Module 13: Printing and Print Preview

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Printing and Print Preview

Windows Printing

Standard Printer Dialogs

Interactive Print Page Selection

Display Pages vs. Printed Pages

Print Preview

Programming for the Printer

The Printer Device Context and the CView: :OnDraw Function
The CView: :OnPrint Function

Preparing the Device Context: The CView: :OnPrepareDC Function
The Start and End of a Print Job

The MYMFC19 Example: A WYSIWYG Print Program
Reading the Printer Rectangle

Template Collection Classes Revisited: The CArray Class
The MYMFC20 Example: A Multipage Print Program

Printing and Print Preview

If you're depending on the Win32 API alone, printing is one of the tougher programming jobs you'll have. If you don't
believe me, just skim through the 60-page module "Using the Printer" in Charles Petzold's Programming Windows 95
(Microsoft Press, 1996). Other books about Microsoft Windows ignore the subject completely. The Microsoft
Foundation Class (MFC) Library version 6.0 application framework goes a long way toward making printing easy. As a
bonus, it adds a print preview capability that behaves like the print preview functions in commercial Windows-based
programs such as Microsoft Word and Microsoft Excel.

In this module, you'll learn how to use the MFC library Print and Print Preview features. In the process, you'll get a
feeling for what's involved in Windows printing and how it's different from printing in MS-DOS. First you'll do some
What You See Is What You Get - WYSIWYG printing, in which the printer output matches the screen display. This
option requires careful use of mapping modes. Later you'll print a paginated data processing-style report that doesn't
reflect the screen display at all. In that example, you will use a template array to structure your document so that the
program can print any specified range of pages on demand.

Windows Printing

In the old days, programmers had to worry about configuring their applications for dozens of printers. Now Windows
makes life easy because it provides all of the printer drivers you'll ever need. It also supplies a consistent user interface
for printing.

Standard Printer Dialogs

When the user chooses Print from the File menu of a Windows-based application, the standard Print dialog appears, as
shown in Figure 2.

<+ mymfc19 - [Mymfc11]

Edit
[Mew Chrl+1

= Qpen... Chrl+0

Close

Save Chrl+5

Save As..,

Wiew ‘Window

Print. .. Ckrl+P
Prink Presy

01

Prinkt Setup...

Exit

Figure 1: Standard Print, Print Preview and Print Setup sub menus.

Prinker
Marne: . Micrasaft Office Dacument Image Wriker
Stakus: IE!|E _ _ _ Find Printer ..,
Type: Microsaoft Office Document Image ‘Writer Driver
Where: Microsoft Document Imaging Wriker Port: |:| Print: ka File
Comment: [] manual duplex
Page range _opies
= all Mumber of copies: |1 -
{:} Currenk page
() Pages: | | Collate
Enter page numbers and/or page ranges
separated by commas. For example, 1,3,5-12
Print what: |Du:u:ument w | 2B

) Pages per sheet: 1 W
Prink: |.'5.II pages in range w | 985 per = | i |

Scale ko paper size: ||'-.1.;. Scaling W |
Cptions. .. [(04] [Zancel]

Figure 2: The standard Print dialog.

If the user chooses Print Setup from the File menu, the standard Print Setup dialog appears, as shown in Figure 3.

Print Setup

Printer

Mame: Microzoft Office Document Image ‘Wiker Properties. .. |

Status: Feady

Type: kicrozoft Office Document Image Ywriter Driver
“Where: Microzoft Document lmaging ‘winter Port;

Comment;

Paper Orientatian

Cize: | Letter j * Partrait

Source: | Default tray ﬂ f_“
Metwork...] | Cancel

Figure 3: The standard Print Setup dialog.

During the printing process, the application displays a standard printer status dialog, as shown in Figure 4.

Frinting
bymfc11
an the
Microzoft Office Document Image Wwiiter
on Microzoft Document Imaging ‘writer

Cancel

Figure 4: The standard printer status dialog.

Interactive Print Page Selection

If you've worked in the data processing field, you might be used to batch-mode printing. A program reads a record and
then formats and prints selected information as a line in a report. Let's say, for example, that every time 50 lines have
been printed the program ejects the paper and prints a new page heading. The programmer assumes that the whole report
will be printed at one time and makes no allowance for interactively printing selected pages.

As Figure 19-1 shows, page numbers are important in Windows-based printing. A program must respond to a user's
page selection by calculating which information to print and then printing the selected pages. If you're aware of this page
selection requirement, you can design your application's data structures accordingly.

Remember the student list from Module 11? What if the list included 1000 students' names and the user wanted to print
page 5 of a student report? If you assumed that each student record required one print line and that a page held 50 lines,
page 5 would include records 201 through 250. With an MFC list collection class, you're stuck iterating through the first
200 list elements before you can start printing. Maybe the list isn't the ideal data structure. How about an array collection
instead? With the CObArray class (or with one of the template array classes), you can directly access the 201st student
record.

Not every application has elements that map to a fixed number of print lines. Suppose the student record contained a
multi-line text biography field. Because you wouldn't know how many biography lines each record included, you'd have

http://www.tenouk.com/visualcplusmfc/visualcplusmfc11sdi.html

to search through the whole file to determine the page breaks. If your program could remember those page breaks as it
calculated them, its efficiency would increase.

Display Pages vs. Printed Pages

In many cases, you'll want a printed page to correspond to a display page. As you learned in Module 4, you cannot
guarantee that objects will be printed exactly as they are displayed on screen. With TrueType fonts, however, your
printed page will be pretty close. If you're working with full-size paper and you want the corresponding display to be
readable, you'll certainly want a display window that is larger than the screen. Thus, a scrolling view such as the one that
the CScrol 1View class provides is ideal for your printable views.

Sometimes, however, you might not care about display pages. Perhaps your view holds its data in a list box, or maybe
you don't need to display the data at all. In these cases, your program can contain stand-alone print logic that simply
extracts data from the document and sends it to the printer. Of course, the program must properly respond to a user's
page-range request. If you query the printer to determine the paper size and orientation (portrait or landscape), you can
adjust the pagination accordingly.

Print Preview

The MFC library Print Preview feature shows you on screen the exact page and line breaks you'll get when you print
your document on a selected printer. The fonts might look a little funny, especially in the smaller sizes, but that's not a
problem. Look now at the print preview window that appears in "The MYMFC19 Example - A WYSIWYG Print
Program".

Print Preview is an MFC library feature, not a Windows feature. Don't underestimate how much effort went into
programming Print Preview. The Print Preview program examines each character individually, determining its position
based on the printer's device context. After selecting an approximating font, the program displays the character in the
print preview window at the proper location.

Programming for the Printer

The application framework does most of the work for printing and print preview. To use the printer effectively, you
must understand the sequence of function calls and know which functions to override.

The Printer Device Context and the CView: :OnDraw Function

When your program prints on the printer, it uses a device context object of class CDC. Don't worry about where the
object comes from; the application framework constructs it and passes it as a parameter to your view's OnDraw()
function. If your application uses the printer to duplicate the display, the OnDraw() function can do double duty. If
you're displaying, the OnPaint() function calls OnDraw() and the device context is the display context. If you're
printing, OnDraw() is called by another CView virtual function, OnPrint(), with a printer device context as a
parameter. The OnPrint() function is called once to print an entire page. In print preview mode, the OnDraw()
parameter is actually a pointer to a CPreviewDC object. Your OnPrint() and OnDraw() functions work the same
regardless of whether you're printing or previewing.

The CView: :OnPrint Function

You've seen that the base class OnPrint() function calls OnDraw() and that OnDraw() can use both a display
device context and a printer device context. The mapping mode should be set before OnPrint() is called. You can
override ONPrint() to print items that you don't need on the display, such as a title page, headers, and footers. The
OnPrint() parameters are as follows:

. A pointer to the device context.
. A pointer to a print information object (CPrintlInfo) that includes page dimensions, the current page
number, and the maximum page number.

In your overridden OnPrint() function, you can elect not to call OnDraw() at all to support print logic that is totally
independent of the display logic. The application framework calls the OnPrint() function once for each page to be

http://www.tenouk.com/visualcplusmfc/visualcplusmfc4.html

printed, with the current page number in the CPrintInfo structure. You'll soon find out how the application
framework determines the page number.

Preparing the Device Context: The CView: :OnPrepareDC Function

If you need a display mapping mode other than MM_TEXT (and you often do), that mode is usually set in the view's
OnPrepareDC() function. You override this function yourself if your view class is derived directly from CView, but
it's already overridden if your view is derived from CScrol1View. The OnPrepareDC() function is called in
OnPaint() immediately before the call to OnDraw(). If you're printing, the same OnPrepareDC() function is
called, this time immediately before the application framework calls ONPrint(). Thus, the mapping mode is set
before both the painting of the view and the printing of a page.

The second parameter of the OnPrepareDC() function is a pointer to a CPrintlnfo structure. This pointer is valid
only if OnPrepareDC() is being called prior to printing. You can test for this condition by calling the CDC member
function IsPrinting(). The IsPrinting() function is particularly handy if you're using OnPrepareDC() to
set different mapping modes for the display and the printer. If you do not know in advance how many pages your print
job requires, your overridden OnPrepareDC() function can detect the end of the document and reset the
m_bContinuePrinting flag in the CPrintInfo structure. When this flag is FALSE, the OnPrint() function
won't be called again and control will pass to the end of the print loop.

The Start and End of a Print Job

When a print job starts, the application framework calls two CView functions, OnPreparePrinting() and
OnBeginPrinting(). (AppWizard generates the OnPreparePrinting(), OnBeginPrinting(), and
OnEndPrinting() functions for you if you select the Printing And Print Preview option.) The first function,
OnPreparePrinting(), is called before the display of the Print dialog. If you know the first and last page
numbers, call CPrintInfo: :SetMinPage and CPrintInfo: :SetMaxPage in OnPreparePrinting().
The page numbers you pass to these functions will appear in the Print dialog for the user to override.

The second function, OnBeginPrinting(), is called after the Print dialog exits. Override this function to create
Graphics Device Interface (GDI) objects, such as fonts, that you need for the entire print job. A program runs faster if
you create a font once instead of re-creating it for each page. The CView function OnEndPrinting() is called at the
end of the print job, after the last page has been printed. Override this function to get rid of GDI objects created in
OnBeginPrinting(). The following table summarizes the important overridable CView print loop functions.

Function Common Override Behavior
OnPreparePrinting() | Sets first and last page numbers.
OnBeginPrinting() Creates GDI objects.

OnPrepareDC() (for Sets mapping mode and optionally detects end of
each page) print job.

. Does print-specific output and then calls
OnPrint(OnDraw() (for each page)
OnEndPrinting() Deletes GDI objects.

Table 1

The MYMFC19 Example: A WYSIWYG Print Program

This example displays and prints a single page of text stored in a document. The printed image should match the
displayed image. The MM_TWIPS mapping mode is used for both printer and display. First we'll use a fixed drawing
rectangle; later we'll base the drawing rectangle on the printable area rectangle supplied by the printer driver.

Here are the steps for building the example:

Run AppWizard to generate \mfcprojectimymfc19 MDI project. Accept the default options, and for step 6, rename the
document and view classes as shown in Table 2, select the CScrol IView as the view base class and files as shown
here.

Header File Source Code File | Class
PoemDoc.h PoemDoc.cpp CPoemDoc
StringView.h StringView.cpp CStringView

Table 2: New name for the view and document class files.

MFC AppWizard - Step 6 of &

Appifizard creates the following classes for you;
Chiymfc1 J4pp
Ch ainFrarme
CChildFrarne
CPoemDoc
Clazz name: Header file:
|E5tring"-.-"iew |String"v"iew.h
Base class: Implementation file:
|ES crolfyiew j |String‘u"iew.|:pp
< Back | | Einizh | Cancel

Figure 5: AppWizard step 6 of 6, renaming the files and selecting CScrol IView as a view base class.

MFC AppWizard - 5tep 6 of &

Appwiizard creates the following classes for pou;

CStringtiew
Chkdymfcl 34pp
ChainFrame
CChildFrarme

‘CPoemDoc

Clazz name: Header file:
|I:F'|:|emD oc |F'|:nemD oc.h
Baze class: Implementation file:

| |F'|:|emD ac.cpp

< Back | | Einizh | Cancel |

Figure 6: Renaming the document files and class.

New Project Information E|

Appiafizard will create a new skeleton project with the following specifications:

Application twpe af mymfclS:
Fultiple Document Interface Application targeting:
Wwind2

Clazzes to be created:
Application: CMymfcl34pp in mymfc19h and mymic3.cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
MDIChildFrame: CChildFrame in ChildFrm.h and ChildFrm.cpp
Dacument: CPoemDoc in Poemboc.h and PoemDoc.cpp
Scrolliew: CStringtfiew in Stringtfiew. b and StingYiew.cpp

Features:
+ [nitial toolbar in main frame
+ |nitial ztatus bar in main frame
+ Printing and Frint Preview suppart in view
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Active Controls support enabled
+ Localizable text in:
Englizh [United States]

Project Directany:
F:\MFCPROJECTACREATEMEW Smymfc19

Cancel

Figure 7: MYMFC19 project summary.

Note that this is an MDI application. Add a CStringArray data member to the CPoemDoc class. Edit the
PoemDoc.h header file or use ClassView.

public:
CStringArray m_stringArray;

Bl CFoslioc] L

+ ™% CSti Go to Definition
+- (] Glab. &dd Member Funckion, ..

&dd Member Yariable. ..
&dd virtual Funckion. .
Add Windows Message Handler ...

E References. .,
i‘. Cerived Classes. ..
.-F Base Classes, ..
Add ko Gallery
5 Mew Folder. .,

Group by Access

v Docking Migw
Hide

Properties

Figure 8: Adding member variable context menu.

Add Member Variable

Wanable Tope:
|I:String.i‘-.rra_l,l
Cancel
W ariable Name:
|m_string.f-‘n.rra_l,l
Access
{* Public " Proteched " Private

Figure 9: Adding a CStringArray data member to the CPoemDoc class.

S Implementation

public:
CStringdrray m_stringirray:
virtual ~“CPoemDoc():

#ifdef _DEBUG

Listing 1.

The document data is stored in a string array. The MFC library CStringArray class holds an array of CString
objects, accessible by a zero-based subscript. You need not set a maximum dimension in the declaration because the
array is dynamic.

Add a CRect data member to the CStringView class. Edit the StringView.h header file or use ClassView:

private:
CRect m_rectPrint;

T W 11 orotected:

+ (] Global: Ga to Definition
&dd Member Funckion, .

&dd Member Yariable. ..
#dd virtual Eunckion, .
Add Windaws Message Handler. ..

E References. .,
i-i Detived Classes, ..
.-F Base Classes, .,

Add ko Gallery
[Wew Faolder. .,

Group by Access

v Docking Yiew
Hide

Propetties

Figure 10: Adding another member variable.

Add Member Variable

“ariable Type:
|I:Fi et

Cancel
W ariable Name: 4

|m_reu:tF'rint

Accezs
" Public " Proteched

Figure 11: Adding a CRect data member to the CStringView class.

R N p L B

DECLARE_MESSAGE MAP()
rivate:
CEect m_rectPrint:
T

Listing 2.

Edit three CPoemDoc member functions in the file PoemDoc.cpp. AppWizard generated skeleton
OnNewDocument() and Serialize() functions, but we'll have to use ClassWizard to override the
DeleteContents() function. We'll initialize the poem document in the overridden OnNewDocument() function.
DeleteContents() is called in CDocument: :OnNewDocument, so by calling the base class function first we're
sure the poem won't be deleted. The text, by the way, is an excerpt from the twentieth poem in Lawrence Ferlinghetti's
book A Coney Island of the Mind. Type 10 lines of your choice. You can substitute another poem or maybe your
favorite Win32 function description. Add the following code:

BOOL CPoemDoc: :OnNewDocument()

if (1CDocument: :OnNewDocument())
return FALSE;

m_stringArray.SetSize(10);

m_stringArray[0] "The pennycandystore beyond the EI™;
m_stringArray[1] "is where 1 First";

m_stringArray[2] " fell in love";
m_stringArray[3] " with unreality’;
m_stringArray[4] "Jellybeans glowed in the semi-gloom™;
m_stringArray[5] "of that september afternoon™;
m_stringArray[6] "A cat upon the counter moved among"';
m_stringArray[7] " the licorice sticks";
m_stringArray[8] " and tootsie rolls";
m_stringArray[9] " and Oh Boy Gum™;

return TRUE;
ks

BOOL CPoemDoc: : OnHewDocument ()

if (1 CDocument : OnNewDocument ()
return FALSE:

n_=tringhrray. SetSize(10);

n_stringhrray[0] = "The penn?candystnre bevond the E1":
n_=s=tringhrrav[1l] "iz where I first"
n_=s=tringhrrav[?] "
n_=tringhrrav[3]
n_=tringhrrav[4]
n_stringhrrav[§]
n_=tringhrrav[6]
n_=tringdrrav[?]
n_=tringhrrav[8]
n_=s=tringhrrav[9]

fell in lowve"

with unreality"
"Jellvbeans glowved in the =emi-gloom”
"of that =zeptember afternoon”:
"A cat upon the counter moved amnong'

the licorice sticlks"
and toot=sie rolls":
" and Oh Boy Gum":

return TRUE:

Listing 3.

The CStringArray class supports dynamic arrays, but here we're using the m_stringArray object as though it
were a static array of 10 elements. The application framework calls the document's virtual De leteContents()
function when it closes the document; this action deletes the strings in the array. A CStringArray contains actual
objects, and a CObArray contains pointers to objects. This distinction is important when it's time to delete the array
elements. Here the RemoveAl I () function actually deletes the string objects:

void CPoemDoc: :DeleteContents()

// called before OnNewDocument() and when document is closed
m_stringArray.RemoveAll();

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfc1d j | CPoembioc j -

F:h Amymfel BPoemboc. b, F:h vmwmfc] 9hPoemDoc.cpp g

Object |0 Mezzages: Delete Function

CanClozeFrame Y
ID_APP_ABOUT DeleteContents E

[

ID_APP_EXIT — GetFirstismPaozitian
ID_EDIT_COPRY Geth extiewm B
ID_ECIT_CUT OnChangedyfiewlist
ID_EDIT_PASTE OnClozeDacurent
ID_EDIT_UMDO b OnCmdtd=zg e
kember functians:
DeleteContents
YW OnkewDocument
YW Serialize
Description: Deletes the document's data without destroying the document

0k, Cancel

Figure 12: Adding the RemoveAl I () function to the document class.

wold CPoemnloc: DeleteContents()
S TODD: Add wour specialized code here and-sor call the base class

< called before OnHewlDocument() and when document 1= closed
n_stringhrray. Femowvedll():

Listing 4.

Serialization isn't important in this example, but the following function illustrates how easy it is to serialize strings. The
application framework calls the De leteContents() function before loading from the archive, so you don't have to
worry about emptying the array. Add the following boldface code:

void CPoemDoc: :Serialize(CArchive& ar)

{
m_stringArray.Serialize(ar);
}
vold CPoemlDoc: Serialize(CArchived ar)
{
n_=tringirray. Serializelar)]
h

Listing 5.

Edit the OnInitialUpdate() function in StringView.cpp. You must override the function for all classes derived

from CScrol IView. This function's job is to set the logical window size and the mapping mode. Add the following
code:

void CStringView::OnlnitialUpdate()

CScrollView: :OnlInitialUpdate();

CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());

CSize sizePage(sizeTotal.cx /7 2, sizeTotal.cy /7 2); // page scroll
CSize sizeLine(sizeTotal.cx / 100, sizeTotal.cy /7 100); // line scroll
SetScrolI1Sizes(MM_TWIPS, sizeTotal, sizePage, sizelLine);

}

woid CStringView: OnlnitiallUpdate()

1
S TODD: Add wour specialized code here and<or call the base class
CScrollView: Onlnitiallpdatel):
CSize zizeTotal (m_rectPrint . Width{), -m_rectPrint Height{)):
CSize =zizePagei(=izeTotal cx ~ 2, =izeTotal . cvw »~ 2): #4 page =croll
CSize =izeline{sizeTotal .cx ~ 100, kizeTotal .oy ~ 100%; ~~ line =s=croll
SetScrollSizes(MM_TWIPS, =sizeTotal, =izePage, =izeline):

b

Listing 6.

Edit the OnDraw() function in StringView.cpp. The OnDraw() function of class CStringView draws on both the
display and the printer. In addition to displaying the poem text lines in 10-point roman font, it draws a border around the
printable area and a crude ruler along the top and left margins. OnDraw() assumes the MM_TWIPS mapping mode, in

which 1 inch = 1440 units. Add the boldface code shown below.

void CStringView: :OnDraw(CDC* pDC)

{
int i, J, nHeight;
CString str;
CFont font;

TEXTMETRIC tm;

CPoemDoc* pDoc = GetDocument();

// Draw a border — slightly smaller to avoid truncation
pDC->Rectangle(m_rectPrint + CRect(0, 0, -20, 20));

// Draw horizontal and vertical rulers

J = m_rectPrint_Width() / 1440;

for (i = 0; 1 <= j; i++)

str.Format("'%02d", i);
pDC->TextOut(i * 1440, 0, str);

= —-(m_rectPrint.Height() 7/ 1440);
or (i =0; i <= j; i++)

o

str_Format("'%02d", i);
pDC->TextOut(0, -i * 1440, str);

// Print the poem 0.5 inch down and over;

// use 10-point roman font

font.CreateFont(-200, 0, 0, 0, 400, FALSE, FALSE, 0O, ANSI_CHARSET,
OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY, DEFAULT_PITCH | FF_ROMAN,
"Times New Roman');

CFont* pOldFont = (CFont*) pDC->SelectObject(&font);

pDC->GetTextMetrics(&tm);

nHeight = tm.tmHeight + tm.tmExternallLeading;

TRACE(*"font height = %d, internal leading = %d\n", nHeight,

tm.tminternallLeading);
J = pbDoc->m_stringArray.GetSize();
for (i =0; 1 < j; i++)

pDC->TextOut(720, -i * nHeight - 720, pDoc->m_stringArray[i]);

pDC->SelectObject(pOldFont);

TRACE(*'LOGPIXELSX = %d, LOGPIXELSY = %d\n', pDC->GetDeviceCaps(LOGPIXELSX),
pDC->GetDeviceCaps(LOGPIXELSY));

TRACE(*'HORZSIZE = %d, VERTSIZE = %d\n", pDC->GetDeviceCaps(HORZSIZE),
pDC->GetDeviceCaps(VERTSIZE));

b
wold CStringView: OnDraw(CDC*® plC)
{
S TODD: add draw code for native data here
int i. 3. nHeight:
CString =tr:
CFont font ;

TEXTHETRIC tm:

CPoemDoc#*® ploc = GetDocument():

¢ Draw a border - =lightly =maller to awoid truncation
pDC—:Rectangle{mn_rectPrint + CRect{l, 0, =20, 20%);

< Draw horizontal and wvertical rulers
1 = m_rectPrint Width{) .~ 1440;

for (i = 0; 1 <= j: 1i++)

1
str. Format{"=02d", 1);
pDC—>TextCut (1 = 1440, 0, =tr);
b
j = —im_rectPrint Height() ~ 1440):
frr 4 o= N 3 = 4 3440

Listing 7.

Edit the OnPreparePrinting() function in StringView.cpp. This function sets the maximum number of pages in
the print job. This example has only one page. It's absolutely necessary to call the base class
DoPreparePrinting() function in your overridden OnPreparePrinting() function. Add the following code:

BOOL CStringView: :0OnPreparePrinting(CPrintinfo* plnfo)

pInfo->SetMaxPage(1);
return DoPreparePrinting(pInfo);

}

BOOL CStringView: OnPreparePrinting(CPrintInfo®* pInfo)

rInfo-:SetlaxPageil);
return DoFreparePrinting(pInfaol;

Listing 8.

Edit the constructor in StringView.cpp. The initial value of the print rectangle should be 8-by-15 inches, expressed in
twips (1 inch = 1440 twips). Add the following boldface code:

CStringView: :CStringView() : m_rectPrint(0, 0, 11520, -15120)
{
}

CStringView: (CStringView() : m_rectPrint{0, 0, 11520, -151:20)
{

¥

S TODD: add construction code here

Listing 9.

Build and test the application. If you run the MYMFC19 application under Microsoft Windows NT with the lowest
screen resolution, your MDI child window will look like the one shown below. The text will be larger under higher
resolutions and under Windows 95 and Windows 98.

~ mymfc19 - Mymfc11

File Edit Wiew Window Help

O = =

B Mymifc11 Ml=1E3
1 4 -

The pennycandystore beyond the E1
1s where I first
fell in lowve
with unreality
Jellybeans glowed in the senu-gloom
of that september afterncon
A catupon the counter moved among
the heomce sticks
and tootsie rolls
and Oh Boy Gum

Figure 13: MYMFC19 program output.

The window text is too small, isn't it? Go ahead and choose Print Preview from the File menu, and then click twice
with the magnifying glass to enlarge the image. The print preview output is illustrated here.

++ mymfc19 - Mymfc11

The pennyreandystore beyond the E1
iz where [first =
fell in love
01 with unteality
Tellybeans glowed in the semi-gloom
of that september afternoon
& cat upon the counter moved among
the licorice sticks
and tootsie rolls
02 anid Oh Boy Gham

.
[
|

Figure 14: MYMFC19 program output when activating the Print Preview menu.

Remember "logical twips" from Module 4? We're going to use logical twips now to enlarge type on the display while
keeping the printed text the same size. This requires some extra work because the CScrol IView class wasn't designed
for non-standard mapping modes. You will be changing the view's base class from CScrol 1View to

CLogScrol IView, which is a class that I created by copying and modifying the MFC code in ViewScrl.cpp. The files
LogScrollView.h and LogScrollView.cpp links are given at the end of this Module.

Insert the CScrol IView class into the project. Copy the files LogScrollView.h and LogScrollView.cpp from the
given links to the project directory mfcproject\mymfc19 if you have not done so already. Choose Add To Project from
the Project menu, and then choose Files from the submenu. Select the two new files and click OK to insert them into
the project.

Project Buld Tools wWindow Help

Set Active Project ’ |E§y, |CFrameWnd
fdd To Project k

Source Conkrol 2

Dependencies. ..
Setkings. .. AlE+F7
Export Makefile, ..

@ Components and Controls. ..

Insert Project inko Workspace. .. |

Figure 15: Adding the already available files into the project.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc4.html

Insert Files into Project

Look, jn; ||ﬁ mymfc1d j ﬁi 'v
|- Debug @ MainFrm.cpp @ Skdafx.cpp

IS)res [h] MainFrm.h [h] stdafx.h

@ ChildFrm.cpp @ rvmfcld, cpp

@ ChildFrm.h @ rymfc19.h

@CString'-.-‘iew.cpp m';.-'mFu:l'.:J.rc
@ PoemDac.cpp
@ Poemboc, b
@ Resource.h

File nare; |"L|:|g|5|:ru:ulf'-.-’iew.n:pp" "LogScrolfiew k"
Files of type: |I:++ Files [.cooppecwss iz hithzin) j Cancel

Inzert inka: | mymfc1d J

Figure 16: Selecting files to be included in the project.
Edit the StringView.h header file. Add the following line at the top of the file:
#include "LogScrollView._h"

P P S
finclude "LogScrollView h'

#if ldefined(AFX CSTRINGVIEW_
#define AFE CSTRINGVIEW_H_C3

Listing 10.
Then change the line:
class CStringView : public CScrollView
to
class CStringView : public CLogScrollView

fendif -~ _MSC_VER » 1000
class CStringView : public CLlogScrollView

protected: - create from serialization only
CStringView():

Listing 11.

Edit the StringView.cpp file. Globally replace all occurrences of CScrol 1View with CLogScrol1View. You can
use the Edit Replace menu for this task.

Replace

[Reqgular expression

Find what: ||:5I3rD|r'-a"iEW j ﬂ Eind MWext
Replace with: |EL|:|gS cralliew ﬂ ﬂ
[Match whole vward anly Replace in Replace Al
[Match caze " Selection -

@ ‘wWhole file Lancel

Figure 17: Using find and replace to replace all occurrences of CScrol IView with CLogScrol IView.

Then edit the OnInitialUpdate() function. Here is the edited code, which is much shorter:

void CStringView::OnlnitialUpdate()

CLogScrollView: :OnlnitialUpdate();
CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
SetLogScrollSizes(sizeTotal);

}

wolid CStringView: OnlnitiallUpdate()

CLogScrollView: :OnlnitiallUpdate():
CSize sizeTotalim_rectPrint Width().
SetlogScrollSizes({=sizeTotal) ;

—-mn_rectPrint Height{)):
S S S
£ CStringView printing

Listing 12.

Build and test the application again. Now the window text is larger.

&+ mymfc19 - [Mymfc11] =13
Fle Edit YWew Window Help _ 8 x

D = =2
oo m 02 03 -
The pennyeandystore beyond the El T
iz where [first
fell ity lowe
01 with unireality
JTellybeans glowed it the semi-gloom
of that september afterhioon
& catupon the couater moved among
the lcorice sticks
and tootsie rolls
ne atid Oh Boy Gum 3
¢ | ¥
Ready

Figure 18: Modified text size of the MYMFC19 printing program output.

Reading the Printer Rectangle

The MYMFC19 program prints in a fixed-size rectangle that's appropriate for a laser printer set to portrait mode with
8.5-by-11-inch (letter-size) paper. But what if you load European-size paper or you switch to landscape mode? The
program should be able to adjust accordingly.

It's relatively easy to read the printer rectangle. Remember the CPrintInfo pointer that's passed to OnPrint()?
That structure has a data member m_rectDraw that contains the rectangle in logical coordinates. Your overridden
OnPrint() function simply stuffs the rectangle in a view data member, and OnDraw() uses it. There's only one
problem: you can't get the rectangle until you start printing, so the constructor still needs to set a default value for
OnDraw() to use before printing begins.

If you want the MYMFC19 program to read the printer rectangle and adjust the size of the scroll view, use ClassWizard
to override ONPrint() and then code the function as follows:

void CStringView: :OnPrint(CDC* pDC, CPrintinfo* plnfo)

{
m_rectPrint = pInfo->m_rectDraw;
SetLogScrollISizes(CSize(m_rectPrint.Width(), -m_rectPrint.Height()));
CLogScrollView: :OnPrint(pDC, plInfo);

}

Template Collection Classes Revisited: The CArray Class

In MYMFCI16 in Module 10, you saw the MFC library CTypedPtrList template collection class, which was used to
store a list of pointers to CStudent objects. Another collection class, CArray, is appropriate for the next example,
MYMFC20. This class is different from CTypedPtrList in two ways. First, it's an array, with elements accessible by
index, just like CStringArray in MYMFC19. Second, the array holds actual objects, not pointers to objects. In
MYMFC20, the elements are CRect objects. The elements' class does not have to be derived from CObject, and
indeed, CRect is not. As in MYMFC16, a typedeT makes the template collection easier to use. We use the statement:

typedef CArray<CRect, CRect&> CRectArray;

to define an array class that holds CRect objects and whose functions take CRecCt reference parameters. It's cheaper to
pass a 32-bit pointer than to copy a 128bit object. To use the template array, you declare an instance of CRectArray
and then you call CArray member functions such as SetSize(). You can also use the CArray subscript operator to
get and set elements.

The template classes CArray, CLiSt, and CMap are easy to use if the element class is sufficiently simple. The CRect
class fits that description because it contains no pointer data members. Each template class uses a global function,
SerializeElements(), to serialize all the elements in the collection. The default SerializeElements()
function does a bitwise copy of each element to and from the archive. If your element class contains pointers or is
otherwise complex, you'll need to write your own Serial izeElements() function. If you wrote this function for
the rectangle array (not required), your code would look like this:

void AFXAPI SerializeElements(CArchive& ar, CRect* pNewRects, int nCount)

for (int i1 = 0; i1 < nCount; i++, pNewRects++)

{
if (ar.IsStoring()) {
ar << *pNewRects;
else {
ar >> *pNewRects;
¥
}

}

When the compiler sees this function, it uses the function to replace the Serial izeElements() function inside the
template. This only works, however, if the compiler sees the Serial 1zeElements() prototype before it sees the
template class declaration. The template classes depend on two other global functions, ConstructElements() and

http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html

DestructElements(). Starting with Visual C++ version 4.0, these functions call the element class constructor and
destructor for each object. Therefore, there's no real need to replace them.

The MYMFC20 Example: A Multipage Print Program

In this example, the document contains an array of 50 CRect objects that define circles. The circles are randomly
positioned in a 6-by-6-inch area and have random diameters of as much as 0.5 inch. The circles, when drawn on the
display, look like two-dimensional simulations of soap bubbles. Instead of drawing the circles on the printer, the
application prints the corresponding CRect coordinates in numeric form, 12 to a page, with headers and footers.

Run AppWizard to generate\mfcproject \mymfc20. Select Single Document, and accept the defaults for all the other
settings. The options and the default class names are shown here.

New Project Information §|

Apptafizard will create a new zkeleton praject with the fallowing specificatiang:

Application wpe of mymfc20;
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc204pp in mymfc20.h and mymfc20.cpp
Frame: CMainFrame in MainFrm.h and kMainFrm.cpp
Document: Chpmfc200 oc in mymfc200oc.h and mymfc2000c. cpp
Wiew: Chymfc2Miew in mpemfc2iew. h and mymfc20iew.cpp

Features:
+ [nitial toolbar in main frame
+ |nitial ztatus bar in main frame
+ Printing and Print Preview support in vigw
+ 30 Controls
+ |zez shared DLL implementation [MFCA2.DLL]
+ Activer Controlz zuppart enabled
+ Localzable text in:
Englizh [United States]

Project Directony:
F:hrfoprojecthmpmbc20

Caricel

Figure 19: MYMFC20 project summary.

Edit the StdAfx.h header file. You'll need to bring in the declarations for the MFC template collection classes. Add the
following statement:

#include <afxtempl.h>

#endif - _AFXE_HO_AFXCHMHN_SUFPPOERET
tinclude <afztempl h:

so{{AFE THSERT LOCATION::

Listing 13.

Edit the mymfc20Doc.h header file. In the MYMFC19 example, the document data consists of strings stored in a
CStringArray collection. Because we're using a template collection for ellipse rectangles, we'll need a typedef
statement outside the class declaration, as shown here:

typedef CArray<CRect, CRect&> CRectArray;

#if ldefined(AFX MYMFCZ0DOC_H ZE385788_C1
#define AFE MYMFCZ20DOC_H 2E385735_CEB6_4!

#if _MSC WEE > 1000
#pragma once
fendif - _HSC VER » 1000

typedef CArray<CRect. CRecté:r CRecthrrav:

class CHynfcZ20Doc : public CDocument
1

Listing 14.
Next add the following public data members to the mymfc20Doc.h header file:

public:
enum { nLinesPerPage = 12 };
enum { nMaxEllipses = 50 };
CRectArray m_ellipseArray;

S Attributes
public:

public:
gnum 4§ nLinesPexrPage = 12 }:
enum { nMaxEllipses = 50 }:
CRectArray n_ellipsedrrav:

S Operations
public:

Listing 15.
The two enumerations are object-oriented replacements for #defines.

Edit the mymfc20Doc.cpp implementation file. The overridden ONNew() Document function initializes the ellipse
array with some random values, and the Serial ize() function reads and writes the whole array. AppWizard
generated the skeletons for both functions. You don't need a De leteContents() function because the CArray
subscript operator writes a new CRect object on top of any existing one. Add the following code:

BOOL CMymfc20Doc: :OnNewDocument()
{
it (!1CDocument: :OnNewDocument())
return FALSE;

int n1, n2, n3;

// Make 50 random circles
srand((unsigned) time(NULL));
m_ellipseArray.SetSize(nMaxEllipses);

for (int i = 0; i < nMaxEllipses; i++)

{
nl = rand() * 600 / RAND_MAX;
n2 = rand() * 600 / RAND_MAX;
n3 = rand() * 50 / RAND_MAX;

m_ellipseArray[i] = CRect(nl, -n2, nl1 + n3, -(n2 + n3));

}

return TRUE;
hs

BOOL CHymfcZ0Doo: : OnHewDocument ()

1f { ICDocument : :OnNewDocument())
return FALSE:

int nl, n2, n3;

<+ Make 50 random circles

srand({un=igned) time(HULL)):
n_esllipssirray. SetSize(nMazEllipses);

for (int 1 = 0; 1 ¢ nMa=zEllipse=s; 1++)

{

nl = randi) = 600 ~ RAND MAX:

n? = randi) * 600 .~ RAND MAX:

nd = randi) * 50 .~ RAND MAX:

mn_ellipsedrrav[i] = CRectinl. —nZ. nl + n3. —i{nd + n3dd):
I

return TRUE;

Listing 16.
void CMymfc20Doc: :Serialize(CArchive& ar)

m_ellipseArray.Serialize(ar);

}

A CHymic20Doc serialization
wvold CHymic20Doc: Serialize(Chrchived: ar)

n_esllipssdrray.Serializelar);

Listing 17.

Edit the mymfc20View.h header file. Use ClassView to add the member variable and two function prototypes listed
below. ClassView will also generate skeletons for the functions in mymfc20View.cpp.

public:
int m_nPage;

private:
void PrintPageHeader(CDC *pDC);
void PrintPageFooter(CDC *pDC);

Add Member Yariable

Yarable Type:

|ir'|t

Yariable Marme:

|m_nF'age

Access
+ Public " Protected " Private

Cancel

Ok
=N

Figure 20: Adding a member variable using ClassView.

Add Member Function

Function Tope:

|vu:|i|:|

Function Declaration:

|P'rintF'ageH eaderCOC *p0C)

Cancel

Accezs
" Public " Proteched o F'rwates

[Static [Yirtual

Figure 21: Adding a function prototype using ClassView.

The m_nPage data member holds the document's current page number for printing. The private functions are for the
header and footer subroutines. Edit the OnDraw() function in mymfc20View.cpp. The overridden OnDraw()

function simply draws the bubbles in the view window. Add the code shown here:

void CMymfc20View: :OnDraw(CDC* pDC)
{

int i, j;

CMymfc20Doc* pDoc = GetDocument();

J = pbDoc->m_ellipseArray.GetUpperBound();
for (i = 0; 1 < j; i++)

pDC->El lipse(pDoc->m_ellipseArray[i]);

S CHymfc20View drawing

vold CHymfcZ0View: : OnDraw(CDC* pDC)

¢ <« TODOD: add draw code for native data here
int 1. 7
CHynfcZ20Doc* plDoc = GetDocument ()
7 = phoc—:m_ellipseirray . GetUpperBound()
for (1 = 0; 1 < J; i++)
¢ pDC—:Ellipse{ploc—:mn_ellipsehrrav[i]):
b b

Listing 18.

Insert the OnPrepareDC() function in mymfc20View.cpp. The view class is not a scrolling view, so the mapping
mode must be set in this function. Use ClassWizard to override the OnPrepareDC() function:

MFC ClassWizard

Mezzane Maps b ember Y ariables | Autamation | Active Events | Clazz Info |
Project: Clazz name: Add Clazs .~
mymfc20 ﬂ | ChymfeZihisw ﬂ
Foh Asmpmfe20hmymfc2Miew b, B smumfc20smymfc 20 iew. cpp g
Object |Ds: Messages: Delete Function
Chyrfc 20t iswm ~ Onlnitial) pdate S :]
ID_aFF_ABOUT 3 Dk oif 0

ID_APP_EXIT b= OnPrepareDC

ID_EDIT_COPY OnPreparePrinting b

ID_EDIT_CUT OnPrint

ID_EDIT_PASTE OnSecrall

ID_EDIT_UNWDO hd OnScrollBy b
b ember functions:

YW OnBeqginPrinting ~

YW OnDraw

YW OnEndPrinting _

OnPrepareliC
Y OnPreparePrinting b/
Description: Called befare drawing ar printing to adjust attributes of the device
ak. Cancel

Figure 22: Overriding the OnPrepareDC() function.
And then add the following code:

void CMymfc20View: :OnPrepareDC(CDC* pDC, CPrintinfo* plnfo)

pDC->SetMapMode (MM_LOENGLISH) ;

wold CHymfcZ0View: OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

S TODD: Add your specialized code here andsor call the base class
pDC—:SetHapiode (MM LOENGLISH) |

Listing 19.

Insert the OnPrint() function in mymfc20View.cpp. The CView default OnPrint() function calls OnDraw(). In
this example, we want the printed output to be entirely different from the displayed output, so the OnPrint() function
must take care of the print output without calling OnDraw(). OnPrint() first sets the mapping mode to MM_TWIPS,
and then it creates a fixed-pitch font. After printing the numeric contents of 12 m_ell ipseArray elements,
OnPrint() deselects the font. You could have created the font once in OnBeginPrinting(), but you wouldn't
have noticed the increased efficiency. Use ClassWizard to override the OnPrint() function, and then add the
following code:

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
rymfc20 j | Chdymfc2iew j
F:h Amymfe20hmymfc2Miew b, B smomfc20hmymfc20iew. cpp g

Object |0 Mezzages: Delete Function

Chyrnfc 20 igw OnFinalReleaze Y
ID_APP_ABOUT = Dnlnitiall) pdate]
ID_APP_ExIT = Qnk atify

ID_EDIT_COPY OnPrepareDC B

ID_EDIT_CUT
ID_EDIT_PASTE
ID_EDIT_UNDO b

kember functians:

OnPreparePrintin

Y OnEndPrinting ~
YW OnPrepareDC
YW OnPreparePrinting

OnPrint »
YW PreCreatevindow b

Description: Called ta print ar preview a page of the doucment

0k, Cancel

Figure 23: Inserting the OnPrint() function in mymfc20View.cpp.

void CMymfc20View: :OnPrint(CDC* pDC, CPrintinfo* plnfo)

{
int i, nStart, nEnd, nHeight;
CString str;
CPoint point(720, -1440);
CFont font;

TEXTMETRIC tm;

pDC->SetMapMode (MM_TWIPS) ;

CMymfc20Doc* pDoc = GetDocument();

// for PrintPageFooter®s benefit

m_nPage = plInfo->m_nCurPage;

nStart = (m_nPage - 1) * CMymfc20Doc: :nLinesPerPage;
nEnd = nStart + CMymfc20Doc: :nLinesPerPage;

// 14-point fixed-pitch font

font.CreateFont(-280, 0, 0, 0, 400, FALSE, FALSE,
0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH | FF_MODERN, "Courier New™);
// Courier New is a TrueType font

CFont* pOldFont = (CFont*) (pDC->SelectObject(&font));

PrintPageHeader (pDC) ;

pDC->GetTextMetrics(&tm);

nHeight = tm.tmHeight + tm.tmExternallLeading;

for (i = nStart; i < nEnd; i++) {

if (i > pDoc->m_ellipseArray.GetUpperBound()) {
break;

}
str.Format("'%6d %6d %6d %6d %6d, i + 1,
pDoc->m_ellipseArray[i].-left,
pDoc->m_ellipseArray[i].-top,
pDoc->m_ellipseArray[i]-right,
pDoc->m_ellipseArray[i].bottom);
point.y -= nHeight;
pDC->TextOut(point.x, point.y, str);
}
PrintPageFooter(pDC);
pDC->SelectObject(pOldFont);

}
vold CHymicZ0WView: OnFrint (CDC%* pDC, CPrintInfo®* pInfo)
{
S TODD: Add wour specialized code here andsor call the bas
int i, nStart. nEnd. nHeight:
CString str;
ZPoint point(720, -14407}:
CFont font

TEETHETRIC tm;

pDC—:SetHapdode (MM_TWIPS: ;

CHymfc20Doc#*® pDoc = Getlocument ()

<« for PrintPageFooter's benefit

mn_nPage = plnfo-:m_nCurPage:

nStart = (m_nhPage — 1) * CHymfcZ0Doz: :nlLinesPerPage;
nEnd = nStart + CHvymfzZ20Doc: :nLinesFPerPage:

A 1ld—point fimed-pitch font

font CreateFont(-2280, 0, 0, 0, 400, FALSE, FALSE,
0. AHSI CHARSET. CQOUT_DEFAULT_ FPRECIS,
CLIP DEFAULT PRECIS. DEFAULT QUATITY.
DEFAULT FITCH | FF_MODERH, "Courier Hew'):
S Comrier Hew i= a TruseTvype font

CFont#* pOldFont = (CFont#*) (pDC-:SelectObject(&font)
Print Pam=mHeads+nli™h -

Listing 20.

Edit the OnPreparePrinting() function in mymfc20View.cpp. The OnPreparePrinting() function (whose
skeleton is generated by AppWizard) computes the number of pages in the document and then communicates that value
to the application framework through the SetMaxPage () function. Add the following code:

BOOL CMymfc20View: :OnPreparePrinting(CPrintinfo* plInfo)

CMymfc20Doc* pDoc = GetDocument();
pInfo->SetMaxPage(pDoc->m_ellipseArray.GetUpperBound() 7/
CMymfc20Doc: :nLinesPerPage + 1);
return DoPreparePrinting(pinfo);
}

S0 CHymic20View printing

BOOL CHymicZ20View: :OnFreparePrinting(CPrintInfo*® pInfo)

CHymfcZ20Doc* ploc = GetDocument ()
pInfo—-:SetMazPage(ploc—:n_ellipsehrray . GetlUpperBound() -~

CHymfcZ0Doc: :nLinesPerPage + 1)
return DoPreparePrinting(plnfo);

Listing 21.

Insert the page header and footer functions in mymfc20View.cpp. These private functions, called from OnPrint(),
print the page headers and the page footers. The page footer includes the page number, stored by OnPrint() in the
view class data member m_nPage. The CDC: : GetTextExtent function provides the width of the page number so
that it can be right-justified. Add the code shown here:

void CMymfc20View: :PrintPageHeader (CDC* pDC)

{
CString str;

CPoint point(0, 0);

pDC->TextOut(point.x, point.y, "Bubble Report™);

point += CSize(720, -720);

str_.Format(*"%6.6s %6.6s %6.6s %6.6s %6.6s", "Index™, "Left", "Top"™, "Right",
"Bottom');

pDC->TextOut(point.x, point.y, str);
}

S CHymfc?20View message handlers

volid CHymfcZ0View: :PrintPageHeader (CDC *pDC)

{

CS5tring =tr:

CPoint point{0, 0}:
pDC—:TextOut{point . ®. point.wv., "Bubble Report"):
point += CSizs(720. -720);:
str Format{"%6 . 6= %6 .b6= Xb.b= Xb.b= Xb6.b=z=",
"Index"., "Left". "Top". "Right"., "Bottom"):
pDC—:>TegtCut {point .%x, point.v., =str);

Listing 22.

void CMymfc20View: :PrintPageFooter (CDC* pDC)

{
CString str;

CPoint point(0, -14400); // Move 10 inches down
CMymfc20Doc* pDoc = GetDocument();

str_Format(*'Document %s', (LPCSTR) pDoc->GetTitle());
pDC->TextOut(point.x, point.y, str);

str_Format(*'Page %d", m_nPage);

CSize size = pDC->GetTextExtent(str);

point.x += 11520 - size.cx;

pDC->TextOut(point.x, point.y, str); // right-justified

wold CHymic20View: PrintPageFooter{CDC *pDC)

1
CS5tring =tr;

CPoint point(0, -14400); . Mowve 10 inches down
CHymfc20Doc*® ploc = GetDocument();

=tr Format("Documnent %=", (LPCSTR) ploc—:GetTitlel)):
pDC—:TextOut (point . ®. point. v, =trd;

=tr . Format({"Fage *d". m_nPage):

CSize =zize = pDC—-rGetTextExtent (=str);

point . ® += 11520 - =ize . c=;

phC—:TextOut {point .x, point.y, =tr); - right—justified

Listing 23.

Build and test the application. For one set of random numbers, the bubble view window looks something like this.

7+ Untitled - mymfc20
File Edit Yiew Help

0= = H

0
9
O
OO

o @ .

Ready

Figure 24: MYMFC20 program output in action.

Each time you choose New from the File menu, you should see a different picture. In Print Preview, the first page of
the output should look like this.

7+ Untitled - mymfc20

Fririt. .. MHext Page i Zoom Out Cloze |

ubhle FEeport

Index Left Top Right Bottonm

1
g
3
4
3
&
7
g

Figure 25: MYMFC20 Print Preview page.

With the Print dialog, you can specify any range of pages to print.

& print

General l

Select Printer

E &dd Printer

iz Adobe POF

-;,?Micrn:nsaft Office Documnent Irnage Writer

Status: Ready [Print ta file Preferences

Location:

Cormment: Find Printer...
Page Fange

Coal Mumber of copies: |1 El
f'“ {

* Pages: 15 I

Enter either a zingle page number or a single Ijl

pade range. For example, 5-12

Frint | Cancel |

Figure 26: MYMFC20 with Page Range setting for printing.

+ Untitled - mymfc20

MHext Page | Prev Page | One Page Zoom In | |

[

(54

Pages 2-3

Figure 27: MYMFC20 with multiple pages of the Print Preview.

Link to LogScrollView.h and LogScrollView.cpp.

http://www.tenouk.com/visualcplusmfc/LogScrollView.h
http://www.tenouk.com/visualcplusmfc/LogScrollView.cpp

Further reading and digging:

—_—

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

L

Nk w

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

