialog to MYMFC24 project.

The dialog editor assigns the ID IDD_DIALOG1 to the new dialog. Next change the ID to IDD_ACTIVEXDIALOG,
change the dialog caption to ActiveX Dialog, and set the dialog's Context Help property on the More Styles page.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc15.html

Figure 13: Modifying dialog properties.

Accept the default OK and Cancel buttons with the IDs IDOK and IDCANCEL, and then add the other controls as
shown in Figure 4. Drag the Calendar control from the control palette. Assign control IDs as shown in the following
table.

Control ID
Calendar control IDC_CALENDAR1
Select Date button IDC_SELECTDATE
Edit control IDC_DAY
Edit control IDC_MONTH
Edit control IDC_YEAR
Next Week button IDC_NEXTWEEK

Table 2.

Figure 14: Adding ActiveX Calendar and other controls to the dialog.

Make the Select Date button the default button. Then set an appropriate tab order.

Figure 15: Modifying button properties.

Use ClassWizard to create the CActiveXDialog class. If you run ClassWizard directly from the dialog editor
window, it will know that you want to create a CDialog-derived class based on the IDD_ACTIVEXDIALOG template.
Simply accept the default options, and name the class CActiveXDialog.

Figure 16: Creating a new class dialog prompt.

Figure 17: New class CActiveXDialog information.

Click on the ClassWizard Message Maps tab, and then add the message handler functions shown in the table below. To
add a message handler function, click on an object ID, click on a message, and click the Add Function button. If the
Add Member Function dialog box appears, type the function name and click the OK button.

Object ID Message Member Function

CActiveXDialog WM_INITDIALOG OnInitDialog()
(virtual function)

IDC_CALENDAR1 NewMonth (event) OnNewMonthCalendar1()
IDC_SELECTDATE BN_CLICKED OnSelectDate()
IDC_NEXTWEEK BN_CLICKED OnNextWeek()
IDOK BN_CLICKED OnOK() (virtual function)

Table 3

Figure 18: Adding message handler functions of the objects.

Use ClassWizard to add data members to the CActiveXDialog class. Click on the Member Variables tab, and then
add the data members as shown in the illustration below.

You might think that the ClassWizard ActiveX Events tab is for mapping ActiveX control events in a container. That's
not true: it's for ActiveX control developers who are defining events for a control.

Figure 19: Adding member variables for the controls.

Edit the CActiveXDialog class. Add the m_varValue and m_BackColor data members and then edit the code
for the five handler functions OnInitDialog(), OnNewMonthCalendar1(), OnSelectDate(),
OnNextWeek(), and OnOK(). Listing 4 shows all the code for the dialog class, with new code added.

ACTIVEXDIALOG.H
//{{AFX_INCLUDES()
#include "calendar.h"
//}}AFX_INCLUDES
#if
!defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)
#define AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// ActiveXDialog.h : header file
//

//
// CActiveXDialog dialog
class CActiveXDialog : public CDialog

{
// Construction
public:
 CActiveXDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CActiveXDialog)
 enum { IDD = IDD_ACTIVEXDIALOG };
 CCalendar m_calendar;

 short m_sDay;
 short m_sMonth;
 short m_sYear;
 //}}AFX_DATA
 COleVariant m_varValue;
 unsigned long m_BackColor;

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CActiveXDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CActiveXDialog)
 virtual BOOL OnInitDialog();
 afx_msg void OnNewMonthCalendar1();
 afx_msg void OnSelectDate();
 afx_msg void OnNextWeek();
 virtual void OnOK();
 DECLARE_EVENTSINK_MAP()
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional
// declarations immediately before the previous line.

#endif //
!defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)

ACTIVEXDIALOG.CPP
// ActiveXDialog.cpp : implementation file
//

#include "stdafx.h"
#include "mymfc24.h"
#include "ActiveXDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CActiveXDialog dialog

CActiveXDialog::CActiveXDialog(CWnd* pParent /*=NULL*/) :
CDialog(CActiveXDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CActiveXDialog)
 m_sDay = 0;
 m_sMonth = 0;
 m_sYear = 0;
 //}}AFX_DATA_INIT
 m_BackColor = 0x8000000F;
}

void CActiveXDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CActiveXDialog)
 DDX_Control(pDX, IDC_CALENDAR1, m_calendar);
 DDX_Text(pDX, IDC_DAY, m_sDay);
 DDX_Text(pDX, IDC_MONTH, m_sMonth);
 DDX_Text(pDX, IDC_YEAR, m_sYear);
 //}}AFX_DATA_MAP
 DDX_OCColor(pDX, IDC_CALENDAR1, DISPID_BACKCOLOR, m_BackColor);
}

BEGIN_MESSAGE_MAP(CActiveXDialog, CDialog)
 //{{AFX_MSG_MAP(CActiveXDialog)
 ON_BN_CLICKED(IDC_SELECTDATE, OnSelectDate)
 ON_BN_CLICKED(IDC_NEXTWEEK, OnNextWeek)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CActiveXDialog message handlers

BEGIN_EVENTSINK_MAP(CActiveXDialog, CDialog)
 //{{AFX_EVENTSINK_MAP(CActiveXDialog)
 ON_EVENT(CActiveXDialog, IDC_CALENDAR1, 3 /* NewMonth */,
OnNewMonthCalendar1, VTS_NONE)
 //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

BOOL CActiveXDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_calendar.SetValue(m_varValue); // no DDX for VARIANTs
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE

}
void CActiveXDialog::OnNewMonthCalendar1()
{
 AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");
}

void CActiveXDialog::OnSelectDate()
{
 CDataExchange dx(this, TRUE);
 DDX_Text(&dx, IDC_DAY, m_sDay);
 DDX_Text(&dx, IDC_MONTH, m_sMonth);
 DDX_Text(&dx, IDC_YEAR, m_sYear);
 m_calendar.SetDay(m_sDay);
 m_calendar.SetMonth(m_sMonth);
 m_calendar.SetYear(m_sYear);
}

void CActiveXDialog::OnNextWeek()
{
 m_calendar.NextWeek();
}

void CActiveXDialog::OnOK()
{
 CDialog::OnOK();
 m_varValue = m_calendar.GetValue(); // no DDX for VARIANTs
}

Listing 4: Code for the CActiveXDialog class.

The OnSelectDate() function is called when the user clicks the Select Date button. The function gets the day,
month, and year values from the three edit controls and transfers them to the control's properties. ClassWizard can't add
DDX code for the BackColor property, so you must add it by hand. In addition, there's no DDX code for VARIANT
types, so you must add code to the OnInitDialog() and OnOK() functions to set and retrieve the date with the
control's Value property.
Connect the dialog to the view. Use ClassWizard to map the WM_LBUTTONDOWN message, and then edit the handler
function as follows:

Figure 20: Mapping the WM_LBUTTONDOWN message.

void CMymfc24View::OnLButtonDown(UINT nFlags, CPoint point)
{
 CActiveXDialog dlg;
 dlg.m_BackColor = RGB(255, 251, 240); // light yellow
 COleDateTime today = COleDateTime::GetCurrentTime();
 dlg.m_varValue = COleDateTime(today.GetYear(), today.GetMonth(),
today.GetDay(), 0, 0, 0);
 if (dlg.DoModal() == IDOK) {
 COleDateTime date(dlg.m_varValue);
 AfxMessageBox(date.Format("%B %d, %Y"));
 }
}

Listing 5.

The code sets the background color to light yellow and the date to today's date, displays the modal dialog, and reports
the date returned by the Calendar control. You'll need to include ActiveXDialog.h in mymfc24View.cpp.

Listing 6.

Edit the virtual OnDraw() function in the file mymfc24View.cpp. To prompt the user to press the left mouse button,
replace the code in the view class OnDraw() function with this single line:

pDC->TextOut(0, 0, "Press the left mouse button here.");

Listing 7.

Build and test the MYMFC24 application. Open the dialog, enter a date in the three edit controls, and then click the
Select Date button. Click the Next Week button. Try moving the selected date directly to a new month, and observe the
message box that is triggered by the NewMonth event. Watch for the final date in another message box when you click
OK. Press the F1 key for help on the Calendar control.

Figure 21: MYMFC24 program output, showing the ActiveX control – a calendar.

For Win32 Programmers

If you use a text editor to look inside the mymfc24.rc file, you might be quite mystified. Here's the entry for the
Calendar control in the ActiveX Dialog template:

CONTROL "",IDC_CALENDAR1,
 "{8E27C92B-1264-101C-8A2F-040224009C02}",
 WS_TABSTOP,7,7,217,113

There's a 32-digit number sequence where the window class name should be. What's going on? Actually, the resource
template isn't the one that Windows sees. The CDialog::DoModal function "preprocesses" the resource template
before passing it on to the dialog box procedure within Windows. It strips out all the ActiveX controls and creates the
dialog window without them. Then it loads the controls (based on their 32-digit identification numbers, called CLSIDs)
and activates them in place, causing them to create their own windows in the correct places. The initial values for the
properties you set in the dialog editor are stored in binary form inside the project's custom DLGINIT resource.
When the modal dialog runs, the MFC code coordinates the messages sent to the dialog window both by the ordinary
controls and by the ActiveX controls. This allows the user to tab between all the controls in the dialog, even though the
ActiveX controls are not part of the actual dialog template.
When you call the member functions for the control object, you might think you're calling functions for a child window.
The control window is quite far removed, but MFC steps in to make it seem as if you're communicating with a real child
window. In ActiveX terminology, the container owns a site, which is not a window. You call functions for the site, and
ActiveX and MFC make the connection to the underlying window in the ActiveX control.

The container window is an object of a class derived from CWnd. The control site is also an object of a class derived
from CWnd, the ActiveX control wrapper class. That means that the CWnd class has built-in support for both containers
and sites.

What you're seeing here is MFC ActiveX control support grafted onto regular Windows. Maybe some future Windows
version will have more direct support for ActiveX Controls. As a matter of fact, ActiveX versions of the Windows
common controls already exist.

ActiveX Controls in HTML Files

You've seen the ActiveX Calendar control in an MFC modal dialog. You can use the same control in a Web page. The
following HTML code will work (assuming the person reading the page has the Calendar control installed and
registered on his or her machine):

<OBJECT
 CLASSID="clsid:8E27C92B-1264-101C-8A2F-040224009C02"
 WIDTH=300 HEIGHT=200 BORDER=1 HSPACE=5 ID=calendar>
<PARAM NAME="Day" VALUE=7>
<PARAM NAME="Month" VALUE=11>
<PARAM NAME="Year" VALUE=1998>
</OBJECT>

The CLASSID attribute (the same number that was in the MYMFC24 dialog resource) identifies the Calendar control
in the Registry. A browser can download an ActiveX control.

Creating ActiveX Controls at Runtime

You've seen how to use the dialog editor to insert ActiveX controls at design time. If you need to create an ActiveX
control at runtime without a resource template entry, here are the programming steps:

1. Insert the component into your project. ClassWizard will create the files for a wrapper class.
2. Add an embedded ActiveX control wrapper class data member to your dialog class or other C++ window class.

An embedded C++ object is then constructed and destroyed along with the window object.
3. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.
4. If the parent window is a dialog, use ClassWizard to map the dialog's WM_INITDIALOG message, thus

overriding CDialog::OnInitDialog. For other windows, use ClassWizard to map the WM_CREATE
message. The new function should call the embedded control class's Create member function. This call
indirectly displays the new control in the dialog. The control will be properly destroyed when the parent
window is destroyed.

5. In the parent window class, manually add the necessary event message handlers and prototypes for your new
control. Don't forget to add the event sink map macros.

ClassWizard doesn't help you with event sink maps when you add a dynamic ActiveX control to a project. Consider
inserting the target control in a dialog in another temporary project. After you're finished mapping events, simply copy
the event sink map code to the parent window class in your main project.

The MYMFC24B Example: The Web Browser ActiveX Control

Microsoft Internet Explorer 4.x has become a leading Web browser. I was surprised to find out that most of its
functionality is contained in one big ActiveX control, Shdocvw.dll. When you run Internet Explorer, you launch a small
shell program that loads this Web Browser control in its main window. You can find complete documentation for the
Web Browser control's properties, methods, and events in the Internet SDK, downloadable from microsoft.com. This
documentation is in HTML form, of course. Because of this modular architecture, you can write your own custom
browser program with very little effort. MYMFC24B creates a two-window browser that displays a search engine page
side-by-side with the target page, as shown here.

http://www.microsoft.com/

Figure 22: Web browser ActiveX control in action.

This view window contains two Web Browser controls that are sized to occupy the entire client area. When the user
clicks an item in the search (right-hand) control, the program intercepts the command and routes it to the target (left-
hand) control.
Here are the steps for building the example:

Make sure the Web Browser control is registered. You undoubtedly have Microsoft Internet Explorer 4.x installed, since
Visual C++ 6.0 requires it, so the Web Browser control should be registered. You can download Internet Explorer from
microsoft.com if necessary.
Run AppWizard to produce \mfcproject\mymfc24B. Accept all the default settings but two: except select Single
Document and deselect Printing And Print Preview. Make sure the ActiveX Controls option is checked as in
MYMFC24.

http://www.microsoft.com/

Figure 23: MYMFC24B SDI and ActiveX control project summary.

Install the Web Browser control in the MYMFC24B project. Choose Add To Project from Visual C++'s Project menu,
and choose Components And Controls from the submenu. Select Registered ActiveX Controls, and then choose
Microsoft Web Browser. Visual C++ will generate the wrapper class CWebBrowser2 and add the files to your project.

Figure 24: Installing the Web Browser control in the MYMFC24B project.

Figure 25: Generated class, CWebBrowser2 and their files that will be added to the project.

Add two CWebBrowser2 data members to the CMymfc24BView class. Click on the ClassView tab in the Workspace
window, and then right-click the CMymfc24BView class. Choose Add Member Variable, and fill in the dialog as
shown here.

Figure 26: Adding data members/member variables with CWebBrowser2 type.

Repeat for m_target. ClassWizard adds an #include statement for the webbrowser2.h file.

Listing 8.

Add the child window ID constants for the two controls. Select Resource Symbols from Visual C++'s View menu, and
then add the symbols ID_BROWSER_SEARCH and ID_BROWSER_TARGET.

Figure 27: Adding child window ID constants for the previous two controls (browsers).

Add a static character array data member for the Yahoo URL. Add the following static data member to the class
declaration in mymfc24BView.h:

private:

 static const char s_engineYahoo[];

Listing 9.

Then add the following definition in mymfc24BView.cpp, outside any function:

const char CMymfc24BView::s_engineYahoo[] = "http://www.yahoo.com/";

Listing 10.

Use ClassWizard to map the view's WM_CREATE and WM_SIZE messages. Edit the handler code in
mymfc24BView.cpp as follows:

Figure 28: Using ClassWizard to map the view's WM_CREATE and WM_SIZE messages.

int CMymfc24BView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 DWORD dwStyle = WS_VISIBLE | WS_CHILD;
 if (m_search.Create(NULL, dwStyle, CRect(0, 0, 100, 100), this,
ID_BROWSER_SEARCH) == 0) {
 AfxMessageBox("Unable to create search control!\n");
 return -1;
 }
 m_search.Navigate(s_engineYahoo, NULL, NULL, NULL, NULL);

 if (m_target.Create(NULL, dwStyle, CRect(0, 0, 100, 100), this,
ID_BROWSER_TARGET) == 0) {
 AfxMessageBox("Unable to create target control!\n");
 return -1;
 }
 m_target.GoHome(); // as defined in Internet Explorer 4 options

 return 0;
}

Listing 11.

void CMymfc24BView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 CRect rectClient;
 GetClientRect(rectClient);
 CRect rectBrowse(rectClient);
 rectBrowse.right = rectClient.right / 2;
 CRect rectSearch(rectClient);
 rectSearch.left = rectClient.right / 2;

 m_target.SetWidth(rectBrowse.right - rectBrowse.left);
 m_target.SetHeight(rectBrowse.bottom - rectBrowse.top);
 m_target.UpdateWindow();

 m_search.SetLeft(rectSearch.left);
 m_search.SetWidth(rectSearch.right - rectSearch.left);
 m_search.SetHeight(rectSearch.bottom - rectSearch.top);
 m_search.UpdateWindow();
}

Listing 12.

The OnCreate() function creates two browser windows inside the view window. The right-hand browser displays the
top-level Yahoo page, and the left-hand browser displays the "home" page as defined through the Internet icon in the
Control Panel. The OnSize() function, called whenever the view window changes size, ensures that the browser
windows completely cover the view window. The CWebBrowser2 member functions SetWidth() and
SetHeight() set the browser's Width and Height properties.

Add the event sink macros in the CMymfc24BView files. ClassWizard can't map events from a dynamic ActiveX
control, so you must do it manually. Add the following lines inside the class declaration in the file mymfc24BView.h:

protected:
 afx_msg void OnBeforeNavigateExplorer1(LPCTSTR URL, long Flags, LPCTSTR
TargetFrameName, VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel);
 afx_msg void OnTitleChangeExplorer2(LPCTSTR Text);
 DECLARE_EVENTSINK_MAP()

Listing 13.

Then add the following code in mymfc24BView.cpp:

BEGIN_EVENTSINK_MAP(CMymfc24BView, CView)
 ON_EVENT(CMymfc24BView, ID_BROWSER_SEARCH, 100, OnBeforeNavigateExplorer1,
VTS_BSTR VTS_I4 VTS_BSTR VTS_PVARIANT VTS_BSTR VTS_PBOOL)
 ON_EVENT(CMymfc24BView, ID_BROWSER_TARGET, 113, OnTitleChangeExplorer2,
VTS_BSTR)
END_EVENTSINK_MAP()

Listing 14.

Add two event handler functions. Add the following member functions in mymfc24BView.cpp:

void CMymfc24BView::OnBeforeNavigateExplorer1(LPCTSTR URL, long Flags, LPCTSTR
TargetFrameName,
 VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel)
{
 TRACE("CMymfc24BView::OnBeforeNavigateExplorer1 -- URL = %s\n", URL);

 if (!strnicmp(URL, s_engineYahoo, strlen(s_engineYahoo))) {
 return;
 }
 m_target.Navigate(URL, NULL, NULL, PostData, NULL);
 *Cancel = TRUE;
}

Listing 15.

void CMymfc24BView::OnTitleChangeExplorer2(LPCTSTR Text)
{
 // Careful! Event could fire before we're ready.
 CWnd* pWnd = AfxGetApp()->m_pMainWnd;
 if (pWnd != NULL) {
 if (::IsWindow(pWnd->m_hWnd)) {
 pWnd->SetWindowText(Text);
 }
 }
}

Listing 16.

The OnBeforeNavigateExplorer1() handler is called when the user clicks on a link in the search page. The
function compares the clicked URL (in the URL string parameter) with the search engine URL. If they match, the
navigation proceeds in the search window; otherwise, the navigation is cancelled and the Navigate method is called for
the target window. The OnTitleChangeExplorer2() handler updates the MYMFC24B window title to match the
title on the target page.

Build and test the MYMFC24B application. Search for something on the Yahoo page, and then watch the information
appear in the target page.

Note: This program may not work as specified or both windows may function as a separate browser for newer version of
IE.

Figure 29: MYMFC24B program output.

Picture Properties

Some ActiveX controls support picture properties, which can accommodate bitmaps, metafiles, and icons. If an
ActiveX control has at least one picture property, ClassWizard generates a CPicture class in your project during the
control's installation. You don't need to use this CPicture class, but you must use the MFC class
CPictureHolder. To access the CPictureHolder class declaration and code, you need the following line in
StdAfx.h:

#include <afxctl.h>

Suppose you have an ActiveX control with a picture property named Picture. Here's how you set the Picture property
to a bitmap in your program's resources:

CPictureHolder pict;
pict.CreateFromBitmap(IDB_MYBITMAP); // from project's resources
m_control.SetPicture(pict.GetPictureDispatch());

If you include the AfxCtl.h file, you can't statically link your program with the MFC library. If you need a stand-alone
program that supports picture properties, you'll have to borrow code from the CPictureHolder class, located in the
\Program Files\Microsoft Visual Studio\VC98\mfc\src\ctlpict.cpp file.

Bindable Properties: Change Notifications

If an ActiveX control has a property designated as bindable, the control will send an OnChanged() notification to its
container when the value of the property changes inside the control. In addition, the control can send an
OnRequestEdit() notification for a property whose value is about to change but has not yet changed. If the
container returns FALSE from its OnRequestEdit() handler, the control should not change the property value.
MFC fully supports property change notifications in ActiveX control containers, but as of Visual C++ version 6.0, no
ClassWizard support was available. That means you must manually add entries to your container class's event sink map.
Suppose you have an ActiveX control with a bindable property named Note with a dispatch ID of 4. You add an
ON_PROPNOTIFY macro to the EVENTSINK macros in this way:

BEGIN_EVENTSINK_MAP(CAboutDlg, CDialog)
 //{{AFX_EVENTSINK_MAP(CAboutDlg)
 // ClassWizard places other event notification macros here
 //}}AFX_EVENTSINK_MAP
 ON_PROPNOTIFY(CAboutDlg, IDC_MYCTRL1, 4, OnNoteRequestEdit, OnNoteChanged)
END_EVENTSINK_MAP()

You must then code the OnNoteRequestEdit() and OnNoteChanged() functions with return types and
parameter types exactly as shown here:

BOOL CMyDlg::OnNoteRequestEdit(BOOL* pb)
{
 TRACE("CMyDlg::OnNoteRequestEdit\n");
 *pb = TRUE; // TRUE means change request granted
 return TRUE;
}

BOOL CMyDlg::OnNoteChanged()
{
 TRACE("CMyDlg::OnNoteChanged\n");
 return TRUE;
}

You'll also need corresponding prototypes in the class header, as shown here:

afx_msg BOOL OnNoteRequestEdit(BOOL* pb);
afx_msg BOOL OnNoteChanged();

Other ActiveX Controls

You'll probably notice that your disk fills up with ActiveX controls, especially if you accept controls from Web sites.
Most of these controls are difficult to use unless you have the documentation on hand, but you can have fun
experimenting. Try the Marquee.ocx control that is distributed with Visual C++ 6.0. It works fine in both MFC
programs and HTML files. The trick is to set the szURL property to the name of another HTML file that contains the
text to display in the scrolling marquee window.
Many ActiveX controls were designed for use by Visual Basic programmers. The SysInfo.ocx control that comes with
Visual C++, for example, lets you retrieve system parameters as property values. This isn't of much use to a C++
programmer, however, because you can make the equivalent Win32 calls anytime. Unlike the many objects provided by
MFC, ActiveX controls are binary objects that are not extensible. For example, you cannot add a property or event to an
ActiveX control. Nor can you use many C++ object-oriented techniques like polymorphism with ActiveX controls.
Another downside of ActiveX controls is they are not compatible with many advanced MFC concepts such as the
document/view architecture, which we will cover later.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

