
Module 11: Serialization: Reading and Writing Documents—SDI
Applications

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below. You can compare the standard C file I/O, standard C++ file
I/O and Win32 directory, file and access controls with the MFC serialization. So many things lor! Similar but not same.
Those links also given at the end of this tutorial.

Reading and Writing Documents: SDI Applications
Serialization: What Is It?
Disk Files and Archives
Making a Class Serializable
Writing a Serialize Function
Loading from an Archive: Embedded Objects vs. Pointers
Serializing Collections
The Serialize() Function and the Application Framework
The SDI Application
The Windows Application Object
The Document Template Class
The Document Template Resource
Multiple Views of an SDI Document
Creating an Empty Document: The CWinApp::OnFileNew Function
The Document Class's OnNewDocument() Function
Connecting File Open to Your Serialization Code: The OnFileOpen() Function
The Document Class's DeleteContents() Function
Connecting File Save and File Save As to Your Serialization Code
The Document's "Dirty" Flag
The MYMFC17 Example: SDI with Serialization
CStudent Class
CMymfc17App Class
CMainFrame Class
CMymfc17Doc Class
Serialize()
DeleteContents()
OnOpenDocument()
OnUpdateFileSave()
CMymfc17View Class
Testing the MYMFC17 Application
Explorer Launch and Drag and Drop
Program Registration
Double-Clicking on a Document
Enabling Drag and Drop
Program Startup Parameters
Experimenting with Explorer Launch and Drag and Drop

Reading and Writing Documents: SDI Applications

As you've probably noticed, every AppWizard-generated program has a File menu that contains the familiar New, Open,
Save, and Save As commands. In this module, you'll learn how to make your application respond to read and write
documents.
Here we'll stick with the Single Document Interface (SDI) application because it's familiar territory. Module 12
introduces the Multiple Document Interface (MDI) application, which is more flexible in its handling of documents
and files. In both modules, you'll get a heavy but necessary dose of application-framework theory; you'll learn a lot

http://www.tenouk.com/Module9.html
http://www.tenouk.com/Module19.html
http://www.tenouk.com/Module19.html
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/ModuleD.html
http://www.tenouk.com/ModuleE.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc12mdi.html

about the various helper classes that have been concealed up to this point. The going will be rough, but believe me, you
must know the details to get the most out of the application framework.
This module's example, MYMFC17, is an SDI application based on the MYMFC16 example from the previous module.
It uses the student list document with a CFormView-derived view class. Now the student list can be written to and read
from disk through a process called serialization. Module 12 shows you how to use the same view and document classes
to make an MDI application.

Serialization: What Is It?

The term "serialization" might be new to you, but it's already seen some use in the world of object-oriented
programming. The idea is that objects can be persistent, which means they can be saved on disk when a program exits
and then can be restored when the program is restarted. This process of saving and restoring objects is called
serialization. In the MFC library, designated classes have a member function named Serialize(). When the
application framework calls Serialize() for a particular object, for example, an object of class CStudent, the data for the
student is either saved on disk or read from disk. In the MFC library, serialization is not a substitute for a database
management system. All the objects associated with a document are sequentially read from or written to a single disk
file. It's not possible to access individual objects at random disk file addresses. If you need database capability in your
application, consider using the Microsoft Open Database Connectivity (ODBC) software or Data Access Objects
(DAO). The MFC framework already uses structured storage (for database) for container programs that support
embedded objects.

Disk Files and Archives

How do you know whether Serialize() should read or write data? How is Serialize() connected to a disk file?
With the MFC library, objects of class CFile represent disk files. A CFile object encapsulates the binary file handle
that you get through the Win32 function CreateFile(). This is not the buffered FILE pointer that you'd get with a
call to the C runtime fopen() function; rather, it's a handle to a binary file. The application framework uses this file
handle for Win32 ReadFile(), WriteFile(), and SetFilePointer() calls.
If your application does no direct disk I/O but instead relies on the serialization process, you can avoid direct use of
CFile objects. Between the Serialize() function and the CFile object is an archive object of class CArchive,
as shown in Figure 1.
The CArchive object buffers data for the CFile object, and it maintains an internal flag that indicates whether the
archive is storing (writing to disk) or loading (reading from disk). Only one active archive is associated with a file at any
one time. The application framework takes care of constructing the CFile and CArchive objects, opening the disk
file for the CFile object and associating the archive object with the file. All you have to do (in your Serialize()
function) is load data from or store data in the archive object. The application framework calls the document's
Serialize() function during the File Open and File Save processes.

Figure 1: The serialization process.

Making a Class Serializable

http://www.tenouk.com/visualcplusmfc/visualcplusmfc12mdi.html

A serializable class must be derived directly or indirectly from CObject. In addition (with some exceptions), the class
declaration must contain the DECLARE_SERIAL macro call, and the class implementation file must contain the
IMPLEMENT_SERIAL macro call. See the Microsoft Foundation Class Reference for a description of these macros.
This module's CStudent class example is modified from the class in Module 10 to include these macros.

Writing a Serialize Function

In Module 10, you saw a CStudent class, derived from CObject, with these data members:

public:
CString m_strName;
int m_nGrade;

Now, your job is to write a Serialize() member function for CStudent. Because Serialize() is a virtual
member function of class CObject, you must be sure that the return value and parameter types match the CObject
declaration. The Serialize() function for the CStudent class is below.

void CStudent::Serialize(CArchive& ar)
{
 TRACE("Entering CStudent::Serialize\n");
 if (ar.IsStoring())
 {
 ar << m_strName << m_nGrade;
 }
 else
 {
 ar >> m_strName >> m_nGrade;
 }
}

Most serialization functions call the Serialize() functions of their base classes. If CStudent were derived from
CPerson, for example, the first line of the Serialize() function would be:

CPerson::Serialize(ar);

The Serialize() function for CObject (and for CDocument, which doesn't override it) doesn't do anything
useful, so there's no need to call it. Notice that ar is a CArchive reference parameter that identifies the application's
archive object. The CArchive::IsStoring member function tells us whether the archive is currently being used for
storing or loading. The CArchive class has overloaded insertion operators (<<) and extraction operators (>>) for
many of the C++ built-in types, as shown in the following table.

Type Description
BYTE 8 bits, unsigned
WORD 16 bits, unsigned
LONG 32 bits, signed
DWORD 32 bits, unsigned
float 32 bits
double 64 bits, IEEE standard
int 32 bits, signed
short 16 bits, signed
char 8 bits, unsigned
unsigned 32 bits, unsigned

Table 1

http://msdn.microsoft.com/visualc/
http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html
http://www.tenouk.com/visualcplusmfc10.html

The insertion operators are overloaded for values; the extraction operators are overloaded for references. Sometimes
you must use a cast to satisfy the compiler. Suppose you have a data member m_nType that is an enumerated type.
Here's the code you would use:

ar << (int) m_nType;
ar >> (int&) m_nType;

MFC classes that are not derived from CObject, such as CString and CRect, have their own overloaded insertion
and extraction operators for CArchive.

Loading from an Archive: Embedded Objects vs. Pointers

Now suppose your CStudent object has other objects embedded in it, and these objects are not instances of standard
classes such as CString, CSize, and CRect. Let's add a new data member to the CStudent class:

public:
 CTranscript m_transcript;

Assume that CTranscript is a custom class, derived from CObject, with its own Serialize() member
function. There's no overloaded << or >> operator for CObject, so the CStudent::Serialize function now
becomes:

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_strName << m_nGrade;
 }
 else
 {
 ar >> m_strName >> m_nGrade;
 }
 m_transcript.Serialize(ar);
}

Before the CStudent::Serialize function can be called to load a student record from the archive, a CStudent
object must exist somewhere. The embedded CTranscript object m_transcript is constructed along with the
CStudent object before the call to the CTranscript::Serialize function. When the virtual
CTranscript::Serialize function does get called, it can load the archived transcript data into the embedded
m_transcript object. If you're looking for a rule, here it is: always make a direct call to Serialize() for
embedded objects of classes derived from CObject. Suppose that, instead of an embedded object, your CStudent
object contained a CTranscript pointer data member such as this:

public:
 CTranscript* m_pTranscript;

You could use the Serialize() function, as shown below, but as you can see, you must construct a new
CTranscript object yourself.

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade;
 else
 {
 m_pTranscript = new CTranscript;
 ar >> m_strName >> m_nGrade;
 }
 m_pTranscript->Serialize(ar);
}

Because the CArchive insertion and extraction operators are indeed overloaded for CObject pointers, you could
write Serialize() this way instead:

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade << m_pTranscript;
 else
 ar >> m_strName >> m_nGrade >> m_pTranscript;
}

But how is the CTranscript object constructed when the data is loaded from the archive? That's where the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in the CTranscript class come in. When the
CTranscript object is written to the archive, the macros ensure that the class name is written along with the data.
When the archive is read, the class name is read in and an object of the correct class is dynamically constructed, under
the control of code generated by the macros. Once the CTranscript object has been constructed, the overridden
Serialize() function for CTranscript can be called to do the work of reading the student data from the disk file.
Finally the CTranscript pointer is stored in the m_pTranscript data member. To avoid a memory leak, you must
be sure that m_pTranscript does not already contain a pointer to a CTranscript object. If the CStudent object
was just constructed and thus was not previously loaded from the archive, the transcript pointer will be null. The
insertion and extraction operators do not work with embedded objects of classes derived from CObject, as shown here:

ar >> m_strName >> m_nGrade >> &m_transcript; // Don't try this

Serializing Collections

Because all collection classes are derived from the CObject class and the collection class declarations contain the
DECLARE_SERIAL macro call, you can conveniently serialize collections with a call to the collection class's
Serialize() member function. If you call Serialize() for a CObList collection of CStudent objects, for
example, the Serialize() function for each CStudent object will be called in turn. You should, however,
remember the following specifics about loading collections from an archive:

▪ If a collection contains pointers to objects of mixed classes (all derived from CObject), the individual
class names are stored in the archive so that the objects can be properly constructed with the appropriate
class constructor.

▪ If a container object, such as a document, contains an embedded collection, loaded data is appended to the
existing collection. You might need to empty the collection before loading from the archive. This is usually
done in the document's virtual DeleteContents() function, which is called by the application
framework.

▪ When a collection of CObject pointers is loaded from an archive, the following processing steps take
place for each object in the collection:

1. The object's class is identified.
2. Heap storage is allocated for the object.
3. The object's data is loaded into the newly allocated storage.
4. A pointer to the new object is stored in the collection.

The MYMFC17 example shows serialization of an embedded collection of CStudent records.

The Serialize() Function and the Application Framework

OK, so you know how to write Serialize() functions, and you know that these function calls can be nested. But do
you know when the first Serialize() function gets called to start the serialization process? With the application
framework, everything is keyed to the document (the object of a class derived from CDocument). When you choose
Save or Open from the File menu, the application framework creates a CArchive object (and an underlying CFile
object) and then calls your document class's Serialize() function, passing a reference to the CArchive object.
Your derived document class Serialize() function then serializes each of its non-temporary data members. If you

take a close look at any AppWizard-generated document class, you'll notice that the class includes the
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros rather than the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros. The SERIAL macros are unneeded because document objects are never used in
conjunction with the CArchive extraction operator or included in collections; the application framework calls the
document's Serialize() member function directly. You should include the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros in all other serializable classes.

The SDI Application

You've seen many SDI applications that have one document class and one view class. We'll stick to a single view class
in this module, but we'll explore the interrelationships among the application object, the main frame window, the
document, the view, the document template object, and the associated string and menu resources.

The Windows Application Object

For each of your applications, AppWizard has been quietly generating a class derived from CWinApp. It has also been
generating a statement such as this:

CMyApp theApp;

Listing 1.

What you're seeing here is the mechanism that starts an MFC application. The class CMyApp is derived from the class
CWinApp, and theApp is a globally declared instance of the class. This global object is called the Windows
application object. Here's a summary of the startup steps in a Microsoft Windows MFC library application:

1. Windows loads your program into memory.
2. The global object theApp is constructed. All globally declared objects are constructed immediately when the

program is loaded.
3. Windows calls the global function WinMain(), which is part of the MFC library. WinMain() is equivalent

to the non-Windows main function, each is a main program entry point.
4. WinMain() searches for the one and only instance of a class derived from CWinApp.
5. WinMain() calls the InitInstance() member function for theApp, which is overridden in your derived

application class.
6. Your overridden InitInstance() function starts the process of loading a document and displaying the

main frame and view windows.
7. WinMain() calls the Run() member function for theApp, which starts the processes of dispatching

window messages and command messages.

You can override another important CWinApp member function. The ExitInstance() function is called when the
application terminates, after all its windows are closed. Windows allows multiple instances of programs to run. The
InitInstance() function is called each time a program instance starts up. In Win32, each instance runs as an
independent process. It's only incidental that the same code is mapped to the virtual memory address space of each
process. If you want to locate other running instances of your program, you must either call the Win32
FindWindow() function or set up a shared data section or memory-mapped file for communication.

The Document Template Class

If you look at the InitInstance() function that AppWizard generates for your derived application class, you'll see
that the following statements are featured:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CStudentView));
AddDocTemplate(pDocTemplate);

Listing 1.

Unless you start doing fancy things with splitter windows and multiple views, this is the only time you'll actually see a
document template object. In this case, it's an object of class CSingleDocTemplate, which is derived from
CDocTemplate. The CSingleDocTemplate class applies only to SDI applications because SDI applications are
limited to one document object. AddDocTemplate() is a member function of class CWinApp.
The AddDocTemplate() call, together with the document template constructor call, establishes the relationships
among classes, the application class, the document class, the view window class, and the main frame window class. The
application object exists, of course, before template construction, but the document, view, and frame objects are not
constructed at this time. The application framework later dynamically constructs these objects when they are needed.
This dynamic construction is a sophisticated use of the C++ language. The DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE macros in a class declaration and implementation enable the MFC library to construct
objects of the specified class dynamically. If this dynamic construction capability weren't present, more relationships
among your application's classes would have to be hard-coded. Your derived application class, for example, would need
code for constructing document, view, and frame objects of your specific derived classes. This would compromise the
object-oriented nature of your program.
With the template system, all that's required in your application class is use of the RUNTIME_CLASS macro. Notice that
the target class's declaration must be included for this macro to work.
Figure 2 illustrates the relationships among the various classes, and Figure 3 illustrates the object relationships. An SDI
application can have only one template (and associated class groups), and when the SDI program is running, there can
be only one document object and only one main frame window object.

Figure 2: Class relationships.

Figure 3: Object relationships.

The MFC library dynamic construction capability was designed before the runtime type identification (RTTI) feature
was added to the C++ language. The original MFC implementation goes beyond RTTI, and the MFC library continues
to use it for dynamic object construction.

The Document Template Resource

The first AddDocTemplate() parameter is IDR_MAINFRAME, the identifier for a string table resource. Here is the
corresponding string that AppWizard generates for MYMFC17 in the application's RC file:

IDR_MAINFRAME
 "mymfc17\n" // application window caption
 "\n" // root for default document name
 // ("Untitled" used if none provided)
 "Mymfc1\n" // document type name
 "Mymfc1 Files (*.myext)\n" // document type description and filter
 ".myext\n" // extension for documents of this type
 "Mymfc17.Document\n" // Registry file type ID
 "Mymfc1 Document" // Registry file type description

You can see this by double clicking the String Table in ResourceView and IDR_MAINFRAME as shown below.

Figure 4: String table in ResourceView.

Figure 5: String for IDR_MAINFRAME.

Figure 6: String properties for IDR_MAINFRAME (double-clicking the previous figure).

The resource compiler won't accept the string concatenations as shown above. If you examine the mymfc17.rc file,
you'll see the substrings combined in one long string. IDR_MAINFRAME specifies one string that is separated into
substrings by newline characters (\n). The substrings show up in various places when the application executes. The
string myext is the default document file extension specified to AppWizard.
The IDR_MAINFRAME ID, in addition to specifying the application's strings, identifies the application's icon, toolbar
resources, and menu. AppWizard generates these resources, and you can maintain them with the resource editors. So
now you've seen how the AddDocTemplate() call ties all the application elements together. Be aware, though, that
no windows have been created yet and therefore nothing appears on the screen.

Multiple Views of an SDI Document

Providing multiple views of an SDI document is a little more complicated. You could provide a menu item that allows
the user to choose a view, or you could allow multiple views in a splitter window. Module 14 shows you how to
implement both techniques.

Creating an Empty Document: The CWinApp::OnFileNew Function

After your application class's InitInstance() function calls the AddDocTemplate() member function, it calls
OnFileNew() (indirectly through CWinApp::ProcessShellCommand), another important CWinApp member
function. OnFileNew() sorts through the web of interconnected class names and does the following:

1. Constructs the document object but does not attempt to read data from disk.
2. Constructs the main frame object (of class CMainFrame); also creates the main frame window but does not

show it. The main frame window includes the IDR_MAINFRAME menu, the toolbar, and the status bar.
3. Constructs the view object; also creates the view window but doesn't show it.
4. Establishes connections among the document, main frame, and view objects. Do not confuse these object

connections with the class connections established by the call to AddDocTemplate().
5. Calls the virtual CDocument::OnNewDocument member function for the document object, which calls the

virtual DeleteContents() function.
6. Calls the virtual CView::OnInitialUpdate member function for the view object.
7. Calls the virtual CFrameWnd::ActivateFrame for the frame object to show the main frame window

together with the menus, view window, and control bars.

Some of the functions listed above are not called directly by OnFileNew() but are called indirectly through the
application framework.
In an SDI application, the document, main frame, and view objects are created only once, and they last for the life of the
program. The CWinApp::OnFileNew function is called by InitInstance. It's also called in response to the user
choosing the File New menu item. In this case, OnFileNew() must behave a little differently. It can't construct the
document, frame, and view objects because they're already constructed. Instead, it reuses the existing document object
and performs steps 5, 6, and 7 above. Notice that OnFileNew() always calls DeleteContents() (indirectly) to
empty the document.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc14.html

The Document Class's OnNewDocument() Function

You've seen the view class OnInitialUpdate() member function and the document class OnNewDocument()
member function in Module 10. If an SDI application didn't reuse the same document object, you wouldn't need
OnNewDocument() because you could perform all document initialization in your document class constructor. Now
you must override OnNewDocument() to initialize your document object each time the user chooses File New or File
Open. AppWizard helps you by providing a skeleton function in the derived document class it generates.
It's a good idea to minimize the work you do in constructor functions. The fewer things you do, the less chance there is
for the constructor to fail, and constructor failures are messy. Functions such as CDocument::OnNewDocument and
CView::OnInitialUpdate are excellent places to do initial housekeeping. If anything fails at creation time, you
can pop up a message box and in the case of OnNewDocument(), you can return FALSE. Be advised that both
functions can be called more than once for the same object. If you need certain instructions executed only once, declare
a "first time" flag data member and then test/set it appropriately.

Connecting File Open to Your Serialization Code: The OnFileOpen() Function

When AppWizard generates an application, it maps the File Open menu item to the CWinApp::OnFileOpen
member function. When called, this function invokes a sequence of functions to accomplish these steps:

1. Prompts the user to select a file.
2. Calls the virtual function CDocument::OnOpenDocument for the already existing document object. This

function opens the file, calls CDocument::DeleteContents, and constructs a CArchive object set for
loading. It then calls the document's Serialize() function, which loads data from the archive.

3. Calls the view's OnInitialUpdate() function.

The Most Recently Used (MRU) file list is a handy alternative to the File Open menu item. The application framework
tracks the four (default) most recently used files and display their names on the File menu. These filenames are stored in
the Windows Registry between program executions. You can change the number of recent files tracked by supplying a
parameter to the LoadStdProfileSetting() function in the application class InitInstance() function.

The Document Class's DeleteContents() Function

When you load an existing SDI document object from a disk file, you must somehow erase the existing contents of the
document object. The best way to do this is to override the CDocument::DeleteContents virtual function in your derived
document class. The overridden function, as you've seen in Module 10, does whatever is necessary to clean up your
document class's data members. In response to both the File New and File Open menu items, the CDocument functions
OnNewDocument() and OnOpenDocument() both call the DeleteContents() function, which means
DeleteContents() is called immediately after the document object is first constructed. It's called again when you
close a document. If you want your document classes to work in SDI applications, plan on emptying the document's
contents in the DeleteContents() member function rather than in the destructor. Use the destructor only to clean
up items that last for the life of the object.

Connecting File Save and File Save As to Your Serialization Code

When AppWizard generates an application, it maps the File Save menu item to the OnFileSave() member function
of the CDocument class. OnFileSave() calls the CDocument function OnSaveDocument(), which in turn calls
your document's Serialize() function with an archive object set for storing. The File Save As menu item is handled
in a similar manner: it is mapped to the CDocument function OnFileSaveAs(), which calls
OnSaveDocument(). Here the application framework does all the file management necessary to save a document on
disk. Yes, it is true that the File New and File Open menu options are mapped to application class member functions, but
File Save and File Save As are mapped to document class member functions. File New is mapped to OnFileNew().
The SDI version of InitInstance() also calls OnFileNew() (indirectly). No document object exists when the
application framework calls InitInstance(), so OnFileNew() can't possibly be a member function of
CDocument. When a document is saved, however, a document object certainly exists.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html

The Document's "Dirty" Flag

Many document-oriented applications for Windows track the user's modifications of a document. If the user tries to
close a document or exit the program, a message box asks whether the user wants to save the document. The MFC
application framework directly supports this behavior with the CDocument data member m_bModified. This
Boolean variable is TRUE if the document has been modified (has become "dirty"); otherwise, it is FALSE.
The protected m_bModified flag is accessed through the CDocument member functions SetModifiedFlag()
and IsModified(). The framework sets the document object's flag to FALSE when the document is created or read
from disk and when it is saved on disk. You, the programmer, must use the SetModifiedFlag() function to set the
flag to TRUE when the document data changes. The virtual function CDocument::SaveModified, which the
framework calls when the user closes the document, displays a message box if the m_bModified flag is set to TRUE.
You can override this function if you need to do something else.
In the MYMFC17 example, you'll see how a one-line update command UI function can use IsModified() to control
the state of the disk button and the corresponding menu item. When the user modifies the file, the disk button is enabled;
when the user saves the file, the button changes to gray. In one respect, MFC SDI applications behave a little differently
from other Windows SDI applications such as Notepad. Here's a typical sequence of events:

1. The user creates a document and saves it on disk under the name (for example) test.dat.
2. The user modifies the document.
3. The user chooses File Open and then specifies test.dat.

When the user chooses File Open, Notepad asks whether the user wants to save the changes made to the document (in
Step 2 above). If the user answers no, the program rereads the document from disk. An MFC application, on the other
hand, assumes that the changes are permanent and does not reread the file.

The MYMFC17 Example: SDI with Serialization

The MYMFC17 example is similar to example MYMFC16. The student dialog and the toolbar are the same except the
step 4 where we set the Advanced Options (shown below) and the view class is the same. The steps have been
simplified in the following Figures.

Figure 7: MYMFC17 AppWizard step 4 of 6, setting the Advanced options.

Click the Advanced button, fill the File extension as shown and for other fields will be provided automatically. Take
note that name length will be truncated. You can change to other name but for this example, just accept the default.

Figure 8: The file extension used is myext.

Figure 9: AppWizard step 6 of 6 for MYMFC17 project, using a CFormView class.

Figure 10: MYMFC17 project summary.

Control ID
The dialog template IDD_MYMFC17_FORM

Name edit control IDC_NAME
Grade edit control IDC_GRADE
Clear pushbutton IDC_CLEAR

Table 2.

Figure 11: MYMFC17 dialog and its controls, similar to MYMFC16.

Object ID Message Member Function
ID_EDIT_CLEAR_ALL COMMAND OnEditClearAll()
ID_EDIT_CLEAR_ALL ON_UPDATE_COMMAND_UI OnUpdateEditClearAll()

Table 4.

Figure 12: Message mapping for IDC_EDIT_CLEAR_ALL.

Object ID Message Member Function
IDC_CLEAR BN_CLICKED OnClear()

Table 5.

Figure 13: Message mapping for IDC_ CLEAR.

Control ID Member Variable Category Variable Type
IDC_GRADE m_nGrade Value int
IDC_NAME m_strName Value CString

Table 6.

Figure 14: Adding member variables.

Figure 15: Adding and modifying Clear All menu properties.

 Object ID Message Member Function

 ID_STUDENT_HOME COMMAND OnStudentHome()

 ID_STUDENT_END COMMAND OnStudentEnd()

 ID_STUDENT_PREV COMMAND OnStudentPrev()

 ID_STUDENT_NEXT COMMAND OnStudentNext()

 ID_STUDENT_INS COMMAND OnStudentIns()

 ID_STUDENT_DEL COMMAND OnStudentDel()

Table 7.

Figure 16: Adding and modifying toolbar buttons properties.

Object ID Message Member Function
ID_STUDENT_HOME UPDATE_COMMAND_UI OnUpdateStudentHome()
ID_STUDENT_END UPDATE_COMMAND_UI OnUpdateStudentEnd()
ID_STUDENT_PREV UPDATE_COMMAND_UI OnUpdateStudentHome()
ID_STUDENT_NEXT UPDATE_COMMAND_UI OnUpdateStudentEnd()
ID_STUDENT_DEL UPDATE_COMMAND_UI OnUpdateCommandDel()

Table 8.

Figure 17: Messages mapping for toolbar buttons.

Serialization has been added, together with an update command UI function for File Save. The header and
implementation files for the view and document classes will be reused in example MYMFC18 in the next module. All
the new code (code that is different from MYMFC16) is listed, with additions and changes to the AppWizard-generated
code and the ClassWizard code in orange if any. A list of the files and classes in the MYMFC17 example is shown in the
following table.

Header File Source Code File Class Description

mymfc17.h mymfc17.cpp CMymfc17App Application class (from
AppWizard)

 CAboutDlg About dialog
MainFrm.h MainFrm.cpp CMainFrame SDI main frame
mymfc17Doc.h mymfc17Doc.cpp CMymfc17Doc Student document

mymfc17View.h mymfc17View.cpp CMymfc17View Student form view (from
MYMFC17)

Student.h Student.cpp CStudent Student record

StdAfx.h StdAfx.cpp
Precompiled headers
(with afxtempl.h
included)

Table 9.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc12mdi.html

Figure 18: MYMFC17 files seen through FileView.

CStudent Class

The following steps show how to add the CStudent class (Student.h and Student.cpp).

Figure 19: Creating and adding new files for CStudent class to the project.

Figure 20: Creating and adding Student.cpp file to the project.

STUDENT.H
// student.h

#ifndef _INSIDE_VISUAL_CPP_STUDENT
#define _INSIDE_VISUAL_CPP_STUDENT

class CStudent : public CObject
{
 DECLARE_SERIAL(CStudent)
public:
 CString m_strName;
 int m_nGrade;

 CStudent()
 {
 m_nGrade = 0;
 }

 CStudent(const char* szName, int nGrade) : m_strName(szName)
 {
 m_nGrade = nGrade;
 }

 CStudent(const CStudent& s) : m_strName(s.m_strName)
 {
 // copy constructor
 m_nGrade = s.m_nGrade;
 }

 const CStudent& operator =(const CStudent& s)
 {
 m_strName = s.m_strName;
 m_nGrade = s.m_nGrade;

 return *this;
 }

 BOOL operator ==(const CStudent& s) const
 {
 if ((m_strName == s.m_strName) && (m_nGrade == s.m_nGrade))
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
 }

 BOOL operator !=(const CStudent& s) const
 {
 // Let's make use of the operator we just defined!
 return !(*this == s);
 }
#ifdef _DEBUG
 void Dump(CDumpContext& dc) const;
#endif // _DEBUG
};

#endif // _INSIDE_VISUAL_CPP_STUDENT

typedef CTypedPtrList<CObList, CStudent*> CStudentList;

STUDENT.CPP
#include "stdafx.h"
#include "student.h"

IMPLEMENT_SERIAL(CStudent, CObject, 0)

#ifdef _DEBUG
void CStudent::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc);
 dc << "m_strName = " << m_strName << "\nm_nGrade = " <<m_nGrade;
}
#endif // _DEBUG

Listing 1: CStudent class.

The use of the MFC template collection classes requires the following statement in StdAfx.h:

#include <afxtempl.h>

The MYMFC17 Student.h file is almost the same as the file in the MYMFC17 project except the header contains the
macro:

DECLARE_SERIAL(CStudent)

instead of:

DECLARE_DYNAMIC(CStudent)

Listing 2.

and the implementation file contains the macro:

IMPLEMENT_SERIAL(CStudent, CObject, 0)

instead of:

IMPLEMENT_DYNAMIC(CStudent, Cobject)

Listing 3.

The virtual Serialize() function has also been added.

CMymfc17App Class

The application class files, shown in Listing 4, contain only code generated by AppWizard. The application was
generated with a default file extension and with the Microsoft Windows Explorer launch and drag-and-drop capabilities.
These features are described later in this module. To generate additional code, you must do the following when you first
run AppWizard (already shown in the previous steps): in the AppWizard Step 4 page, click the Advanced button. When
the Advanced Options dialog appears, you must enter the Filename extension in the upper-left control, as shown here.

Figure 21: Setting the File extension for MYMFC17 project, as done in step 4 of 6 AppWizard.

This ensures that the document template resource string contains the correct default extension and that the correct
Explorer-related code is inserted into your application class InitInstance() member function. You can change
some of the other resource substrings if you want. The generated calls to Enable3dControls() and
Enable3dControlsStatic() in CMymfc17App::InitInstance are not necessary with Microsoft Windows
95, Microsoft Windows 98, or Microsoft Windows NT 4.0. These two functions support an older DLL that is shipped
with Microsoft Windows 3.51.

MYMFC17.H
// mymfc17.h : main header file for the MYMFC17 application
//

#if
!defined(AFX_MYMFC17_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_MYMFC17_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CMymfc17App:
// See mymfc17.cpp for the implementation of this class
//

class CMymfc17App : public CWinApp
{
public:

 CMymfc17App();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMymfc17App)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CMymfc17App)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif //
!defined(AFX_MYMFC17_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)

MYMFC17.CPP
// mymfc17.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "mymfc17.h"

#include "MainFrm.h"
#include "mymfc17Doc.h"
#include "mymfc17View.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMymfc17App

BEGIN_MESSAGE_MAP(CMymfc17App, CWinApp)
 //{{AFX_MSG_MAP(CMymfc17App)

 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CMymfc17App construction

CMymfc17App::CMymfc17App()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CMymfc17App object

CMymfc17App theApp;
///
// CMymfc17App initialization

BOOL CMymfc17App::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared
DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC
statically
#endif

 // Change the registry key under which our settings are stored.
 // You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)

 // Register the application's document templates.
 // Document templates serve as the connection between
 // documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CMymfc17Doc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMymfc17View));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);
 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized,
 // so show and update it.

 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)

 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CMymfc17App::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CMymfc17App commands

Listing 4: The CMymfc17App class listing.

CMainFrame Class

The main frame window class code, shown in Listing 5, is almost unchanged from the code that AppWizard generated.
The overridden ActivateFrame() function and the WM_DROPFILES handler exist solely for trace purposes.

MAINFRM.H
// MainFrm.h : interface of the CMainFrame class
//
///

#if
!defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnDropFiles(HDROP hDropInfo);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif //
!defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)

MAINFRM.CPP
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "mymfc17.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_DROPFILES()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};
///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here

}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.Create(this) ||
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))

 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Remove this if you don't want tool tips
 // or a resizable toolbar
 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);

DockControlBar(&m_wndToolBar);
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFrameWnd::PreCreateWindow(cs);
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CMainFrame::ActivateFrame\n");
 CFrameWnd::ActivateFrame(nCmdShow);
}

void CMainFrame::OnDropFiles(HDROP hDropInfo)
{
 TRACE("Entering CMainFrame::OnDropFiles\n");
 CFrameWnd::OnDropFiles(hDropInfo);
}

Listing 5: The CMainFrame class listing.

CMymfc17Doc Class

AppWizard originally generated the CMymfc17Doc class. Figure 6 shows the code used in the MYMFC17 example.
The CMymfc17Doc class is the same as the CMymfc16Doc class from the previous module except for four functions:
Serialize(), DeleteContents(), OnOpenDocument(), and OnUpdateFileSave().

MYMFC17DOC.H
//MYMFC17DOC.H
// Mymfc17Doc.h : interface of the CMymfc17Doc class
//
//

#if
!defined(AFX_MYMFC17DOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_MYMFC17DOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "student.h"

class CMymfc17Doc : public CDocument
{
protected: // create from serialization only
 CMymfc17Doc();
 DECLARE_DYNCREATE(CMymfc17Doc)

// Attributes
public:
 CStudentList* GetList() {
 return &m_studentList;
 }

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMymfc17Doc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMymfc17Doc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CMymfc17Doc)
 afx_msg void OnEditClearAll();
 afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);
 afx_msg void OnUpdateFileSave(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 CStudentList m_studentList;

http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html

};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif //
!defined(AFX_MYMFC16DOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)

MYMFC17DOC.CPP
// Mymfc17Doc.cpp : implementation of the CMymfc17Doc class
//

#include "stdafx.h"
#include "mymfc17.h"

#include "Mymfc17Doc.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CMymfc17Doc

IMPLEMENT_DYNCREATE(CMymfc17Doc, CDocument)

BEGIN_MESSAGE_MAP(CMymfc17Doc, CDocument)
 //{{AFX_MSG_MAP(CMymfc17Doc)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
 ON_UPDATE_COMMAND_UI(ID_FILE_SAVE, OnUpdateFileSave)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CMymfc17Doc construction/destruction

CMymfc17Doc::CMymfc17Doc()
{
 TRACE("Entering CMymfc17Doc constructor\n");
#ifdef _DEBUG
 afxDump.SetDepth(1); // Ensure dump of list elements
#endif // _DEBUG
}

CMymfc17Doc::~CMymfc17Doc()
{
}

BOOL CMymfc17Doc::OnNewDocument()
{
 TRACE("Entering CMymfc17Doc::OnNewDocument\n");
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add re-initialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}
//
// CMymfc17Doc serialization

void CMymfc17Doc::Serialize(CArchive& ar)
{
 TRACE("Entering CMymfc17Doc::Serialize\n");
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
 m_studentList.Serialize(ar);
}

//
// CMymfc17Doc diagnostics

#ifdef _DEBUG
void CMymfc17Doc::AssertValid() const
{
 CDocument::AssertValid();
}

void CMymfc17Doc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_studentList << "\n";
}
#endif //_DEBUG

//
// CMymfc17Doc commands

void CMymfc17Doc::DeleteContents()
{
 TRACE("Entering CMymfc17Doc::DeleteContents\n");
 while (m_studentList.GetHeadPosition())
 {
 delete m_studentList.RemoveHead();
 }
}

void CMymfc17Doc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
}

void CMymfc17Doc::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_studentList.IsEmpty());
}

BOOL CMymfc17Doc::OnOpenDocument(LPCTSTR lpszPathName)
{
 TRACE("Entering CMymfc17Doc::OnOpenDocument\n");
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // TODO: Add your specialized creation code here

 return TRUE;
}

void CMymfc17Doc::OnUpdateFileSave(CCmdUI* pCmdUI)

{
 // TODO: Add your command update UI handler code here
 pCmdUI->Enable(IsModified());

}

Listing 6: The CMymfc17Doc class listing.

Serialize()

One line has been added to the AppWizard-generated function to serialize the document's student list, as shown here:

///
// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
{
 TRACE("Entering CStudentDoc::Serialize\n");
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
 m_studentList.Serialize(ar);
}

DeleteContents()

The Dump statement is replaced by a simple TRACE statement. Here is the modified code:

void CStudentDoc::DeleteContents()
{
 TRACE("Entering CStudentDoc::DeleteContents\n");
 while (m_studentList.GetHeadPosition())
 {
 delete m_studentList.RemoveHead();
 }
}

OnOpenDocument()

This virtual function is overridden only for the purpose of displaying a TRACE message, as shown below.

Figure 22: OnOpenDocument() message mapping for CMymfc17Doc class.

BOOL CStudentDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 TRACE("Entering CStudentDoc::OnOpenDocument\n");
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;
 // TODO: Add your specialized creation code here
 return TRUE;
}

OnUpdateFileSave()

This message map function grays the File Save toolbar button when the document is in the unmodified state. The view
controls this state by calling the document's SetModifiedFlag() function, as shown here:

Figure 23: Adding message handler for ID_FILE_SAVE.

void CStudentDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
{
 // Disable disk toolbar button if file is not modified
 pCmdUI->Enable(IsModified());
}

CMymfc17View

The code for the CMymfc17View class comes from the previous module. Listing 7 shows the code.

MYMFC17VIEW.H
// Mymfc17View.h : interface of the CMymfc17View class
//
//

#if
!defined(AFX_MYMFC17VIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_MYMFC17VIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMymfc17View : public CFormView
{
protected:
 POSITION m_position; // current position in document list
 CStudentList* m_pList; // copied from document

protected: // create from serialization only
 CMymfc17View();

http://www.tenouk.com/visualcplusmfc/visualcplusmfc10.html

 DECLARE_DYNCREATE(CMymfc17View)

public:
 //{{AFX_DATA(CMymfc17View)
 enum { IDD = IDD_MYMFC17_FORM };
 int m_nGrade;
 CString m_strName;
 //}}AFX_DATA

// Attributes
public:
 CMymfc17Doc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMymfc17View)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate(); // called first time after construct
 virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMymfc17View();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 virtual void ClearEntry();
 virtual void InsertEntry(POSITION position);
 virtual void GetEntry(POSITION position);

// Generated message map functions
protected:
 //{{AFX_MSG(CMymfc17View)
 afx_msg void OnClear();
 afx_msg void OnStudentHome();
 afx_msg void OnStudentEnd();
 afx_msg void OnStudentPrev();
 afx_msg void OnStudentNext();
 afx_msg void OnStudentIns();
 afx_msg void OnStudentDel();
 afx_msg void OnUpdateStudentHome(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentEnd(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentDel(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in Mymfc17View.cpp
inline CMymfc17Doc* CMymfc17View::GetDocument()
 { return (CMymfc17Doc*)m_pDocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations

// immediately before the previous line.

#endif //
!defined(AFX_MYMFC17VIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)

MYMFC17VIEW.CPP
// Mymfc17View.cpp : implementation of the CMymfc17View class
//

#include "stdafx.h"
#include "mymfc17.h"

#include "Mymfc17Doc.h"
#include "Mymfc17View.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

//
// CMymfc17View

IMPLEMENT_DYNCREATE(CMymfc17View, CFormView)
BEGIN_MESSAGE_MAP(CMymfc17View, CFormView)
 //{{AFX_MSG_MAP(CMymfc17View)
 ON_BN_CLICKED(IDC_CLEAR, OnClear)
 ON_COMMAND(ID_STUDENT_HOME, OnStudentHome)
 ON_COMMAND(ID_STUDENT_END, OnStudentEnd)
 ON_COMMAND(ID_STUDENT_PREV, OnStudentPrev)
 ON_COMMAND(ID_STUDENT_NEXT, OnStudentNext)
 ON_COMMAND(ID_STUDENT_INS, OnStudentIns)
 ON_COMMAND(ID_STUDENT_DEL, OnStudentDel)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_HOME, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_END, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_PREV, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_NEXT, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_DEL, OnUpdateStudentDel)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CMymfc17View construction/destruction

CMymfc17View::CMymfc17View() : CFormView(CMymfc17View::IDD)
{
 TRACE("Entering CMymfc17View constructor\n");
 //{{AFX_DATA_INIT(CMymfc17View)
 m_nGrade = 0;
 m_strName = _T("");
 //}}AFX_DATA_INIT
 m_position = NULL;
}

CMymfc17View::~CMymfc17View()
{
}

void CMymfc17View::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMymfc17View)
 DDX_Text(pDX, IDC_GRADE, m_nGrade);
 DDV_MinMaxInt(pDX, m_nGrade, 0, 100);
 DDX_Text(pDX, IDC_NAME, m_strName);

 DDV_MaxChars(pDX, m_strName, 20);
 //}}AFX_DATA_MAP
}
BOOL CMymfc17View::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return CFormView::PreCreateWindow(cs);
}

void CMymfc17View::OnInitialUpdate()
{
 TRACE("Entering CMymfc17View::OnInitialUpdate\n");
 m_pList = GetDocument()->GetList();
 CFormView::OnInitialUpdate();
}

//
// CMymfc17View diagnostics

#ifdef _DEBUG
void CMymfc17View::AssertValid() const
{
 CFormView::AssertValid();
}

void CMymfc17View::Dump(CDumpContext& dc) const
{
 CFormView::Dump(dc);
}

CMymfc17Doc* CMymfc17View::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMymfc17Doc)));
 return (CMymfc17Doc*)m_pDocument;
}
#endif //_DEBUG

//
// CMymfc17View message handlers

void CMymfc17View::OnClear()
{
 TRACE("Entering CMymfc17View::OnClear\n");
 ClearEntry();
}

void CMymfc17View::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{
 // called by OnInitialUpdate and by UpdateAllViews
 TRACE("Entering CMymfc17View::OnUpdate\n");
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position); // initial data for view
}

void CMymfc17View::OnStudentHome()
{
 TRACE("Entering CMymfc17View::OnStudentHome\n");
 // need to deal with list empty condition
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position);
 }
}

void CMymfc17View::OnStudentEnd()

{
 TRACE("Entering CMymfc17View::OnStudentEnd\n");
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetTailPosition();
 GetEntry(m_position);
 }
}

void CMymfc17View::OnStudentPrev()
{
 POSITION pos;
 TRACE("Entering CMymfc17View::OnStudentPrev\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetPrev(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }
}

void CMymfc17View::OnStudentNext()
{
 POSITION pos;
 TRACE("Entering CMymfc17View::OnStudentNext\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }
}
void CMymfc17View::OnStudentIns()
{
 TRACE("Entering CMymfc17View::OnStudentIns\n");
 InsertEntry(m_position);
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
}

void CMymfc17View::OnStudentDel()
{
 // deletes current entry and positions to next one or head
 POSITION pos;
 TRACE("Entering CMymfc17View::OnStudentDel\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos == NULL) {
 pos = m_pList->GetHeadPosition();
 TRACE("GetHeadPos = %ld\n", pos);
 if (pos == m_position) {
 pos = NULL;
 }
 }
 GetEntry(pos);
 CStudent* ps = m_pList->GetAt(m_position);
 m_pList->RemoveAt(m_position);
 delete ps;
 m_position = pos;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
 }
}

void CMymfc17View::OnUpdateStudentHome(CCmdUI* pCmdUI)

{
 // called during idle processing and when Student menu drops down
 POSITION pos;

 // enables button if list not empty and not at home already
 pos = m_pList->GetHeadPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CMymfc17View::OnUpdateStudentEnd(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;

 // enables button if list not empty and not at end already
 pos = m_pList->GetTailPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CMymfc17View::OnUpdateStudentDel(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 pCmdUI->Enable(m_position != NULL);
}

void CMymfc17View::GetEntry(POSITION position)
{
 if (position) {
 CStudent* pStudent = m_pList->GetAt(position);
 m_strName = pStudent->m_strName;
 m_nGrade = pStudent->m_nGrade;
 }
 else {
 ClearEntry();
 }
 UpdateData(FALSE);
}

void CMymfc17View::InsertEntry(POSITION position)
{
 if (UpdateData(TRUE)) {
 // UpdateData returns FALSE if it detects a user error
 CStudent* pStudent = new CStudent;
 pStudent->m_strName = m_strName;
 pStudent->m_nGrade = m_nGrade;
 m_position = m_pList->InsertAfter(m_position, pStudent);
 }
}

void CMymfc17View::ClearEntry()
{
 m_strName = "";
 m_nGrade = 0;
 UpdateData(FALSE);
 ((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
}

Listing 7: The CMymfc17View class listing.

Testing the MYMFC17 Application

Build the program and start it from the debugger, and then test it by typing some data and saving it on disk with the
filename Test.myext. You don't need to type the .myext.

Figure 24: MYMFC17 program output in action.

Figure 25: MYMFC17 Save menu in action, saving some data.

Figure 26: Save dialog, prompting the file name.

Exit the program, and then restart it and open the file you saved. Did the data you typed come back? Take a look at the
Debug window and observe the sequence of function calls. Is the following sequence produced when you start the
application and open the file?

...
Entering CMymfc17Doc constructor
...
Entering CMymfc17View constructor
Entering CMymfc17Doc::OnNewDocument
Entering CMymfc17Doc::DeleteContents
Entering CMymfc17View::OnInitialUpdate
Entering CMymfc17View::OnUpdate
Entering CMainFrame::ActivateFrame
...
Entering CMymfc17Doc::OnOpenDocument
Entering CMymfc17Doc::DeleteContents
Entering CMymfc17Doc::Serialize
Entering CMymfc17Doc::Serialize
Entering CMymfc17Doc::Serialize

Entering CMymfc17View::OnInitialUpdate
Entering CMymfc17View::OnUpdate
Entering CMainFrame::ActivateFrame
...
The thread 0xB30 has exited with code 0 (0x0).
The program 'F:\mfcproject\mymfc17\Debug\mymfc17.exe' has exited with code 0 (0x0).

Explorer Launch and Drag and Drop

In the past, PC users were accustomed to starting up a program and then selecting a disk file (sometimes called a
document) that contained data the program understood. Many MS-DOS-based programs worked this way. The old
Windows Program Manager improved things by allowing the user to double-click on a program icon instead of typing a
program name. Meanwhile, Apple Macintosh users were double-clicking on a document icon; the Macintosh operating
system figured out which program to run. While Windows Explorer still lets users double-click on a program, it also lets
users double-click on a document icon to run the document's program. But how does Explorer know which program to
run? Explorer uses the Windows Registry to make the connection between document and program. The link starts with
the filename extension that you typed into AppWizard, but as you'll see, there's more to it than that. Once the association
is made, users can launch your program by double-clicking on its document icon or by dragging the icon from Explorer
to a running instance of your program. In addition, users can drag the icon to a printer, and your program will print it.

Program Registration

In Module 9, you saw how MFC applications store data in the Windows Registry by calling SetRegistryKey()
from the InitInstance() function. Independent of this SetRegistryKey() call, your program can write file
association information in a different part of the Registry on startup. To activate this feature, you must type in the
filename extension when you create the application with AppWizard. (Use the Advanced button in AppWizard Step 4.)
After you do that, AppWizard adds the extension as a substring in your template string and adds the following line in
your InitInstance() function:

RegisterShellFileTypes(TRUE);

Listing 8.

Now your program adds two items to the Registry. Under the HKEY_CLASSES_ROOT top-level key, it adds a subkey
and a data string as shown here for the MYMFC17 example:

.myext = Mymfc17.Document

Figure 27: Registry information for MYMFC17 project.

The data item is the file type ID that AppWizard has chosen for you. Mymfc17.Document, in turn, is the key for
finding the program itself. The Registry entries for Mymfc17.Document, also beneath HKEY_CLASSES_ROOT, are
shown here.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc9.html

Figure 28: Another Registry information for MYMFC17.

Notice that the Registry contains the full pathname of the MYMFC17 program. Now Explorer can use the Registry to
navigate from the extension to the file type ID to the actual program itself. After the extension is registered, Explorer
finds the document's icon and displays it next to the filename, as shown here.

Figure 29: Icon and file extension.

Double-Clicking on a Document

When the user double-clicks on a document icon, Explorer executes the associated SDI program, passing in the selected
filename on the command line. You might notice that AppWizard generates a call to EnableShellOpen() in the
application class InitInstance() function. This supports execution via DDE message, the technique used by the
File Manager in Windows NT 3.51. Explorer can launch your SDI application without this call.

Enabling Drag and Drop

If you want your already-running program to open files dragged from Explorer, you must call the CWnd function
DragAcceptFiles() for the application's main frame window. The application object's public data member
m_pMainWnd points to the CFrameWnd (or CMDIFrameWnd) object. When the user drops a file anywhere inside the
frame window, the window receives a WM_DROPFILES message, which triggers a call to
FrameWnd::OnDropFiles. The following line in InitInstance(), generated by AppWizard, enables drag and
drop:

m_pMainWnd->DragAcceptFiles();

Listing 9.

Program Startup Parameters

When you choose Run from the Start menu, or when you double-click the program directly in Explorer, there is no
command-line parameter. The InitInstance() function processes the command line with calls to
ParseCommandLine() and ProcessShellCommand(). If the command line contains something that looks like
a filename, the program immediately loads that file. Thus, you create a Windows shortcut that can run your program
with a specific document file.

Experimenting with Explorer Launch and Drag and Drop

Once you have built MYMFC17, you can try running it from Explorer. You must execute the program directly,
however, in order to write the initial entries in the Registry. Be sure that you've saved at least one myext file to disk, and
then exit MYMFC17. Start Explorer, and then open the \vcpp32\mymfc17 directory. Double-click on one of the myext
files in the panel on the right. Your program should start with the selected file loaded. Now, with both MYMFC17 and
Explorer open on the desktop, try dragging another file from Explorer to the MYMFC17 window. The program should
open the new file just as if you had chosen File Open from the MYMFC17 menu.
You might also want to look at the MYMFC17 entries in the Registry. Run the Regedit program (possibly named
Regedt32 in Windows NT), and expand the HKEY_CLASSES_ROOT key. Look under ".myext" and
"Mymfc17.Document."
Also expand the HKEY_CURRENT_USER (or HKEY_USERS\.DEFAULT) key, and look under "Software." You
should see a Recent File List under the subkey mymfc17.

Figure 30: Recent File List in Registry for MYMFC17 project.

The MYMFC17 program calls SetRegistryKey() with the string "Local AppWizard-Generated
Applications", so the program name goes beneath the mymfc17 subkey.

Further reading and digging:

1. Standard C File Input/Output.
2. Standard C++ File Input/Output.
3. Win32 File Input/Output: Module C, Module D and Module E.
4. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
5. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
6. MSDN Library
7. Windows data type.
8. Win32 programming Tutorial.
9. The best of C/C++, MFC, Windows and other related books.
10. Unicode and Multibyte character set: Story and program examples.

http://www.tenouk.com/Module9.html
http://www.tenouk.com/Module19.html
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/ModuleD.html
http://www.tenouk.com/ModuleE.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

