Module 17: MFC Programs Without Document or View Classes

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

MFC Programs Without Document or View Classes
The MYMFC23A Example: A Dialog-Based Application
The Application Class InitInstance() Function

The Dialog Class and the Program lIcon

The MYMFC23B Example: An SDI Application

The MYMFC23C Example: An MDI Application

MFC Programs Without Document or View Classes

The document-view architecture is useful for many applications, but sometimes a simpler program structure is sufficient.
This module illustrates three applications:

1. A dialog-based program.
2. A Single Document Interface (SDI) program, and
3. A Multiple Document Interface (MDI) program.

None of these programs uses document, view, or document-template classes, but they all use command routing and
some other MFC library features. In Visual C++ 6.0, you can create all three types of applications using AppWizard.
In each example, we'll look at how AppWizard generates code that doesn't rely on the document-view architecture and
show you how to add your own code to each example.

The MYMFC23A Example: A Dialog-Based Application

For many applications, a dialog provides a sufficient user interface. The dialog window immediately appears when the
user starts the application. The user can minimize the dialog window, and as long as the dialog is not system modal, the
user can freely switch to other applications.

In this example, the dialog functions as a simple calculator, as shown in Figure 1. ClassWizard takes charge of defining
the class data members and generating the DDX (Dialog Data Exchange) function calls, everything but the coding of the
compute function. The application's resource script, mymfc23A.rc, defines an icon as well as the dialog.

& My Calculatorn

25 Operation 4 - |1 i

" Add

" Subhract
& pultiply

" Divide

E st

Figure 1: The MYMFC23A Calculator dialog.

AppWizard gives you the option of generating a dialog-based application. Here are the steps for building the
MYMFC23A example:



Run AppWizard to produce \mfcproject\mymfc23A. Select the Dialog Based option in the AppWizard Step 1 dialog, as
shown here.

MFC AppWizard - Step 1

Application YWhat bype of application would you like to create?

" Single document

" Multiple docurents

Yw'hat language would vou like your rezources in?

|English [United States] [SPPWZENU DLL « |

< Back | Mewt » | Einizh Cancel

Figure 2: Dialog based MFC project.

In the next dialog, enter My Calculator as the dialog title. Accept the default for other options.

MFC AppWizard - S5tep 2 of 4

YWhat features would you like to include?

Application

[v About box
| Context-sensitive Help

[v 30 controls

Close

About App...

YWhat ather suppart would vou like b include?

[ Automation
[v Activex Controls

whould you like to include 0S54 support?

Editing Constrol: IHtcord

IF Check Box @ Radic Button
O Radio Button

[ windows Sockets

Pleaze enter a hitle for pour dialog:

|I'-1_u Claleulatar

< Back | Hewt > | Einizh Cancel




Figure 3: Step 2 of 4 AppWizard, dialog based MFC program, entering the dialog’s title.

New Project Information §|

Apphafizard will create a new skeleton project with the following specifications:

Apphcation tppe of mymic2 34;
Dialog-Bazed Application targeting:
Windz2

Clazzes to be created:
Application: CMymfe23adpp in mymfc23d.h and mymfc23d. cpp
Dialog: CMumfc234010 in mymfc2340100. 1 and mumfc234000.cpp

Features:
+ About box on gystern menu
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Activer Controlz zupport enabled
+ Localizable text in:
Englizh [United States]

Project Directany:
F:\mfcprojectsmymic2 38

Cancel

Figure 4: MYMFC23A, dialog based project summary.

Edit the IDD_MYMFC23A_DIALOG resource. Refer to Figure 23-1 as a guide. Use the dialog editor to assign IDs to the
controls shown in the table below. For IDC_OPERAT ION, select the Group option.

Control ID

Left operand edit control IDC_LEFT

Right operand edit control IDC_RIGHT

Result edit control IDC_RESULT

First radio button (group property set) IDC_OPERATION
Compute pushbutton IDC_COMPUTE

Exit push button This is the OK button

Table 1



mymic23A resources |

a Dialog
- IDD_ABOUTBOX

[ lcon
[2 String T able

(2 Yersion

I | ¥

T

|_||||U

I My Calculator

IEdit EDperatiDn— IEdit - IEdit

" Subtract
 Multiply

" Divide

Compute

Radio Button Properties

—a ? [eneral | Styles | Extended Stulez I

oo |
3]

10 |IDE_EIF'EFH-'«TIEIN | Laption: |ﬁdd

[ HelplD

v Wisible
[ Disabled

[~ Tab stop

Figure 5: Adding and modifying dialog and its control properties.

Open the Properties dialog box and click on the Styles tab. Select the System Menu and Minimize Box options.

—Dperatiun—lr - IEdit

& add

 Subtract

 Multiply Compute |
" Divide

Stule:

Border:

< B General  Shyles | Mare Styles | Extended Styles | P{EE

I Popup - I

I Dialog Frame - I

v Title bar

v Spstemn menu

[ Clip siblings

[ Clip children
[ Horizontal scroll
[ Wertical scrol

[ tasimize box




Figure 6: Modifying dialog properties.

Use ClassWizard to add member variables and a command handler. AppWizard has already generated a class
CMym¥c23ADIg. Add the following data members.

Control ID Member Variable | Type
IDC_LEFT m_dLeft double
IDC_RIGHT m_dRight double
IDC_RESULT m_dResult double
IDC_OPERATION | m_nOperation | int
Table 2
MFC ClassWizard 2 %]

Mezzage Map:  Member Varnables | Automation | Activer Events | Clazz [nfo |

Project; " — __—;I
e Add Member Variable FW’)—(J pdiCiese
. —

Add Variable...
F:h smprnfez238smpnd  Member vanable name: _

Cortral |Ds: {rn_ri0peration Delete Varisble
IDC_COMPUTE ﬂl

IDC_LEFT Categony:

IDC 0K Wal -

IDC. DPERATION |Value =

IDC_RESLLT b e

IDCRIGHT

i ift _:_j

. Dezcription;
D escription;

radio buttan group transfer

k. Cancel

Figure 7: Using ClassWizard to add member variables.

Add the message handler OnCompute () for the IDC_COMPUTE button and 1DC_OK.



MFC ClassWizard

tessage Maps b ember Y ariables I Automation | Activer Events | Clasz Info I

Project; Clazz name; Add Class !
| mpmifc232, v |CMymfe234DIg s
tat...
F:b . smpmnfc2 38 mymic23aDlg b, F:h smernfc2 34010, cpp m
Object 1D=: Messages: f
Chdymfc2 3801 P
= BM_DOUBLECLICKED
IDC_LEFT
IDC_OK Add Member Function
IDC_OFERATION =3
:BE:EEE:S% v tember function name: 0k l
t ember functions: Eared) |
::.e EDF F'"[‘?_E:*':ha”ge 01 g ol Messaae: BN_CLICKED
AL = Object ID: IDC_COMPUTE
W OnPaint OM_wfh_PaIM
W OnQuervyDraglcon OM_Wi_GQUERYDRAGICOM =
W OnSuvsCommand OW W SYSCOMMAMD i
Dezcrption; Indicates the uzer clicked a button
Qk Cancel

Figure 8: Message mapping and its handler.

void CMymfc23ADIg: :OnCompute()
{
UpdateData(TRUE);
switch (m_nOperation)
{
case 0: // add
m_dResult = m_dLeft + m_dRight;
break;
case 1: // subtract
m_dResult = m_dLeft - m_dRight;
break;
case 2: // multiply
m_dResult = m_dLeft * m_dRight;
break;
case 3: // divide
if (m_dRight !'= 0.0) {

m_dResult = m_dLeft / m_dRight;

H
else
AfxMessageBox("'Divide by zero™);
m_dResult = 0.0;
}
break;
default:

TRACE("'default; m_nOperation = %d\n",

}
UpdateData(FALSE) ;

Code the OnCompute () member function in the mymfc23ADIg.cpp file. Add the following code:

m_nOperation);



woid CHMymfcZ3ADlg:  OnComputel )
1
S TODD: Add wour control notification handler code here
Updatelata{ TRUE) ;
switch (m_nOperation)
1
caze 0: » add
mn_dResult = m_dLeft + m_dRight:
breal ;
caze 1: . subtract
m_dREesult = m_dLeft — m_dREight:
breal ;
casze £: ¢ multiply
n_dREesult = m_dLeft #* m_dREight:
brealk;
casze 3: S0 diwide
if (m_dRight |
n_dResult

ooy §
m_dlLeft ~ m_dRight;

¥

el=s

Af wMes=zageBox( "Divide by zero"):
n_dResult = 0.0;
T

breal:
default:
TRACE({ "default; mn_nOperation = Xd~n". mn_nOperation):

T
Updatelata{FALSE) ;

Listing 1.

Build and test the MYMFC23A application. Notice that the program's icon appears in the Microsoft Windows taskbar.
Verify that you can minimize the dialog window.

£ My Calculator E| |E|E|

100 Dperation 3 - |9?

" Add
* Subhact
" Wulkiply

" Divide

E st

Figure 9: MYMFC23A program output, a dialog based program.

Try the divide by 0, so you can trigger the AFxMessageBox () function.



130 i~ Operation- ] 1] = ;D

™ Subly

7 Multip ! ": Divide by zero o
& Divide

E wit

i

Figure 10: Invoking the AFxMessageBox () function.
The Application Class Initlnstance() Function

The critical element of the MYMFC23A application is the CMymTc23AApp : - InitInstance function generated by
AppWizard. A normal Initlnstance() function creates a main frame window and returns TRUE, allowing the
program's message loop to run. The MYMFC23A version constructs a modal dialog object, calls DoModal (), and then
returns FALSE. This means that the application exits after the user exits the dialog. The DoModal () function lets the
Windows dialog procedure get and dispatch messages, as it always does. Note that AppWizard does not generate a call
to CWinApp: :SetRegistryKey.

Here is the generated InitlInstance() code from mymfc23A.cpp:

BOOL CMymfc23AApp::Initinstance()

{
AfxEnableControlContainer();

// Standard initialization

// ITf you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef _AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endit

CMymfc23ADIg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();
if (nResponse == IDOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

¥
else if (nResponse == IDCANCEL)

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we
// exit the application, rather than start the application®s
// message pump.

return FALSE;



}
The Dialog Class and the Program lIcon

The generated CMymFc23ADI g class contains these two message map entries:

ON_WM_PAINTQ)
ON_WM_QUERYDRAGICON()

The associated handler functions take care of displaying the application's icon when the user minimizes the program.
This code applies only to Microsoft Windows NT version 3.51, in which the icon is displayed on the desktop. You don't
need the three handlers for Windows 95, Windows 98, or Windows NT 4.0 because those versions of Windows display
the program's icon directly on the taskbar.

There is some icon code that you do need. It's in the dialog's handler for W__INITDIALOG, which is generated by
AppWizard. Notice the two Setlcon() calls in the OnInitDialog() function code below. If you checked the
About box option, AppWizard generates code to add an About box to the System menu. The variable m_hlcon is a
data member of the dialog class that is initialized in the constructor.

BOOL CMymfc23ADIg::OnlnitDialog()
CDialog: :OnlnitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX) ;
ASSERT(IDM_ABOUTBOX < OxF000);

CMenu* pSysMenu = GetSystemMenu(FALSE) ;
if (pSysMenu I= NULL)

CString strAboutMenu;
strAboutMenu.LoadString(1DS_ABOUTBOX) ;
if (I!strAboutMenu.lsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR) ;

pSysMenu->AppendMenu(MF_STRING, I1DM_ABOUTBOX, strAboutMenu);

}

// Set the icon for this dialog. The framework does this
// automatically when the application®s main window

// is not a dialog

Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control

}

The MYMFC23B Example: An SDI Application

This is an SDI "Hel lo, world!" classic C/C++ program example. The application has only one window, an object
of a class derived from CFrameWnd. All drawing occurs inside the frame window and all messages are handled there.

Run AppWizard to produce \mfcprojectimymfc23B. Select the Single Document option in the AppWizard Step 1 dialog
and uncheck the Document/View Architecture Support? option, as shown here. Accept the default for other options.



MFEC AppWizard - S5tep 1

[l '/hat bope of application would you like to create?

|- Application - Docament 1
File Edit YWiew Window Hel

{+ Single document
" Multiple documents

" Dialog based

[ Documenties architecturs support®

YWhat language would you like your resources in'y

| English [United States] [SPPWZENU.DLL = |

< Back | Hewt > | Einizh | Cancel |

Figure 11: AppWizard step 1, SDI project without Document/View architecture support.

New Project Information P§|

Appiafizard will create a new skeleton project with the following specifications:

Application twpe of mymfcZ3B:
Single Document Interface Application targeting:
Wwind2

Clazzes to be created:
Application: CMymfc23BApp in mymfc23B.h and mymfc23B. cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
Wiew:, CChildview in Childiew.h and Childview. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Activer Controlz zupport enabled
+ Localizable text in:
Englizh [United States]

Project Directany:
F:mfcprojectsmymfcs 368

Cancel

Figure 12: MYMFC23B project summary.



Add code to paint in the dialog. Add the following code to the CChi IdView: :OnPaint function in the
ChildView.cpp source code file:

void CChildView: :OnPaint()
CPaintDC dc(this); // device context for painting
dc.TextOut(100, 100, *"Hello, SDI world!");

// Do not call CWnd::OnPaint() for painting messages

}
wvold CChildView: :OnPaint()
¢ CPaintDC doithi=): ¢ device context for painting
S TODD: Add wour messzage handler code here
do. TextOut(100. 100, "Hello. SDI korld!™):
| S Do not call Clnd: OnPaint() for painting nessages

Listing 2.

Build and run. You now have a complete SDI application that has no dependencies on the document-view architecture.

B mymic238 M=1E3

File Edit Yew Help

=]

Hello, 5D1 world!

Ready

Figure 13: MYMFC23B program output, SDI program without Document/View architecture support.

AppWizard automatically takes out dependencies on the document-view architecture and generates an application for
you with the following elements:

= A main menu: You can have a Windows-based application without a menu, you don't even need a
resource script. But MYMFC23B has both. The application framework routes menu commands to message
handlers in the frame class.

= Anicon: An icon is useful if the program is to be activated from Microsoft Windows Explorer. It's also
useful when the application's main frame window is minimized. The icon is stored in the resource, along
with the menu.

= Window close message command handler: Many an application needs to do special processing when its
main window is closed. If you were using documents, you could override the
CDocument: :SaveModified function. Here, to take control of the close process, AppWizard creates



message handlers to process close messages sent as a result of user actions and by Windows itself when it
shuts down.

= Toolbar and status bar: AppWizard automatically generates a default toolbar and status bar for you and
sets up the routing even though there are no document-view classes.

There are several interesting features in the SDI application that have no document-view support, including:

=  CChildView class: Contrary to its name, this class is actually a CWnd derivative that is declared in
ChildView.h and implemented in ChildView.cpp. CChi IdView implements only a virtual OnPaint()
member function, which contains any code that you want to draw in the frame window (as illustrated in the
MYMEFC23B sample).

. CMainFrame class: This class contains a data member, m_wndView that is created and initialized in the
CMainFrame: :OnCreate member function.

= CMainFrame: :OnSetFocus function: This function makes sure the focus is translated to the
CChildView:

void CMainFrame: :OnSetFocus(CWnd* pOldWnd)

// forward focus to the view window
m_wndView.SetFocus();

}

CMainFrame: :OnCmdMsg function: This function gives the view a chance to handle any command messages first:

BOOL CMainFrame: :0OnCmdMsg(UINT nlID, int nCode, void* pExtra, AFX_CMDHANDLERINFO*
pHandlerinfo)

{

// let the view have First crack at the command
if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerinfo))
return TRUE;

// otherwise, do default handling
return CFrameWnd::0OnCmdMsg(nID, nCode, pExtra, pHandlerinfo);

The MYMFC23C Example: An MDI Application
Now let's create an MDI application that doesn't use the document-view architecture.
Run AppWizard to produce \mfcproject\mymfc23C. Select the Multiple Documents option in the AppWizard Step 1

dialog and uncheck the Document/View Architecture Support? option, as shown here. Accept the default for other
options.



MFEC AppWizard - S5tep 1

Applications

[ T [C1]

(" Single document

Docament 1

{+ Multiple documents

" Dialog based

[l '/hat bope of application would you like to create?

[ Documenties architecturs support®

YWhat language would you like your resources in'y

| English [United States] [SPPWZENU.DLL = |

< Back | Hewt > | Einizh | Cancel |

New Project Information

Appiafizard will create a new skeleton project with the following specifications:

Figure 14: AppWizard step 1, MDI without Document/View architecture support.

X

Application twpe of mymfcZ3cC:
Fultiple Document Interface Application targeting:
Wwind2

Clazzes to be created:
Application: CMymfc23CApp in mymfc23C.h and mpmfc23C.cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
MDIChildFrame: CChildFrame in ChildFrm.h and ChildFrm.cpp
YWiew: CChildYfiew in Childview. h and Childyiew.cpp

Features:
+ |nitial toolbar in main frame
+ [nitial ztatuz bar in main frame
+ 30 Contrals
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Activel Controlz support enabled
+ Localizable text in:
Englizh [United States]

Project Directany:
F:smfcprojectsmymfc23C

Cancel

Figure 15: MYMFC23C project summary.




Add code to paint in the dialog. Add the following code to the CChi IdView: :OnPaint function in the
ChildView.cpp source code file:

void CChildView: :OnPaint()
CPaintDC dc(this); // device context for painting
dc.TextOut(100, 100, 'Hello, MDI world!');

// Do not call CWnd::OnPaint() for painting messages

}
wold CChildView: :OnPaint()
¢ CPaintDC doithi=): v device context for painting
A TODD: Add wour message handler code here
do. TextOut {100, 100, "Hello, HDI world!"}:
| A4 Do not call Clnd: :OnPaint() for painting mnessages

Listing 3.

Build and run. You now have a complete MDI application without dependencies on the document-view architecture.

7+ mymfc23C - Mymfc2
File Edit Wwiew wWindoms Help

O 2R &%

Hello, MDI world!

Ready l_ I_ l_z:'f"

Figure 16: MYMFC23C program output, MDI program without Document/View architecture support.

As in MYMFC23B, this example automatically creates a CChi IdView class. The main difference between
MYMFC23B and MYMFC23C is the fact that in MYMFC23C the CChi IdView class is created in the
CChildFrame: :OnCreate function instead of in the CMainFrame class.

In this module you've learned how to create three kinds of applications that do not depend on the document-view
architecture. Examining how these applications are generated is also a great way to learn how MFC works. We



recommend that you compare the generated results to similar applications with document-view architecture support to
get a complete picture of how the document-view classes work with the rest of MFC.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

Noankw


http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

