Module 16: Dynamic Link Libraries- DLL

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below. If you think the terms used in this DLL tutorial quite blur, you
can try studying the Win32 DLL first.

Dynamic Link Libraries - DLL

Fundamental DLL Theory

How Imports Are Matched to Exports

Implicit Linkage vs. Explicit Linkage

Symbolic Linkage vs. Ordinal Linkage

The DLL Entry Point: DI1IMain()

Instance Handles: Loading Resources

How the Client Program Finds a DLL

Debugging a DLL

MFC DLLs: Extension vs. Regular

The Shared MFC DLLs and the Windows DLLs

MFC Extension DLLs: Exporting Classes

The MFC Extension DLL Resource Search Sequence
The MYMFC22A Example: An MFC Extension DLL
The MYMFC22B Example: A DLL Test Client Program
MFC Regular DLLs: The CWinApp Derived Class

Using the AFX_MANAGE_STATE Macro

The MFC Regular DLL Resource Search Sequence
The MYMFC22C Example: An MFC Regular DLL
Updating the MYMFC22B Example: Adding Code to Test mymfc22C._dll1
A Custom Control DLL

What Is a Custom Control?

A Custom Control's Window Class

The MFC Library and the WndProc() Function
Custom Control Notification Messages

User-Defined Messages Sent to the Control

The MYMFC22D Example: A Custom Control
Revising the Updated MYMFC22B Example: Adding Code to Test mymfc22D.dl1

Dynamic Link Libraries - DLL

If you want to write modular software, you'll be very interested in dynamic link libraries (DLLs). You're probably
thinking that you've been writing modular software all along because C++ classes are modular. But classes are build-
time modular, and DLLs are runtime modular. Instead of programming giant EXEs that you must rebuild and test each
time you make a change, you can build smaller DLL modules and test them individually. You can, for example, put a
C++ class in a DLL, which might be as small as 12 KB after compiling and linking. Client programs can load and link
your DLL very quickly when they run. Microsoft Windows itself uses DLLs for its major functions. DLLs are getting
easier to write. Win32 has greatly simplified the programming model, and there's more and better support from
AppWizard and the Microsoft Foundation Class (MFC) library. This module shows you how to write DLLs in C++ and
how to write client programs that use DLLs. You'll explore how Win32 maps DLLs into your processes, and you'll learn
the differences between MFC library regular DLLs and MFC library extension DLLS. You'll see examples of simple
DLLs of each type as well as a more complex DLL example that implements a custom control.

Fundamental DLL Theory
Before you look at the application framework's support for DLLs, you must understand how Win32 integrates DLLs into

your process. You might want to review Module 20 to refresh your knowledge of processes and virtual memory.
Remember that a process is a running instance of a program and that the program starts out as an EXE file on disk.

http://www.tenouk.com/ModuleBB.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc20.html

Basically, a DLL is a file on disk (usually with a DLL extension) consisting of global data, compiled functions, and
resources, that becomes part of your process. It is compiled to load at a preferred base address, and if there's no
conflict with other DLLs, the file gets mapped to the same virtual address in your process. The DLL has various
exported functions, and the client program (the program that loaded the DLL in the first place) imports those
functions. Windows matches up the imports and exports when it loads the DLL. Win32 DLLs allow exported global
variables as well as functions.

In Win32, each process gets its own copy of the DLL's read/write global variables. If you want to share memory among
processes, you must either use a memory-mapped file or declare a shared data section as described in Jeffrey Richter's
Advanced Windows (Microsoft Press, 1997). Whenever your DLL requests heap memory, that memory is allocated
from the client process's heap.

How Imports Are Matched to Exports

A DLL contains a table of exported functions. These functions are identified to the outside world by their symbolic
names and (optionally) by integers called ordinal numbers. The function table also contains the addresses of the
functions within the DLL. When the client program first loads the DLL, it doesn't know the addresses of the functions it
needs to call, but it does know the symbols or ordinals. The dynamic linking process then builds a table that connects the
client's calls to the function addresses in the DLL. If you edit and rebuild the DLL, you don't need to rebuild your client
program unless you have changed function names or parameter sequences. In a simple world, you'd have one EXE file
that imports functions from one or more DLLs. In the real world, many DLLs call functions inside other DLLs. Thus, a
particular DLL can have both exports and imports. This is not a problem because the dynamic linkage process can
handle cross-dependencies. In the DLL code, you must explicitly declare your exported functions like this:

__declspec(dllexport) int MyFunction(int n);

The alternative is to list your exported functions in a module-definition [DEF] file, but that's usually more troublesome.
On the client side, you need to declare the corresponding imports like this:

__declspec(dllimport) int MyFunction(int n);

If you're using C++, the compiler generates a decorated name for let say MyFunction(), that other languages can't
use. These decorated names are the long names the compiler invents based on class name, function name, and parameter
types. They are listed in the project's MAP file. If you want to use the plain name MyFunction(), you have to write
the declarations this way:

extern "C" _ declspec(dllexport) int MyFunction(int n);
extern "C" _ declspec(dllimport) int MyFunction(int n);

By default, the compiler uses the __cdecl argument passing convention, which means that the calling program pops
the parameters off the stack. Some client languages might require the __stdcal I convention, which replaces the
Pascal calling convention, and which means that the called function pops the stack. Therefore, you might have to use the
__stdcal l modifier in your DLL export declaration. Just having import declarations isn't enough to make a client link
to a DLL. The client's project must specify the import library (LIB) to the linker, and the client program must actually
contain a call to at least one of the DLL's imported functions. That call statement must be in an executable path in the
program.

Implicit Linkage vs. Explicit Linkage

The preceding section primarily describes implicit linking, which is what you as a C++ programmer will probably be
using for your DLLs. When you build a DLL, the linker produces a companion import LIB file, which contains every
DLL's exported symbols and (optionally) ordinals, but no code. The LIB file is a surrogate for the DLL that is added to
the client program's project. When you build (statically link) the client, the imported symbols are matched to the
exported symbols in the LIB file, and those symbols (or ordinals) are bound into the EXE file. The LIB file also contains
the DLL filename (but not its full pathname), which gets stored inside the EXE file. When the client is loaded, Windows
finds and loads the DLL and then dynamically links it by symbol or by ordinal.

Explicit linking is more appropriate for interpreted languages such as Microsoft Visual Basic, but you can use it from
C++ if you need to. With explicit linking, you don't use an import file; instead, you call the Win32 LoadLibrary()

function, specifying the DLL's pathname as a parameter. LoadLibrary() returns an HINSTANCE parameter that you
can use in a call to GetProcAddress(), which converts a symbol (or an ordinal) to an address inside the DLL.
Suppose you have a DLL that exports a function such as this:

extern "C" __ declspec(dllexport) double SquareRoot(double d);

Here's an example of a client's explicit linkage to the function:

typedef double (SQRTPROC)(double);

HINSTANCE hlnstance;

SQRTPROC* pFunction;

VERIFY(hInstance = ::LoadLibrary(c:\\winnt\\system32\\mydll.dl1'"));
VERIFY(pFunction = (SQRTPROC¥*)::GetProcAddress(hlnstance, "SquareRoot'));
double d = (*pFunction)(81.0); // Call the DLL function

With implicit linkage, all DLLs are loaded when the client is loaded, but with explicit linkage, you can determine when
DLLs are loaded and unloaded. Explicit linkage allows you to determine at runtime which DLLs to load. You could, for
example, have one DLL with string resources in English and another with string resources in Spanish. Your application
would load the appropriate DLL after the user chose a language.

Symbolic Linkage vs. Ordinal Linkage

In Win16, the more efficient ordinal linkage was the preferred linkage option. In Win32, the symbolic linkage efficiency
was improved. Microsoft now recommends symbolic over ordinal linkage. The DLL version of the MFC library,
however, uses ordinal linkage. A typical MFC program might link to hundreds of functions in the MFC DLL. Ordinal
linkage permits that program's EXE file to be smaller because it does not have to contain the long symbolic names of its
imports. If you build your own DLL with ordinal linkage, you must specify the ordinals in the project's DEF file, which
doesn't have too many other uses in the Win32 environment. If your exports are C++ functions, you must use decorated
names in the DEF file (or declare your functions with extern "'C""). Here's a short extract from one of the MFC
library DEF files:

?ReadList@CRecentFileList@QUAEXXZ @ 5458 NONAME
?ReadNameDictFromStream@CPropertySection@@QAEHPAUIStream@@@Z @ 5459 NONAME
?ReadObject@CArchive@@QAEPAVCObject@@PBUCRuntimeClass@@@Z @ 5460 NONAME
?ReadString@CArchive@@QAEHAAVCString@@@Z @ 5461 NONAME
?ReadString@CArchive@@QAEPADPADI@Z @ 5462 NONAME
?ReadString@CInternetFile@@UAEHAAVCString@@@Z @ 5463 NONAME
?ReadString@CInternetFi le@@UAEPADPADI@Z @ 5464 NONAME

The numbers after the at (@) symbols are the ordinals. Kind of makes you want to use symbolic linkage instead, doesn't
it?

The DLL Entry Point: DIIMain()

By default, the linker assigns the main entry point _DI IMainCRTStartup() to your DLL. When Windows loads the
DLL, it calls this function, which first calls the constructors for global objects and then calls the global function

DI IMain(), which you're supposed to write. DI IMain() is called not only when the DLL is attached to the process
but also when it is detached (and at other times as well). Here is a skeleton D1 IMain() function:

HINSTANCE g_hlnstance;
extern "'C" int APIENTRY
DIIMain(HINSTANCE hlnstance, DWORD dwReason, LPVOID lIpReserved)
{
if (dwReason == DLL_PROCESS_ATTACH)

TRACEO("'MYMFC22A.DLL Initializing!\n');
// Do initialization here

¥
else if (dwReason == DLL_PROCESS DETACH)

TRACEO(''MYMFC22A.DLL Terminating!\n');

// Do cleanup here

b
return 1; // ok

}

If you don't write a DI IMain() function for your DLL, a do-nothing version is brought in from the runtime library.
The DI IMain() function is also called when individual threads are started and terminated, as indicated by the
dwReason parameter. Richter's book tells you all you need to know about this complex subject.

Instance Handles: Loading Resources

Each DLL in a process is identified by a unique 32-bit HINSTANCE value. In addition, the process itself has an
HINSTANCE value. All these instance handles are valid only within a particular process, and they represent the starting
virtual address of the DLL or EXE. In Win32, the HINSTANCE and HMODULE values are the same and the types can be
used interchangeably. The process (EXE) instance handle is almost always 0x400000, and the handle for a DLL
loaded at the default base address is 0X10000000. If your program uses several DLLs, each will have a different
HINSTANCE value, either because the DLLs had different base addresses specified at build time or because the loader
copied and relocated the DLL code.

Instance handles are particularly important for loading resources. The Win32 FindResource() function takes an
HINSTANCE parameter. EXEs and DLLs can each have their own resources. If you want a resource from the DLL, you
specify the DLL's instance handle. If you want a resource from the EXE file, you specify the EXE's instance handle.
How do you get an instance handle? If you want the EXE's handle, you call the Win32 GetModuleHandle()
function with a NULL parameter. If you want the DLL's handle, you call the Win32 GetModuleHandle() function
with the DLL name as a parameter. Later you'll see that the MFC library has its own method of loading resources by
searching various modules in sequence.

How the Client Program Finds a DLL

If you link explicitly with LoadLibrary(), you can specify the DLL's full pathname. If you don't specify the
pathname, or if you link implicitly, Windows follows this search sequence to locate your DLL:

The directory containing the EXE file.

The process's current directory.

The Windows system directory.

The Windows directory.

The directories listed in the Path environment variable.

MRS

Here's a trap you can easily fall into. You build a DLL as one project, copy the DLL file to the system directory, and
then run the DLL from a client program. So far, so good. Next you rebuild the DLL with some changes, but you forget
to copy the DLL file to the system directory. The next time you run the client program, it loads the old version of the
DLL. Be careful!

Debugging a DLL

Visual C++ makes debugging a DLL easy. Just run the debugger from the DLL project. The first time you do this, the
debugger asks for the pathname of the client EXE file. Every time you "run" the DLL from the debugger after this, the
debugger loads the EXE, but the EXE uses the search sequence to find the DLL. This means that you must either set the
Path environment variable to point to the DLL or copy the DLL to a directory in the search sequence.

MFC DLLs: Extension vs. Regular

We've been looking at Win32 DLLs that have a DI IMain() function and some exported functions. Now we'll move
into the world of the MFC application framework, which adds its own support layer on top of the Win32 basics.
AppWizard lets you build two kinds of DLLs with MFC library support: extension DLLS and regular DLLs. You
must understand the differences between these two types before you decide which one is best for your needs.

Of course, Visual C++ lets you build a pure Win32 DLL without the MFC library, just as it lets you build a Windows
program without the MFC library. This is an MFC-oriented book, however, so we'll ignore the Win32 option here.

An extension DLL supports a C++ interface. In other words, the DLL can export whole classes and the client can
construct objects of those classes or derive classes from them. An extension DLL dynamically links to the code in the
DLL version of the MFC library. Therefore, an extension DLL requires that your client program be dynamically linked
to the MFC library (the AppWizard default) and that both the client program and the extension DLL be synchronized to
the same version of the MFC DLLs (mfc42.dll, mfc42d.dll, and so on). Extension DLLs are quite small; you can build a
simple extension DLL with a size of 10 KB, which loads quickly.

If you need a DLL that can be loaded by any Win32 programming environment (including Visual Basic version 6.0),
you should use a regular DLL. A big restriction here is that the regular DLL can export only C-style functions. It can't
export C++ classes, member functions, or overloaded functions because every C++ compiler has its own method of
decorating names. You can, however, use C++ classes (and MFC library classes, in particular) inside your regular DLL.
When you build an MFC regular DLL, you can choose to statically link or dynamically link to the MFC library. If you
choose static linking, your DLL will include a copy of all the MFC library code it needs and will thus be self-contained.
A typical Release-build statically linked regular DLL is about 144 KB in size. If you choose dynamic linking, the size
drops to about 17 KB but you'll have to ensure that the proper MFC DLLs are present on the target machine. That's no
problem if the client program is already dynamically linked to the same version of the MFC library. When you tell
AppWizard what kind of DLL or EXE you want, compiler #define constants are set as shown in the following table.

'\Dﬂ)llzréarﬂlbcraalrly; Linked to Shared Statically Linked* to MFC Library
Regular DLL _AFXDLL, USRDLL _USRDLL
Extension DLL _AFXEXT, _AFXDLL unsupported option
Client EXE _AFXDLL no constants defined

Table 1
* Visual C++ Learning Edition does not support the static linking option.

If you look inside the MFC source code and header files, you'll see a ton of #1 fdeT statements for these constants. This
means that the library code is compiled quite differently depending on the kind of project you're producing.

The Shared MFC DLLs and the Windows DLLs

If you build a Windows Debug target with the shared MFC DLL option, your program is dynamically linked to one or
more of these (ANSI) MFC DLLs:

DLL Description

mfc42d.dll | Core MFC classes.

mfco42d.dll | ActiveX (OLE) classes.
mfcd42d.dll | Database classes (ODBC and DAO).
mfcn42d.dll | Winsock, WinInet classes.

Table 2.

When you build a Release target, your program is dynamically linked to mfc42.dll only. Linkage to these MFC DLLs
is implicit via import libraries. You might assume implicit linkage to the ActiveX and ODBC DLLs in Windows, in
which case you would expect all these DLLs to be linked to your Release-build client when it loads, regardless of
whether it uses ActiveX or ODBC features. However, this is not what happens. Through some creative thinking, MFC
loads the ActiveX and ODBC DLLs explicitly (by calling LoadLibrary()) when one of their functions is first called.
Your client application thus loads only the DLLs it needs.

MFC Extension DLLs: Exporting Classes

If your extension DLL contains only exported C++ classes, you'll have an easy time building and using it. The steps for
building the MYMFC22A example show you how to tell AppWizard that you're building an extension DLL skeleton.
That skeleton has only the DI IMain() function. You simply add your own C++ classes to the project. There's only one
special thing you must do. You must add the macro AFX_EXT_CLASS to the class declaration, as shown here:

class AFX_EXT_CLASS CStudent : public CObject

This modification goes into the H file that's part of the DLL project, and it also goes into the H file that client programs
use. In other words, the H files are exactly the same for both client and DLL. The macro generates different code
depending on the situation, it exports the class in the DLL and imports the class in the client.

The MFC Extension DLL Resource Search Sequence

If you build a dynamically linked MFC client application, many of the MFC library's standard resources (error message
strings, print preview dialog templates, and so on) are stored in the MFC DLLs (mfc42.dll, mfco42.dll, and so on), but
your application has its own resources too. When you call an MFC function such as CString::LoadString or

CBitmap: : LoadBitmap, the framework steps in and searches first the EXE file's resources and then the MFC DLL's
resources.

If your program includes an extension DLL and your EXE needs a resource, the search sequence is first the EXE file,
then the extension DLL, and then the MFC DLLs. If you have a string resource ID, for example, that is unique among all
resources, the MFC library will find it. If you have duplicate string IDs in your EXE file and your extension DLL file,
the MFC library loads the string in the EXE file.

If the extension DLL loads a resource, the sequence is first the extension DLL, then the MFC DLLs, and then the EXE.
You can change the search sequence if you need to. Suppose you want your EXE code to search the extension DLL's
resources first. Use code such as this:

HINSTANCE hlnstResourceClient = AfxGetResourceHandle();

// Use DLL"s instance handle

AfxSetResourceHandle(: :GetModuleHandle("'my_dll_file_name.dll'));
CString strRes;

strRes.LoadString(IDS_MYSTRING) ;

// Restore client"s instance handle
AfxSetResourceHandle(hInstResourceClient);

You can't use AFxGetlInstanceHandle() instead of : :GetModuleHandle(). In an extension DLL,
AfxGetlnstanceHandle() returns the EXE's instance handle, not the DLL's handle.

The MYMFC22A Example: An MFC Extension DLL

This example makes an extension DLL out of the CPersistentFrame class you saw in Module 9. First you'll build
the mymfc22A.dll file, and then you'll use it in a test client program, MYMFC22B.

Here are the steps for building the MYMFC22A example:

Run AppWizard to produce \mfcprojectimymfc22A. Choose New from Visual C++'s File menu, and then click on the
Projects tab as usual. Instead of selecting MFC AppWizard (exe), choose MFC AppWizard (dll), as shown here.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc9.html

Filez Projects Whorkzpaces] Other Documents

¢| Cluzster Resource Type Wizard
| Cuztom Appitfizard
‘g D atabaze Project

g0 DevStudio Add-in ‘wizard
¥ Estended Stored Proc Wizard
r |SAF Extenzion ‘Wizard
Makefile
fim MFC Activel, Controla/izard
8] MFC Appwizard (dl]
A MFC Appiwizard [exe)
@T{: MNew Database Wizard
T Wtility Project
"B]win32 &pplication
j YWin32 Conzole Application
%] win32 Dynamic-Link Library

<

& ATL COM Appiwizard % | 'win32 Static Library Project name:

]m_l,lmfu:EE.-'l'-.

Location:

FAMFCPROJECTmymic224 .|

(+ Create new workspace
o~

=

I. 3l

Platforms:

‘WinSE

] 4 | Cancel

Figure 1: AppWizard new DLL project creation dialog.

In this example, only one AppWizard screen appears. Choose MFC Extension DLL, as shown here.

MFC AppWizard - Step 1 of 1

" Microsoft Developer Studio
File Edit ¥iew Insert Build Help

YWhat bype of DLL would you like to create?

" Begular DLL with MFC statically linked
" Regular DLL uzing shared MFC DLL

i MFLC Estension DLL [using shared MFC DLLE

YWhat features would you like in pour DLL?

[Automation

[windows Sockets

YWiould you like bo generate source file comments?

i+ “Yes, please

" Mo, thank pou

¢ Back

| Einizh | Cancel

Figure 2: The only step 1 of 1 DLL project.

Mew Project Information El

Apptafizard will create a new skeleton praject with the fallowing specifications:

Creating MFC Extenzion DLL [uzing a shared copy of MFC] mymfc224, dil
targeting:
Win3z2

kain zource code in: mymfcZ24,. b and mymfc228. cpp

Project Directany:
F:\MFCPROJECT \mprafo22d,

Cancel

Figure 3: MYMFC22A DLL project summary.
Examine the mymfc22A.cpp file. AppWizard generates the following code, which includes the D1 IMain() function:

// mymfc22A.cpp : Defines the initialization routines for the DLL.
//

#include "'stdafx.h"
#include <afxdlIx.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE__;
#endif

static AFX_EXTENSION_MODULE Mymfc22ADLL = { NULL, NULL };

extern "C" Int APIENTRY
DIIMain(HINSTANCE hlnstance, DWORD dwReason, LPVOID lIpReserved)

{

// Remove this if you use IpReserved
UNREFERENCED_PARAMETER(lIpReserved) ;

iT (dwReason == DLL_PROCESS_ATTACH)
TRACEO(*'MYMFC22A.DLL Initializing!\n™);

// Extension DLL one-time initialization

ifT (JAfxInitExtensionModule(Mymfc22ADLL, hlnstance))
return O;

// Insert this DLL into the resource chain

// NOTE: If this Extension DLL is being implicitly linked to by
// an MFC Regular DLL (such as an ActiveX Control)

// instead of an MFC application, then you will want to

// remove this line from DIIMain and put it in a separate

// function exported from this Extension DLL. The Regular DLL
// that uses this Extension DLL should then explicitly call that
// function to initialize this Extension DLL. Otherwise,

// the CDynLinkLibrary object will not be attached to the

// Regular DLL"s resource chain, and serious problems will

// result.

new CDynLinkLibrary(Mymfc22ADLL);
}
else if (dwReason == DLL_PROCESS_DETACH)

TRACEO("'MYMFC22A_.DLL Terminating!\n');
// Terminate the library before destructors are called
AfxTermeExtensionModule (Mymfc22ADLL) ;

3
return 1; // ok

}

Insert the CPersistentFrame class into the project. Choose Add To Project from the Project menu, and then
choose Components And Controls from the submenu.

Project Build Tools ‘Window Help

! Set Active Project k |Eﬂ‘ |E5tudent‘-"iew
Add To Project r Mew, ..

b o Mew Folder. ..

Source Conkral

Cependencies. .. HE Files. ..

Setkings. .. AlL+F7
Excport Makefile. .

omponents and Controls., ..

Insert Project into \Waorkspace, .. HG—NEH

Figure 4: Inserting CPersistentFrame class into the MYMFC22A project.

Locate the file Persistent Frame.ogx that you created in Module 9. Click the Insert button to insert the class into the
current project.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc9.html

Components and Controls Gallery

Chooze a companent o inzert into pour project:
Laak, ir: |l.f} Persistent Frame j = i B~

Persistent Frame, og:x

File name:; Persistent Frame. ogx Inzert

Cloze

i

Path ta contral:

Figure 5: Our previous CPersistentFrame class that we stored in the gallery.

If you don't want to use the OGX component, you can copy the files Persist.h and Persist.cpp into your project
directory and add them to the project by choosing Add To Project from the Visual C++ Project menu.

Project Build Tools Window Help

Set Active Project ’ |E“ih |CMainFrame
&dd To Project i M. .

Source Contral p o Mew Folder...

] Files. ..

Dependencies. ..
Settings. .. Blk+F7

Export Makefile. .,
@ Companents and Cankrals, ..

Insert Project into Warkspace. .. |:t ion Equrt ed f Tom thi

Figure 6: Adding Persist.h and Persist.cpp files manually to the MYMFC22A project.

Insert Files into Project E
Laak, in; ||.'f} rryrnfc2 2, j 5 Ed-

|- Debug

Cres

@ rvmfc 226, cpp

T rvymfe22a. e
Persiskt.cpp

@ Persist.h

@ Resource,h

@ Skdafx.cpp
Ih] stdaf:.h

File name: |Persist.cpp
Files of type: ||:++ Files [.c.opp:oxe iz e thzinlre) ﬂ m

Ingert into: | myrmfc2 2, j

Figure 7: Selecting Persist.h and Persist.cpp files.

Edit the persist.h file. Modify the line:

class CPersistentFrame : public CFrameWnd

to read:
class AFX_EXT_CLASS CPersistentFrame : public CFrameWnd

¢ Per=zi=zt. h

#ifndef _INSIDE_WISUAL CPP_PERSISTENT FRAME
#define _INSIDE_WISUAL CFPP_PERSISTENT _FRAME

claszs AFY EXT CLASS CPersistentFrame : public CFramelnd
{ »» remembers where it was on the desktop

DECLARE DYVHAMIC{CPer=ziztentFrams)
private:

Listing 1.

Build the project and copy the DLL file. Copy the file mymfc22A.dll from the \myproject\mymfc22A\Debug
directory to your system directory (\Windows\System or \Winnt\System32).

I3 Friymfcprojectimymfc22aiDebug

Size . Type _ Date

and Folder Tasks . 105 KB Application Extension 321}
@mymfcﬂ.ﬁ..exp S KB Exports Library File 321

ap Places T mymfcz2a. ik 142 KB Inkermediate file 321y
mymfcZ2a, lib 3KE C/CT++ Inline File 321

) T mymfczza,obj dKE Intermediate file 3z
- ™ mymfczza.pch 6,455 KB Intermediate file 3121
nfezzadl 2 mymfczza, pdb 241 KB Intermediate file 3zl
e mymfczz.ﬁ..res 1KE Compiled Resource Scripk 321
 Modified: Today, March 21 persisk, obi 23KB Intermediate file kipa)
2006, 9:00 PM [Skdafx,obj 115 KB Inkermediate fil= 321
104 KB [vean.idb 225 KE Inkermediate file 321
I yvean,pdb 404 KE Inkermediate file 321

Figure 8: The generated DLL file, copied to the Windows system directory.

System directory for Win Xp Pro is shown below (or C:A\WINDOWS\system32).

£ CAWINDOWS sy stem

Figure 9: Copy the previous generated DLL file to the Windows directory, so that it can be found by applications from

Marme Size | Type -~ _ Date Modified

and Folder Tasks AYICAP.OLL 63KE Application Extension 5/23/2001 5:00 PM

AYIFILE.DLL 107 KB application Extension 8)23/2001 &:00 PM

er Places COMMDLE, DLL 33KB Application Extension 8/23/2001 &:00 PM
crids3d.dll 743 KE Application Extension 11/21/2002 3:07 PM

] LZEXPAMD, DLL 10KE Application Extension §/23/2001 5:00 PM

. MMSYSTEM.DLL 68 KE Application Extension 8/3(2004 10:51 FM

tem MaYIDED. DLL 124 KB Application Extension 82372001 &:00 PM

Zolder mymfczza. dl 105 KE application Extension 3212006 9:00 PM

2 Modified: Friday, August CLECLI.DLL 21 KB Application Extension &/23)2001 :00 PM

003, ;29 PM OLESYR.DLL 24 KB Application Extension 5/23/2001 S:00 PM

SHELL.DLL S KB Application Extension 8/23/2001 8:00 PM

TAPI.DLL 19KE Application Extension &§/23/2001 &:00 PM

YER.,DLL 9KE Application Extension §/23/2001 §:00 PM

KEYBEOARD.DRY ZKE Device driver 812312001 §:00 PM

MCIANI.DRY T2 KB Device driver 812312001 .00 PM

any path.

The MYMFC22B Example: A DLL Test Client Program

This example starts off as a client for mymfc22A.dll. It imports the CPersistentFrame class from the DLL and
uses it as a base class for the SDI frame window. Later you'll add code to load and test the other sample DLLs in this

module. Here are the steps for building the MYMFC22B example:

Run AppWizard to produce \mfcproject\mymfc22B. This is an ordinary MFC EXE program. Select Single

Document. Otherwise, accept the default settings. Be absolutely sure that in Step 5 you accept the As A Shared DLL

option.

MFC AppWizard - Step b of &

% Microsoft Developer Studio
File Edit ¥iew Insert Build Help

" windows Ewxplorer

YWiould you like bo generate source file comments?

{*+ “Yes, please
" Ma, thank pou
Haw would you like o uge the MFC libran?

i+ As g shared DLL
" As a statically linked lbrary

< Back | Hewt > | Einizh | Cancel |

Figure 10: AppWizard step 5 of 6, selecting As a shared DLL option.

New Project Information E|

Appiafizard will create a new skeleton project with the following specifications:

Application twpe of mymfcZ2B:
Single Document Interface Application targeting:
Wwind2

Clazzes to be created:
Application: CMymfc2Z2BApp in mymfc22B.h and mymfc2ZB. cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
Document: Chymic22BDoc in mymfc22BDoc.h and mymfc22BDoc.cpp
Wiew: Chymfc22BYiew in mymfc22BYiew b and mymfc22B8%iew. cpp

Features:
+ Initial toolbar in main frame
+ |nitial statuz bar in main frame
+ Printing and Print Preview suppart in view
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL]
+ Active Controlz zupport enabled
+ Localizable text in:
Englizh [United States)

Project Directany:
F:mfcprojectsmymics 26

Cancel

Figure 11: MYMFC22A SDI project summary.

Copy the file persist.h from the \mfcproject\mymfc22A directory to \mfcproject\mymfc22B. Note that you're copying
the header file, not the source file, persist.cpp.

I3 FrimfcprojectimymfcZ2a

Mame Size | Twpe Drate Modified
and Folder Tasks mymfcZ2A.opt S3KE OPT File 32112006 11:00 PM
@mymfczm.ncb 41 KB Wisual C++ Intelise... 3/21)2006 11:00 PM
er Places @mymchE.ﬁ..plg 2KB HTML Docurnent 3212006 11:00 PM

1KE (C/C++ Header 3/21/2006 10:59 PM
@B mymfcZza, dsw 1KE NCH++ 6 Workspace 3/21/2006 10:59 PM
mymchZ.ﬁ..dsp SKE “WC++ 6 Project 31212006 1059 PM
mvmfc2 26, che 1KE (CLW File 312102006 10:58 PM

Figure 12: Copying the Persist.h header file from the MYMFC22A project directory.

To \mymfc22B directory.

I Frimfeprojectimymfc22E

Marme Size . Type
and Folder Tasks Sires } File Folder
ICDebug File Falder
er Places @ Persist.h 1KB T4+ Header
mymFc22E, ch ZKB LW File
@ mymfc22E . cpp SKBE C++ Source
EdmymfczzB . dsp SKE WC++ 6 Project

—n

Figure 13: The MYMFC22B project directory.
Also insert the following line into MainFrm.h:
#include "persist.h"

¢ MainFrm .k : interface of the CHainF
A
A A A

#include "persist k"

#if ldefined{AFY _MAINFRM H_ 6SAOE1AF 7
#define AFY MAINFRM H 6SAOELAF 7074 4

#if _MSC_VEER : 1000

#pragma once
#endif -~ _HSC VER » 1000

Listing 2.

Change the CFrameWnd base class to CPersistentFrame as you did in MYMFC14. Replace all occurrences of
CFrameWnd with CPersistentFrame in both MainFrm.h and MainFrm.cpp.

Edit Wiew Insert Project Build Tools '

Copy Chrl+C
. Delete Dl

Select Al Chrl+4
&k Find... Chrl+F
gy Find in Files. ..

Replace...

Go To.., Chrl+i3

Figure 14: Invoking the find and replace menu.

Replace

Find what: |I:FrameWnd j ﬂ Find Mext
Replace with: |I:P'ersistentFrame| J ﬂ
[Match whaole word anly Replace in Replace Al
[Match caze &

| Regular expression f* wihole fil Lemsz]

Figure 15: Replacing all the CFrameWnd with CPersistentFrame in MainFrm.h and MainFrm.cpp files.

Add the mymfc22A import library to the linker's input library list. Choose Settings from Visual C++'s Project menu.
Select All Configurations in the Settings For drop-down list. Then fill in the Object/Library Modules control on the

Link page as shown below.
You must specify the full pathname for the mymfc22A.lib file unless you have a copy of that file in your project

directory.

Project Settings

Settings Far: |.-'-‘-.II Configurations

SR mymfcZ2B
-3 Source Files

3 b ainFrm.cpp

3 mymfc22E. cpp

] mymfc22E i

3 mymfc22BDoc.cpp

3 mymfc22BYiew. cpp

3 Stdafecpp

-3 Header Files

E] MainFrm.h

] mymfc2ZB.h

=] mymic22B0oc.h

S| memfc22BView.h

=] Resouce.h

] Stdafzh

-3 Resource Files

rmymfc22B.ico

General | Debug | C/C++ Link | R e=ourc: EE

ﬂ Beszet

Category: | General

Cutput fle narme:
Objectlibrary modules:
|F:Hmfcprniect\mymchE‘.ﬁ."\Del:uug\mymchE‘.fi‘-..liH

[+ Gererate debuginfo [lgnaore all default lbranes

[+ Link incrementally [Generate mapfile

[Enable profiling

Common Ophions:

F-hmfocprojectsmymfc228 5D ebug Anologo
Jzubszpstem:windows dmachine: [386

ak. | Cancel

Figure 16: Adding the mymfc22A.lib (import) library to the linker's input library list.

Build and test the MYMFC22B program. If you run the program from the debugger and Windows can't find the
mymfc22A.dll, Windows displays a message box when MYMFC22B starts. If all goes well, you should have a
persistent frame application that works exactly like the one in EX15A. The only difference is that the
CPersistentFrame code (Persist.h and Persist.cpp) is in an extension DLL.

7+ Untitled - mymfc22B

File Edit Yiew Help

=y =

=

B[=1ES

Ready

Figure 17: MYMFC22B program output, using the CPersistentFrame class through the DLL.

MFC Regular DLLs: The CWinApp Derived Class

When AppWizard generates a regular DLL, the DI IMain() function is inside the framework and you end up with a
class derived from CWinApp (and a global object of that class), just as you would with an EXE program. You can get
control by overriding CWinApp: : InitInstance and CWinApp: :ExitInstance. Most of the time, you don't
bother overriding those functions, though. You simply write the C functions and then export them with the
__declspec(dllexport) modifier (or with entries in the project's DEF file).

Using the AFX_MANAGE_STATE Macro

When mfc42.dll is loaded as part of a process, it stores data in some truly global variables. If you call MFC functions
from an MFC program or extension DLL, mfc42.dll knows how to set these global variables on behalf of the calling
process. If you call into mfc42.dll from a regular MFC DLL, however, the global variables are not synchronized and the
effects will be unpredictable. To solve this problem, insert the line:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

at the start of all exported functions in your regular DLL. If the MFC code is statically linked, the macro will have no
effect.

The MFC Regular DLL Resource Search Sequence

When an EXE links to a regular DLL, resource loading functions inside the EXE will load the EXE's own resources.
Resource loading functions inside the regular DLL will load the DLL's own resources. If you want your EXE code to
load resources from the DLL, you can use AfxSetResourceHandle to temporarily change the resource handle. The code
will be nearly the same as that shown in "The MFC Extension DLL Resource Search Sequence" topic. If you're
writing an application that needs to be localized, you can put language-specific strings, dialogs, menus, and so forth in
an MFC regular DLL. You might, for example, include the modules English.dll, German.dll, and French.dll. Your client
program would explicitly load the correct DLL and use code such as that in "The MFC Extension DLL Resource
Search Sequence" topic to load the resources, which would have the same IDs in all the DLLs.

The MYMFC22C Example: An MFC Regular DLL

This example creates a regular DLL that exports a single square root function. First you'll build the mymfc22C.dll file,
and then you'll modify the test client program, MYMFC22B, to test the new DLL.

Here are the steps for building the MYMFC22C example:

Run AppWizard to produce \mfcproject\mymfc22C. Proceed as you did for MYMFC22A, but accept Regular DLL
Using Shared MFC DLL (instead of choosing MFC Extension DLL) from the one and only AppWizard page.

Filez Projects Whorkzpaces] Other Documents

g0 DevStudio Add-in ‘wizard

¥ Estended Stored Proc Wizard
r |SAF Extenzion ‘Wizard
Makefile

fim MFC Activel, Controla/izard
MFC sppifizard [dil)
A MFC Appivizard [exe)

@T{: MNew Database Wizard

T Wtility Project

"B]win32 &pplication

j YWin32 Conzole Application
%] win32 Dynamic-Link Library
£

& ATL COM Appiwizard % | 'win32 Static Library Project name:
¢ | Cluster Resource Type Wizard]mymfu:EEI:

gi%| Cuztom Apphafizard :

Databaze Project Logation:

|F:Hmfcprniect"~mymfc22li

(+ Create new workspace
o~

=

.

|

Platforms:

‘WinSE

o]

Figure 18: MYMFC22C, new DLL project dialog.

MFC AppWizard - 5tep 1 of 1

% Microsoft Developer Studio
File Edit ¥iew Insert Build Help

AATODO:

AATODO:

YWhat bype of DLL would you like to create?

" Begular DLL with MFC statically linked

i Regular DLL uzing shared MFC DLL
" MFC Estenzion DLL [uzing shared MFC DLL)

YWwhat features would you like in pour DLL?

[Automation

[windows Sockets

YWhould you like to generate zource file comments?

* ‘ez, please

" Mo, thank pou

< Back | Einizh | Cancel

Figure 19: The only step 1 of 1 AppWizard for MYMFC22C, a Regular DLL using shared MFC DLL.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Creating Reqular DLL [using a shared copy of MFC) mymfc22C.dll targeting:
Wind2

b ain source code in: mymfc22C.h and mymfc22C. cpp

Froject Directory:
F:\mfcprojectsmymfic22C

Cancel

Figure 20: MYMFC22C DLL project summary.

Examine the mymfc22C.cpp file. AppWizard generates the following code, which includes a derived CWinApp class:

// mymfc22C.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include "mymfc22C.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE__ ;
#endif

// Note!
// IT this DLL is dynamically linked against the MFC
// DLLs, any functions exported from this DLL which
// call into MFC must have the AFX_MANAGE_STATE macro
// added at the very beginning of the function.
// For example:
// extern "C" BOOL PASCAL EXPORT ExportedFunction()

{
// AFX_MANAGE_STATE(AfxGetStaticModuleState());
// // normal function body here
// }

// It is very important that this macro appear in each

// function, prior to any calls into MFC. This means that

// it must appear as the first statement within the

// function, even before any object variable declarations
// as their constructors may generate calls into the MFC
// DLL.

//

// Please see MFC Technical Notes 33 and 58 for additional
// details.

//

LII1117777777777777777777777777//777777//77777///77777///7//7/7/////777////7/7/7777
// CMymfc22CApp

BEGIN_MESSAGE_MAP(CMymfc22CApp, CWinApp)
7/ /{{AFX_MSG_MAP (CMymfc22CApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}YAFX_MSG_MAP
END_MESSAGE_MAP(Q)

L1111 177777777777777777777777777/777777/777777////7777////777/////777///7/7777
// CMymfc22CApp construction

CMymFc22CApp : : CMymFc22CApp)

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

}

L111777777777777777777777777777777777777777/7777/77/77777/7//777/7/7/7/7/77/7//7/7777
// The one and only CMymfc22CApp object

CMymfc22CApp theApp;

Add the code for the exported MymFc22CSquareRoot () function. It's okay to add this code in the mymfc22C.cpp
file, although you can use a new file if you want to:

extern "'C" __ declspec(dllexport) double Mymfc22CSquareRoot(double d)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

TRACE(""Entering Mymfc22CSquareRoot\n");

if (d >= 0.0)

return sqrt(d);
3}

AfxMessageBox('Can"t take square root of a negative number.');
return 0.0;

A S SIS S
S The one and only CHynicZZ2CApp object

CHymfc22CApp thedpp:

extern "C" _ _declspeci(dllexport) double Hymfc?iCSquareRoot (double d)

i
AFY_ MAWAGE STATE(AfzGetStaticModuleState()

TRACE("Entering MymfcZ2CSouareRoot~n");
if (d »= 0.0}
1

return sgrtid);

AfwMe=s=zageBox("Can't takes =quare root of a negatiwve number "
return 0.0;

Listing 3.

You can see that there's no problem with the DLL displaying a message box or another modal dialog. You'll need to
include math. h in the file containing this code because we are going to use the sqrt() pre-defined function.

S mymic22C cpp . Defines the init
A

#include "stdaf= h"
#include "mymfcZ2ZC k"
#include "math.h'|

#ifdef _DEBUG
#define new LDEEUG_NEW

Listing 4.

Build the project and copy the DLL file. Copy the file mymfc22C.dll from the \mfcprojectimymfc22C\Debug directory
to your system directory.

|20 Fimfoprojectimymfczz CiDebug

Marne Size | Twvpe
and Folder Tasks ¥ @ mymfcz2C.dl 101 KB application Extension
@mymfczzc.exp 1KE Exports Library File
er Places ¥ T2 mymFezz2C.ilk 120KE Inkermediate File
mymfc22C.lib ZKB CJC++ Inline File

Figure 21: Generated DLL file of MYMFC22C program.
Updating the MYMFC22B Example: Adding Code to Test mymfc22C._dlI
When you first built the MYMFC22B program, it linked dynamically to the MYMFC22A MFC extension DLL. Now
you'll update the project to implicitly link to the MYMFC22C MFC regular DLL and to call the DLL's square root
function.

Following are the steps for updating the MYMFC22B example.

Add a new dialog resource and class to \mfcproject \mymfc22B. Use the dialog editor to create the 1DD_MYMFC22C
template, as shown here.

£ mymfc2?B resources *
+--[_] Accelerator

][

£ Dialog

IDD_ABOUTBOX

IDD_MYMFCZ20

[lcon
[Meru

(2 String T able

(2 Toolbar
(L Wersion

M Dialog Ed
Ok

[nput; |Edit Caricel

Compute zqrt |

Output: wlE dit ™

Edit Properties
A ? General | Styles | Extended Styles |

[[nRm(IDC OUTPUT

[v izible [Group [HelplD
[Disabled [v Tahb stop

Figure 22: Adding and modifying a new dialog resource to MYMFC22B project.

Then use ClassWizard to generate a class CTest22cDialog, derived from CDialog.

Clazs information

Hame:

File name:

Baze clazs:

Dialog IO

Autamation
i+ MNone
" Automation

~

CTest22cDialog

ok
==

Cancel

Test22cDialog.cpp

| CDialog |

|IDD_MYMFC22C |

Figure 23: Adding and modifying a new class to MYMFC22B project.

The controls, data members, and message map function are shown in the following table.

Control ID Type Data Member Message Map Function

IDD_MYMFC22C | Dialog template

IDC_INPUT edit m_dInput (double) -

IDC_OUTPUT edit m_dOutput (double) -
IDC_COMPUTE button - onCompute()
Table 3.

MFC ClassWizard

Meszage Maps] tember \anables] Avtomation | Activer Events | Clazz Info]

Project: Clazz hame: fdd Clags.. =

| mpmic226 »| |CTestz2cDialog |
F:i ATest22eDialog h, F:A AT est22eDialog.cpp —
Object 1D Meszages: Delete Function
ID_MEXT_PAME

[

ID_PREYV_PAME
ID_VIEWw _STATUS_BAR

EM CLICEED _
EN_DOUBLECLICKED Edit Code |
ID_WIE\W TOOLEAR

IDC_ COMPUTE Add Member Function
IDC_IMPUT
IDC_OUTPUT kember function name:

M ember functions;

Ok, |
¥ DoDataExchange Cancel I
Mezzage: BM_CLICKED

Object 10: IDC_COMPUTE

D ezcription: Indizates the user clicked a buttan

k. l Cancel

Figure 24: Adding 1DC_COMPUTE message handler function.

Add Member VYariable

kember variable name;
|n'|_|:|EI LikpLt

Cancel

i

LCategony:

|‘v’alue ﬂ

Y ariable type:

e

Description:

double with range walidation

Figure 25: Adding data members/member variables using ClassView.

MFEC ClassWizard

Meszage Map: Member Y ariables | Automation | BActiver Events | Clazs Info |

Project; Class name: fdd Class.. =

mymfc22B v |CTest22cDislog B o
F\. ATest22cDialog h. F-4.. AT est22cDislog.cop ﬁ

Contral |De: Type tember Delete Variable |

IDC_COMPUTE
IDC_INFUT double rn_dlnput
(ADC OUTPUT dClutput
IDCAMCEL
D0k
Dezcription; double with range walidation

Minirurm W alue:;
b amirnuimm Y alue:

ak. | Cancel

Figure 26: Adding data members/member variables using ClassWizard.

Code the OnCompute () function to call the DLL's exported function. Edit the ClassWizard-generated function in
Test22cDialog.cpp as shown here:

void CTest22cDialog: :OnCompute()
UpdateData(TRUE);

m_dOutput = Mymfc22CSquareRoot(m_dInput);
UpdateData(FALSE);

}

S CTest2Z2clialog message handlers

void CTestZZclDialog: OnComnputel)

{
S TODD: Add wour control notification handler code here
Updatelata{TRUE] ;
m_doutput = Mymfc?ZCSquareRoot (n_dInputd:

b Updatelata(FALSE) ;

Listing 5.

You'll have to declare the Mymfc22CSquareRoot() function as an imported function. Add the following line to the
Test22cDialog.h file:

extern "C" _ declspec(dllimport) double Mymfc22CSquareRoot(double d);

< CTest22clialog dialog
extern "C" _ declspec(dllimport) double Mymfc?ZCSguareRoot(double di;
clazs CTestZZcDialog : public CDialog

Listing 6.

Integrate the CTest22cDialog class into the MYMFC22B application. You'll need to add a top-level menu, Test,
and a Mymfc22C DLL option with the ID ID_TEST MYMFC22CDLL.

Al File Edit Test Wiew Help i

3 mpmfc22B resources * 5 MymfezzcOll
D A ... I
(27 Dialag ' :

I:l |zam Menu Item Properties

agﬂgﬂ MAINFRAME | # T Gormal | Evended Sues |

%iggg;ame ID: [ID_TEST_MYMFC22CDL | Caption: [sMymfc22C DLL

[Wersion [Separater | Popup [lnactive Break: |Mone vl
[Checked | Grayed [Help
Prompt: | Test a simple DLLAnTest DLL

F]--[FFH
£

+

+

+

Figure 27: Adding and modifying menu and its item to the menu resource.

Use ClassWizard to map this option to a member function in the CMym¥c22BView class, and then code the handler in
MymFfc22BView.cpp as follows:

void CMymfc22BView: :OnTestMymfc22CdIT1)

CTest22cDialog dlg;
dlg.DoModal () ;

}
A CHymfcZ22BView mes=zage handlers
vold CHymicZ22BView: :OnTestHymnfc2cdll()
S TODD: Add wour command handler code here

CTest22clialog dlg;
dlg . DoModali):

Listing 7.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfc22B v| | CMymic22Bview |
F:h Ao 2B v mpmfe22B%iew b, 5 smymfcZ22BY iew. cpp g

Object |0 Mezzages: Delete Function

ID_FILE_PRIMNT_PREWVIEW A

ID_FILE_PRINT_SETUP 0 UPDATE_COMMAND _LI
ID_FILE_SAVE

ID_FILE_SAVE_aAS

[D_ME=T_PANE

ID_PREY PAME m

I TEST MYMFCZZCOLL

kember functians:

Yo OnDraw
YW [OnEndPrinting
YW OnPreparePrinting

|3

OnT esthdpmfc22edl] OM_ID_TEST_MvMFC22COLL:CORMARND
Y PreCreatewindow ¥
Description: Handle a command [fram menw, accel, crd buttan]
ak. Cancel

Figure 28: Using ClassWizard to map the menu item to a member function in the CMymFc22BView class.

Of course, you'll have to add this #include line to the Mymfc22BView.cpp file:
#include "Test22cDialog.h"

S mymEc22BYiew . cpp o imple
A

#include “"stdaf=zx h"
#include "mymicZZB k"

#include "mymicZZBDoc . b
#include "mvmfcZZ2BView h”

#include "Test22cDialog.h'|

#ifdef _DEBUG
#def ine new DEBEUG_NEW
#undef THIS FILE

Listing 8.

Add the MYMFC22C import library to the linker's input library list. Choose Settings from Visual C++'s Project menu,
and then add \mfcproject\imymfc22C\Debug\mymfc22C.lib to the Object/Library modules control on the Link page.
Use a space to separate the new entry from the existing entry. In this example a full path is used as shown in the
following Figure.

Project Settings

S|

= |2 myrfc22E
-3 Source Files

Settings Far: |.-'-‘-.II Configurations

3 b ainFrm.cpp

3 mymfc22E. cpp

] mymfc22E i

3 mymfc22BDoc.cpp
3 mymfc22BYiew. cpp
3 Stdafecpp

3 Test22elialog.cpp
3 TestZ2dDialog.cpp
Header Files

E] MainFrm.h
mymfc22B.h
mymfc22Bloch
mymfc22BYiew.h
Z] Reszource.h

£ Stddfah

T TP TS

3 KN

[%

General Debug C/C++ Link | R e=ourc: EE
Categany: Beszet

Cutput fle narme:

Objectlibrary modules:
|mf|:22.-'1‘-..|il:u F:\mfcprojectsmymicg2ChDebugmemfc2 2C. lib

[+ Gererate debuginfo [lgnaore all default lbranes

[+ Link incrementally [Generate mapfile

[Enable profiling

Common Ophions:

F-hmfocproject mymfc2 28D ebughmymic2 24, lib
F:Amfcprojectymymfc22ChDebughmemfc22C.lib Anologo
fzubsyster:windows fmachine:| 386

o]

Cancel

Figure 29: Adding the mymfc22C.lib (import) library to the linker's input library list.

Now the program should implicitly link to both the MYMFC22A DLL and the MYMFC22C DLL. As you can see,
the client doesn't care whether the DLL is a regular DLL or an extension DLL. You just specify the LIB name to the
linker.

Build and test the updated MYMFC22B application. Choose Mymfc22C DLL from the Test menu. Type a number in
the Input edit control, and then click the Compute Sqrt button. The result should appear in the Output control.

Ok

Ready

lnput; |17

Cancel

| Compuite sart |

Output: 141231056

Figure 30: MYMFC22B program output with new DLL that used to compute a square root of a given number.

A Custom Control DLL

Programmers have been using DLLs for custom controls since the early days of Windows because custom controls are
neatly self-contained. The original custom controls were written in pure C and configured as stand-alone DLLs. Today
you can use the features of the MFC library in your custom controls, and you can use the wizards to make coding easier.
A regular DLL is the best choice for a custom control because the control doesn't need a C++ interface and because it
can be used by any development system that accepts custom controls (such as the Borland C++ compiler). You'll
probably want to use the MFC dynamic linking option because the resulting DLL will be small and quick to load.

What Is a Custom Control?

You've seen ordinary controls and Microsoft Windows common controls in Module 5, and you've seen ActiveX controls
in Module 18. The custom control acts like an ordinary control, such as the edit control, in that it sends WM_COMMAND
notification messages to its parent window and receives user-defined messages. The dialog editor lets you position
custom controls in dialog templates. That's what the "head" control palette item, shown here, is for.

Cuskarm Cantral

Figure 31: Custom control in control palette.

You have a lot of freedom in designing your custom control. You can paint anything you want in its window (which is
managed by the client application) and you can define any notification and inbound messages you need. You can use
ClassWizard to map normal Windows messages in the control (WM_LBUTTONDOWN, for example), but you must
manually map the user-defined messages and manually map the notification messages in the parent window class.

A Custom Control's Window Class

A dialog resource template specifies its custom controls by their symbolic window class names. Don't confuse the
Win32 window class with the C++ class; the only similarity is the name. A window class is defined by a structure that
contains the following:

= The name of the class.
= A pointer to the WndProc () function that receives messages sent to windows of the class.
= Miscellaneous attributes, such as the background brush.

The Win32 RegisterClass() function copies the structure into process memory so that any function in the process
can use the class to create a window. When the dialog window is initialized, Windows creates the custom control child
windows from the window class names stored in the template. Suppose now that the control's WndProc () function is
inside a DLL. When the DLL is initialized (by a call to DI IMain()), it can call RegisterClass() for the control.
Because the DLL is part of the process, the client program can create child windows of the custom control class. To
summarize, the client knows the name string of a control window class and it uses that class name to construct the child
window. All the code for the control, including the WndProc () function, is inside the DLL. All that's necessary is that
the client loads the DLL prior to creating the child window.

The MFC Library and the WndProc() Function

Okay, so Windows calls the control's WndProc () function for each message sent to that window. But you really don't
want to write an old-fashioned switch-case statement, you want to map those messages to C++ member functions, as
you've been doing all along. Now, in the DLL, you must rig up a C++ class that corresponds to the control's window
class. Once you've done that, you can happily use ClassWizard to map messages.

The obvious part is the writing of the C++ class for the control. You simply use ClassWizard to create a new class
derived from CWnd. The tricky part is wiring the C++ class to the WndProc () function and to the application
framework's message pump. You'll see a real WndProc () in the MYMFC22D example, but here's the pseudocode for a
typical control WndProc () function:

http://www.borland.com/
http://www.tenouk.com/visualcplusmfc/visualcplusmfc5.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc18.html

LRESULT MyControlWndProc(HWND hWnd, UINT message WPARAM wParam, LPARAM IParam)
if (this is the first message for this window)

CWnd* pWnd = new CMyControlWindowClass();
attach pwnd to hWnd

return AfxCallWndProc(pWnd, hWnd, message, WParam, IParam);

}

The MFC AfxCal IWndProc() function passes messages to the framework, which dispatches them to the member
functions mapped in CMyControlWindowClass.

Custom Control Notification Messages

The control communicates with its parent window by sending it special WM_COMMAND notification messages with
parameters, as shown here.

Parameter Usage

(HIWORD) wParam Notification code

(LOWORD) wParam Child window ID

IParam Child window handle
Table 4

The meaning of the notification code is arbitrary and depends on the control. The parent window must interpret the code
based on its knowledge of the control. For example, the code 77 might mean that the user typed a character while
positioned on the control.

The control might send a notification message such as this:

GetParent()->SendMessage (WM_COMMAND, GetDIgCtrlID() | ID_NOTIFYCODE << 16, (LONG)
GetSafeHwnd());

On the client side, you map the message with the MFC ON_CONTROL macro like this:
ON_CONTROL(ID_NOTIFYCODE, IDC_MYCONTROL, OnClickedMyControl)

Then you declare the handler function like this:

afx_msg void OnClickedMyControl();
User-Defined Messages Sent to the Control

You have already seen user-defined messages in Module 6. This is the means by which the client program
communicates with the control. Because a standard message returns a 32-bit value if it is sent rather than posted, the
client can obtain information from the control.

The MYMFC22D Example: A Custom Control

The MYMFC22D program is an MFC regular DLL that implements a traffic light control indicating off, red, yellow,
and green states. When clicked with the left mouse button, the DLL sends a clicked notification message to its parent
and responds to two user-defined messages, RYG_SETSTATE and RYG_GETSTATE. The state is an integer that
represents the color. Credit goes to Richard Wilton, who included the original C-language version of this control in his
book Windows 3 Developer's Workshop (Microsoft Press, 1991). The MYMFC22D project was originally generated
using AppWizard, with linkage to the shared MFC DLL, just like MYMFC22C.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc6.html

MFC AppWizard - Step 1 of 1

YWhat bype af DLL would you like to create?

% Microsoft Developer Studio
File Edit ¥iew Insert Build Help

" Regular DLL with MFC statically linked
{+ ‘Regular DLL using shared MFC DLL
" MFC Estenzion DLL [using shared MFC DLL)

YWhat features would you like in vour DLL?

[Automation

["Windows Sockets

whould you like to generate zource file comments?

*+ “Yez, please

" Mo, thank pou

< Back | | Einizh | Cancel |

Figure 32: MYMFC22D DLL project, AppWizard step 1 of 1.

New Project Information E|

Appiafizard will create a new skeleton project with the following specifications:

Creating Reqular DLL [using a shared copy af MFC] mymfc220.dll targeting:
Wind2

kain zource code in: mymfcZ20.kh and mymfc220.cpp

Project Directary:
F:Amfcprojecthmymic2ZD

Cancel

Figure 33: MYMFC22D project summary.

Listing 9 shows the code for the primary source file, with the added code in the InitInstance() function in orange.
The dummy exported MymFc22DEntry () function exists solely to allow the DLL to be implicitly linked. The client
program must include a call to this function. That call must be in an executable path in the program or the compiler will
eliminate the call. As an alternative, the client program could call the Win32 LoadLibrary() function in its
InitInstance() function to explicitly link the DLL.

MYMFC22D .CPP

// mymfc22D.cpp : Defines the initialization routines for the DLL.
//

#include '"'stdafx.h"
#include "mymfc22D.h"
#include ""RygWnd.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE

#endif

extern "C" _ declspec(dllexport) void Mymfc22DEntry() {} // dummy
function

(generated comment lines omitted)

L111777777777777777777777777777777/7/7/7/7//////////////////////////7777
// CMymfc22DApp

BEGIN_MESSAGE_MAP(CMymfc22DApp, CWinApp)
//{{AFX_MSG_MAP (CMymFfc22DApp)
// NOTE - the ClassWizard will add and remove mapping macros
here.
// DO NOT EDIT what you see in these blocks of generated
code!
//}}YAFX_MSG_MAP
END_MESSAGE_MAP()

L1117777777777777777777777777/777777/77777/7/777777/7/7/777////777/7/7/77777
// CMymfc22DApp construction

CMymfc22DApp: :CMymFc22DApp ()

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

}

L1111 77777777777777777777777777//77777//777777///7777////777////7/777/777
// The one and only CMymfc22DApp object

CMymfc22DApp theApp;

BOOL CMym¥c22DApp:: Initlnstance()

{
CRygWnd: :RegisterWndClass(AfxGetlnstanceHandle());

return CWinApp::Initlnstance();

Listing 9: The mym¥c22D . cpp, primary source listing.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
myrfc2200 | | CMymic22DApp | -

F:h Amymfc220hmyprnfe 220k, Foh mpmfe2 20 mymfeZ20. cpp g

Object |0 Mezzages: Delete Function

ChymfcZZ2DApp AddToRecentFileList Y
Dok ezsageBox
Dot aitCursar
Esitinztance
Geth airtsnd

Init-’-‘-.EEIic:atin:nn

54

kember functians:
Initlnstance

Description: Called to initialize a new instance of an application or thread

0k, Cancel

Figure 34: Message mapping for InitInstance() function.
The following is the InitInstance() code.
< The one and only CHymicZ2DAipp object
CHymfc22DApp thedpp:
BOOL CHymfcZ2DApp: i InitInstance()
S TODD: Add wour specialized code here and-or call the base class

CEvyglnd: RegisterndClass{AfxGet InstanceHandle()) ;
return CWinApp: InitInstance():

Listing 10.

Listing 11 shows the code for the CRygWnd class, including the global RygWndProc() function. Click the Add Class
button in ClassWizard to create this class.

Clazs information
Mame: CRygwnd

Cancel

File name: Rygwnd.cpp

Baze clasz: generic Cwind

The base claz: dogs not require a dialog resource.

Automation
i+ MNone

" Automation

" Createable by type |D:

Figure 35: Creating and adding new class, CRygWnd to the project using generic CWnd as its base class.

MFC ClassWizard

Mezzage Maps Member ¥ ariables | Automation | Activel Events | Clazz Info |

Project: Clazs name: Add Clase .
myrfcZ20 | CRygwind | :
F:h smpmnfe22DARogiaind b, Fh . Ssmpmfc2 20MB g’ nd. cpp g
Object 10z Meszages:
CRygwnd CalcindawHect Edit Code

Create
DeffindowFroc
Destroyfindow
Dol atak wchange
GetScrollE arCrl
OndmbientProperty

8]

|

b ember functions:

Dezcription:

] 4 | Cancel

Figure 36: CRygWnd class integrated into the project.

The code that paints the traffic light isn't very interesting, so we'll concentrate on the functions that are common to most
custom controls. The static RegisterWndClass() member function actually registers the RYG window class and
must be called as soon as the DLL is loaded. The OnLButtonDown() handler is called when the user presses the left
mouse button inside the control window. It sends the clicked notification message to the parent window. The overridden
PostNcDestroy() function is important because it deletes the CRygWnd object when the client program destroys
the control window. The OnGetState() and OnSetState() functions are called in response to user-defined
messages sent by the client. Remember to copy the DLL to your system directory.

If you feel tedious to go step by step in completing the codes, just copy and paste the following codes into the
Rygwnd.h and RygwWnd.cpp files.

RYGWND.H
#if
1defined(AFX_RYGWND_H__1AA889D5 9788 11D0_BED2_00CO04FC2A0C2__ INCLUDED_)
#define AFX_RYGWND_H__1AA889D5_9788 11D0_BED2_00CO4FC2A0C2__INCLUDED

#if _MSC_VER > 1000
#pragma once

#endif // _NSC_VER > 1000
// RygWnd.h : header file
//

////77777777777/777777777777777777777777/7777/777777/7777/7777/77/7777/77777777
// CRygWnd window

#define RYG_SETSTATE WM_USER + O
#define RYG_GETSTATE WM_USER + 1

LRESULT CALLBACK AFX_EXPORT
RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM IParam);

class CRygWnd : public CWnd

private:
int m_nState; // O=off, 1=red, 2=yellow, 3=green
static CRect s_rect;
static CPoint s_point;
static CRect s rColor[3];
static CBrush s_bColor[4];

// Construction
public:
CRygWndQ);
public:
static BOOL RegisterWndClass(HINSTANCE hlnstance);

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CRygWnd)
protected:
virtual void PostNcDestroy();
//}}YAFX_VIRTUAL

// Implementation
public:
virtual ~CRygWnd();

// Generated message map functions
private:

void SetMapping(CDC* pDC);
void UpdateColor(CDC* pDC, int n);

protected:
/7 {{AFX_MSG(CRygWnd)
afx_msg void OnPaint();
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
//}}YARX_MSG
afx_msg LRESULT OnSetState(WPARAM wParam, LPARAM IParam);
afx_msg LRESULT OnGetState(WPARAM wParam, LPARAM IParam);
DECLARE_MESSAGE_MAP(Q)

¥

L1177 7777777777/777777/7777/7/7777/7/7777/7/77777/7/7777777/7/7/777/7/7777777
//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations

// 1immediately before the previous line.

#endif //
Tdefined(AFX_RYGWND H 1AA889D5 9788 11D0 BED2 00C04FC2A0C2__ INCLUDED)

RYGWND .CPP
// RygWnd.cpp : implementation file
//

#include "stdafx.h"
#include "mymfc22D.h"
#include "RygWnd.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_ ;
#endif

LRESULT CALLBACK AFX_EXPORT
RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM IParam)

AFX_MANAGE_STATE(AfxGetStaticModuleState());
CWnd* pWnd;

pwWnd = CWnd: :FromHandlePermanent(hWnd);

if (pWnd == NULL) {
// Assume that client created a CRygWnd window
pWnd = new CRygWnd();
pwWnd->Attach(hWnd);

}

ASSERT (pWnd->m_hWnd == hWnd);

ASSERT(pWnd == CWnd: :FromHandlePermanent(hWnd));

LRESULT IResult = AfxCallWndProc(pWnd, hWnd, message, wParam,
IParam);

return IResult;
}

/1//777777777777777777777777777777777777/7777777777777777/7777/7777/77777777
// CRygWnd

// static data members
CRect CRygWnd::s rect(-500, 1000, 500, -1000); // outer rectangle
CPoint CRygWnd::s_point(300, 300); // rounded corners
CRect CRygWnd::s_rColor[] = {CRect(-250, 800, 250, 300),
CRect(-250, 250, 250, -250),
CRect(-250, -300, 250, -800)};
CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),
RGB(OxFF, 0x00, 0x00),
RGB(OxFF, OxFF, 0x00),

RGB(0X00, OXFF, Ox00)};

BOOL CRygWnd: :RegisterWndClass(HINSTANCE hlnstance) // static member
// function
{

WNDCLASS wc;
wc. IpszClassName = "RYG'; // matches class name in client
wc.hlnstance = hlnstance;
wc. IpfnWndProc = RygWndProc;
wc.hCursor = ::LoadCursor(NULL, IDC_ARROW);
wc.hlcon = 0;
wc. IpszMenuName = NULL;
wc.hbrBackground = (HBRUSH) ::GetStockObject(LTGRAY_BRUSH);
wc.style = CS_GLOBALCLASS;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0O;
return (::RegisterClass(&wc) = 0);
}

11/1777777777777777/777777777///7///////////////////////////////////777

CRygWnd: :CRygWnd ()
{

m_nState = O;

TRACE(*"CRygWnd constructor\n™);
}

CRygWnd: : ~CRygWnd ()

TRACE(*"CRygWnd destructor\n');

BEGIN_MESSAGE_MAP(CRygWnd, CWnd)
/7 {{AFX_MSG_MAP (CRygWnd)
ON_WM_PAINTQ
ON_WM_LBUTTONDOWN(Q)
//}}YAFX_MSG_MAP
ON_MESSAGE(RYG_SETSTATE, OnSetState)
ON_MESSAGE(RYG_GETSTATE, OnGetState)
END_MESSAGE_MAPQ)
void CRygWnd: :SetMapping(CDC* pDC)

CRect clientRect;

GetClientRect(clientRect);

pDC->SetMapMode (MM_ISOTROPIC) ;

pDC->SetWindowExt (1000, 2000);
pDC->SetViewportExt(clientRect.right, -clientRect_bottom);
pDC->SetViewportOrg(clientRect.right /7 2, clientRect.bottom / 2);

}
void CRygWnd: :UpdateColor(CDC* pDC, int n)
{
if (n_nState == n + 1) {
pDC->SelectObject(&s_bColor[n+1]);
}
else {
pDC->SelectObject(&s_bColor[0]);
}
pDC->Ellipse(s_rColor[n]);
}

11/1/17777777777777777777777777777/77/7/777/7/7////////////////////////7777
// CRygWnd message handlers

void CRygWnd::OnPaint()

int i;
CPaintDC dc(this); // device context for painting
SetMapping(&dc);
dc.SelectStockObject(DKGRAY_BRUSH) ;
dc.RoundRect(s_rect, s _point);
for (i = 0; 1 < 3; i++) {

UpdateColor(&dc, 1);
¥

}
void CRygWnd: :OnLButtonDown(UINT nFlags, CPoint point)

// Notification code is HIWORD of wParam, O in this case
GetParent()->SendMessage (WM_COMMAND, GetDIgCtrliID(),
(LONG) GetSafeHwnd()); 7/ O

}
void CRygWnd: :PostNcDestroy()

TRACE("'CRygWnd: : PostNcDestroy\n™);
delete this; // CWnd::PostNcDestroy does nothing

}

LRESULT CRygWnd::OnSetState(WPARAM wParam, LPARAM IParam)

{
TRACE("'CRygWnd: :SetState, wParam = %d\n', wParam);

m_nState = (int) wParam;
Invalidate(FALSE);
return OL;

}
LRESULT CRygWnd::OnGetState(WPARAM wParam, LPARAM IParam)

TRACE("'CRygWnd: :GetState\n"");
return m_nState;

Listing 11: The CRygWnd class listing.

As usual, build the program and copy the mymfc22D.dll into the Windows system directory.

I3 FrimfcprajectimymfcZ20Debug

Mare = Size Type

and Folder Tasks
@mymchED.exn 1KE Exports Library File
2 rrymfczz20.ilk: 189 KB Inkermediate file
mymfc220.lib 2KB C)C4++ Inline File

er Places

Figure 37: The generated DLL file of MYMFC22D program.

i mymfczz0. dll 109 KE Application Extension

Revising the Updated MYMFC22B Example: Adding Code to Test mymfc22D.dll1

The MYMFC22B program already links to the MYMFC22A and MYMFC22C DLLs. Now you'll revise the project to

implicitly link to the MYMFC22D custom control.

Here are the steps for updating the MYMFC22B example:

Add a new dialog resource and class to \mfcproject\mymfc22B.Use the dialog editor to create the 1DD_MYMFC22D

template with a custom control with child window ID IDC_RYG, as shown here.

mymfc2ZB resources *
[:l Accelerator
Ela Dalog

- IDD_&BOUTBOX

- IDD_MrMFC220
- IDD_M¥MFC220
-2 leon

A3 Menu

(23 String Table
(23 Toolbar
-2 Wersion

|L....|....|....|....|...U

Class... ||E| Reso... |] File¥i... |

Click to change

0k,

Cancel

Custom Control Properties

& B Gereral |

v isible [T Group
[Dizabled ¥ Tabstop
[~ HelplD

ID: [IDC_RYG v| Captior: |

Clazs: IHYG

Shyle: IEI:-:EEIEI'I 0000

ExShyle: IEI:-:EI

Figure 38: Adding a new dialog resource and modifying its properties.

Specify RYG as the window class name of the custom control, as shown.

Then use ClassWizard to generate a class CTest22dDialog, derived from CDialog.

New Class

— Clasz information

Hame:

File name:

Baze clazs:

Dialog IO

|CTest22dDialog

|T ezt22dDialog. cpp

LChange. .. |

| Cialog

[~
|IDD_MyMFC22D -

— Automation
i Mone

" Automation

£ Createable by type ID: |mpmfc22B. Test22d0ialog

Cancel

s

Figure 39: Creating and adding new class CTest22dDialog, derived from CDialog.

Edit the Test22dDialog. h file. Add the following private data member (added manually instead of using
ClassView):

enum { OFF, RED, YELLOW, GREEN };

Fnum { CFF. RED, YELLOW, GREEEH } m_nState;

R T T R R T
S0 CTest22dDialog dialog

class CTestZddDialog . public Chialog
{

//_@qnstructiun
Listing 12.

and m_nState variable in Test22dDialog.h,

Add Member Variable

“ariable Type:

Fm
Cance
W ariable Name:

|m_n5tate|

Accezs
{* Public " Proteched " Private

Figure 40: Adding member variable through the ClassView.

class CTestZ2dDialog ;. public Clialog
{

¢ Construction
public:
int m_nState:;
CTest22dDialog{CWnd#* pFarent = HULL):

Listing 13.
Also add the following import and user-defined message 1Ds:

extern "C" __ declspec(dllimport) void Mymfc22DEntry(); // dummy function
#define RYG_SETSTATE WM_USER + O
#define RYG_GETSTATE WM_USER + 1

enun { OFF, RED, YELLOW, GREEH } m_nState:

extern "C" _ _declspec{dllimport) wvoid HymfcZZDEntrv(): - dummny function
#define EYG SETSTATE WM _USERE + O
I#def ine R¥G GETSTATE WH_USEE + 1

S
< CTest22dlialog dialog

Listing 14.
Edit the constructor in Test22dDialog.cpp to initialize the state data member. Add the following code:

CTest22dDialog: :CTest22dDialog(CWnd* pParent /*=NULL*/)
: CDialog(CTest22dDialog::1DD, pParent)

{
//{{AFX_DATA_INIT(CTest22dDialog)
// NOTE: the ClassWizard will add member initialization here
//Y}AFX_DATA_INIT
m_nState = OFF;
Mymfc22DEntry(); // Make sure DLL gets loaded
b

A CTest22dlialog dialog

CTest22dlialog: (CTest22dDialog(Clnd* pParent ~#=HILL#*.)
CDialog(CTest22dDialog: : IDD, pParent)

{
AL TAFE_DATA INIT(CTestZ22dDialog)
S HOTE: the ClassWizard will add member initialization here
SO TAFE DATA INIT
n_nState = OFF:
MHynfc2Z2DEntrv(); - Make =ure DLL gets loaded
h

Listing 15.

Map the control's clicked notification message. You can't use ClassWizard here, so you must add the message map entry

and handler function in the Test22dDialog.cpp file, as shown here:

ON_CONTROL(O, IDC_RYG, OnClickedRyg) // Notification code is O

BEEGIN_MESSAGE_HMAF(CTe=tZ2dDialog, CDialog)
S LAFE MSG MAP (CTest22dDialog)
A HOTE: the ClassWizard will add message map macros here
S AR MSG MAP
OH _COHNTROL{O, IDC_RYS, OnCliclkedREyg) ~ Hotification code 1= 0O
END_MESSAGE_MAFR()

A LSS S S
S CTest22dDialog message handlers

Listing 16.

void CTest22dDialog: :OnClickedRyg()
{
switch(m_nState) {
case OFF:
m_nState = RED;
break;
case RED:
m_nState = YELLOW;
break;
case YELLOW:
m_nState
break;
case GREEN:
m_nState = OFF;
break;

GREEN;

}
GetDIgltem(IDC_RYG)->SendMessage(RYG_SETSTATE, m_nState);
return;

< CTest22dlialog message handlers

volid CTe=stZZdDialog: OnClickedRygi)
{
svitchimn_nState] {
ca=s OFF:
mn_nState = ERED:
breal: ;
caze RED:
mn_nState
breal ;
caze TELLOW:
n_nState
brealk ;
caze GREEN:
n_nState
breal ;

YELLOW ;

GREEN ;

OFF ;

1
GetDlglten(IDZ _EYG)—:SendMesszage(RYG _SETSTATE. m_nState):
return:

Listing 17.

When the dialog gets the clicked notification message, it sends the RYG_SETSTATE message back to the control in
order to change the color. Don't forget to add this prototype in the Test22dDialog.h file:

afx_msg void OnClickedRyg();

< Implementation
protected:

< Generated mess=age map funce

S AR _MSG{CTe=st22dDialag)
<« HNOTE: the Classlizard »

<o RAFE HSG

DECLARE_HMESSAGE HAP()

af®_m=g woid OnClickedREwg():

Listing 18.

Integrate the CTest22dDialog class into the MYMFC22B application. You'll need to add a second item on the Test
menu, a Mymfc22D DLL option with ID 1D_TEST_MYMFC22DDLL.

2l File Edit Test Wew Help
{4 mymfc22B resources | | | M reFenBl DL
+--[_7] Accelerator :
¥ D Dialog
+--[_7 leon F" -!Eﬂ
-4 Menu T |
E“DH MMNFH.":".MEl L ? eneral | Extended Stlez |
+--[_7] String Table
3-8 Toolbar ID: |ID_TEST_MYMFC22DDL w| Caption: |Mymfc22D DLL
+ ([Version [Separater [Popup [lnactive Break: |Mone vl
[Checked | Grayed [Help

Figure 41: Adding a second item on the Test menu, a Mymfc22D DLL option with ID ID_TEST_MYMFC22DDLL.

Use ClassWizard to map this option to a member function in the CMymFfc22BView class, and then code the handler in
Mymfc22BView.cpp as follows:

MFC ClassWizard
Meszage Maps Member Yanables I Avtomation | Activer Events | Clazz Info l
Project: Clazz hame: fdd Class.. = l
mymic228 | [CMymic22Bview | T
hiar...
F:i . Ampmfc2 2B S mpmfc22BView b, F:h vmpmfc2 2BV iew. cpp m
Object |Ds; Meszages: Delete Function

[.>

ID_FILE_GAWE_AS :
ID_NEXT_PANE UPDATE_COMMAND_UI EdtCode |
ID_PREV_PANE

ID_TEST MYMFCZ2CDLL
D TEST MYMFCZZDDLL

Add Member Function

5

ID_WIEW _STATUS_BaR = ;

ID_WIEW _TOOLBAR W Member function narne: | K. I
tember functions: WYy T estbdynfc22dd|

Cancel |

Y OnBeaginPrinting

58 OnDian Me.ssage: COMMAMD

W OnEndPrinting Object 1D: 1ID_TEST_MYMFC22DDLL

YW OnPreparePrinting

W OnTesthvnfc22edl O 1D TEST MyMFC22CDOLL:COMMAMND e
Dezcrnption; Handle a command [from menu, accel, crmd button]

k. l Cancel

Figure 42: Mapping ID_TEST_MYMFC22DDLL to a member function in the CMymFc22BView class.
void CMymfc22BView: :OnTestMymfc22DdI1)
CTest22dDialog dlg;

dlg.DoModal () ;
}

vold CHymfcZZ2BView: :OnTestMymfczz2ddll()
{
S TODD: Add wour command handler code here
CTest22dDialog dlg:
dlg. DoModali):
Listing 19.
Of course, you'll have to add the following #include line to Mymfc22BView.cpp:

#include "Test22dDialog.h"

s

#include "stdaiz h"
tinclude "mymicZ2ZB . R"

#include "mymfc?Z2BDoc h'
tinclude "mymifcZ2BView L'

tinclude "TestZZcDialog b
tinclude "Test?22dDialog. h'|

Listing 20.

Add the MYMFC22D import library to the linker's input library list. Choose Settings from Visual C++'s Project menu,
and then add \mfcproject\imymfc22D\Debug\mymfc22D.lib to the Object/Library modules control on the Link page.
With this addition, the program should implicitly link to all three DLLs.

Project Settings E|E|
Settings For: |,.-:-.,|| Configurations j General | Debug | C/C++ Link | Rezourc EE
=NE mymfc22E ~
- ! Cat :
-3 Source Files Aedor Reset
E b ainFrm.cpp .
Clutput fil 3
j mymfc22B.cpp S
] myrfc22B e |
] mymfc22BDoe.cpp Object/library modules;
% ;“ﬂﬁ:;'ew B lymfc22C lib F\mfcproject\mymic220D ebughmymfc 220§
¥
4] Test22eDialog.cpp [+ Gererate debuginfo | |gnore all default libranies
E Test22dDialog.cpp
- =3 Header Files [+ Link incrementally [Generate mapfile
E] MainFim.h [Enable profiling
=] mymfcZZB.k
=] mymfcZZ2BDoc.h Common Ophions;
E] mymfcZ2BView.h F:Amfcprojecthmymic22ahDebughmpmfc22, ib s
j Resource.h F-hmfoproject smymfc22C5Debugimymic22C lib
=] Stddfeh " F:smfcprojectmymfc220 S0 ebugsmyrnfc 220 lib o
] 4 | Cancel

Figure 43: Adding the mym¥c22D . Lib (import) library to the linker's input library list, we have three DLL libraries
here.

Build and test the updated MYMFC22B application. Choose Mymfc22D DLL from the Test menu. Try clicking the

traffic light with the left mouse button. The traffic-light color should change. The result of clicking the traffic light
several times is shown here.

>+ Untitled - mymfc22B
File Edit WIS view Help

(N = | Mymfc22CDLL ?
Myry DLL

Figure 44: MYMFC22B program output with three DLLs linking.

Dialog [‘5_<|

Cancel

Click to change

Figure 45: MYMFC22B program output using the third type of DLL.

Further reading and digging:

L=

PN

Win32 dynamic link library, DLL.

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

http://www.tenouk.com/ModuleBB.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

