Module 10: Separating the Document from Its View

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Separating the Document from Its View
Document - View Interaction Functions

The CView: :GetDocument Function

The CDocument: :UpdateAl IViews Function
The CView: :OnUpdate Function

The CView: :OnlnitialUpdate Function

The CDocument: :OnNewDocument Function

The Simplest Document - View Application
The CFormView Class

The CObject Class

Diagnostic Dumping

The TRACE Macro

The afxDump Object

The Dump Context and the CObject Class
Automatic Dump of Undeleted Objects
Window Subclassing for Enhanced Data-Entry Control
The MYMFC15 Example

A More Advanced Document-View Interaction
The CDocument: :DeleteContents Function
The CObList Collection Class

Using the CObList Class for a First-In, First-Out List
CObList Iteration: The POSITION Variable
The CTypedPtrList Template Collection Class
The Dump Context and Collection Classes
The MYMFC16 Example

Resource Requirements

Toolbar

Student Menu

Edit Menu

The IDD_MYMFC16_FORM Dialog Template

Code Requirements

CMymFcl6App Class

CMainFrame Class

CStudent Class

ClassWizard and CMymfcl6Doc Class

Data Members

Constructor
GetList()
DeleteContents()

Dump(Q)
CMymfcl6Doc Class

ClassWizard and CMymfcl6View
Data Members

OnlnitialUpdate()

OnUpdate()

Protected Virtual Functions
CMymfcl6View Class

Testing the MYMFC16 Application

Two Exercises for the Reader
Separating the Document from Its View

Now you're finally going to see the interaction between documents and views. Module 13 gave you a preview of this
interaction when it showed the routing of command messages to both view objects and document objects. In this
module, you'll see how the document maintains the application's data and how the view presents the data to the user.
You'll also learn how the document and view objects talk to each other while the application executes.

The two examples in this module both use the CFormView class as the base class for their views. The first example is
as simple as possible, with the document holding only one simple object of class CStudent, which represents a single
student record. The view shows the student's name and grade and allows editing. With the CStudent class, you'll get
some practice writing classes to represent real-world entities. You'll also get to use the MFC Library version 6.0
diagnostic dump functions. The second example goes further by introducing pointer collection classes, the CObList
and CTypedPtrList classes in particular. Now the document holds a collection of student records, and the view
allows the sequencing, insertion, and deletion of individual records.

Document - View Interaction Functions

You already know that the document object holds the data and that the view object displays the data and allows
editing. An SDI application has a document class derived from CDocument, and it has one or more view classes, each
ultimately derived from CView. A complex handshaking process takes place among the document, the view, and the
rest of the application framework. To understand this process, you need to know about five important member functions
in the document and view classes. Two are non-virtual base class functions that you call in your derived classes; three
are virtual functions that you often override in your derived classes. Let's look at these functions one at a time.

The CView: :GetDocument Function

A view object has one and only one associated document object. The GetDocument() function allows an application
to navigate from a view to its document. Suppose a view object gets a message that the user has entered new data into an
edit control. The view must tell the document object to update its internal data accordingly. The GetDocument()
function provides the document pointer that can be used to access document class member functions or public data
embers.

The CDocument : : GetNextView function navigates from the document to the view, but because a document can
have more than one view, it's necessary to call this member function once for each view, inside a loop. You'll seldom
call GetNextView() because the application framework provides a better method of iterating through a document's
views.

When AppWizard generates a derived CView class, it creates a special type-safe version of the GetDocument()
function that returns not a CDocument () pointer but a pointer to an object of your derived class. This function is an
inline function, and it looks something like this:

CMyDoc* GetDocument()

return (CMyDoc*)m_pDocument;

}

When the compiler sees a call to GetDocument() in your view class code, it uses the derived class version instead of
the CDocument() version, so you do not have to cast the returned pointer to your derived document class. Because the
CView: :GetDocument function is not a virtual function, a statement such as:

pView->GetDocument(); // pView is declared CView*
Calls the base class GetDocument() function and thus returns a pointer to a CDocument object.
The CDocument: :UpdateAllIViews Function

If the document data changes for any reason, all views must be notified so that they can update their representations of
that data. If UpdateAl IViews() is called from a member function of a derived document class, its first parameter,

http://www.tenouk.com/visualcplusmfc/visualcplusmfc13.html

pSender, is NULL. If UpdateAl IViews() is called from a member function of a derived view class, set the
pSender parameter to the current view, like this:

GetDocument()->UpdateAllIViews(this);

The non-null parameter prevents the application framework from notifying the current view. The assumption here is that
the current view has already updated itself. The function has optional hint parameters that can be used to give view-
specific and application-dependent information about which parts of the view to update. This is an advanced use of the
function. How exactly is a view notified when UpdateAl IViews() gets called? Take a look at the next function,
OnUpdate().

The CView: :OnUpdate Function

This virtual function is called by the application framework in response to your application's call to the

CDocument: :UpdateAl 1Views function. You can, of course, call it directly within your derived CView class.
Typically, your derived view class's OnUpdate () function accesses the document, gets the document's data, and then
updates the view's data members or controls to reflect the changes. Alternatively, OnUpdate() can invalidate a portion
of the view, causing the view's OnDraw() function to use document data to draw in the window. The OnUpdate ()
function might look something like this:

void CMyView: :OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint)

{
CMyDocument* pMyDoc = GetDocument();
CString lastName = pMyDoc->GetLastName();
// m_pNameStatic is a CMyView data member
m_pNameStatic->SetWindowText(lastName) ;

¥

The hint information is passed through directly from the call to UpdateAl IViews(). The default OnUpdate ()
implementation invalidates the entire window rectangle. In your overridden version, you can choose to define a smaller
invalid rectangle as specified by the hint information. If the CDocument() function UpdateAlIViews() is called
with the pSender parameter pointing to a specific view object, OnUpdate() is called for all the document's views
except the specified view.

The CView: :OnlnitialUpdate Function

This virtual CView function is called when the application starts, when the user chooses New from the File menu, and
when the user chooses Open from the File menu. The CView base class version of OnInitialUpdate() does
nothing but call OnUpdate (). If you override OnInitialUpdate() in your derived view class, be sure that the
view class calls the base class's OnInitialUpdate () function or the derived class's OnUpdate () function. You
can use your derived class's OnInitialUpdate () function to initialize your view object. When the application
starts, the application framework calls OnInitialUpdate() immediately after OnCreate () (if you've mapped
OnCreate() in your view class). OnCreate() is called once, but OnInitialUpdate() can be called many
times.

The CDocument: :OnNewDocument Function

The framework calls this virtual function after a document object is first constructed and when the user chooses New
from the File menu in an SDI application. This is a good place to set the initial values of your document's data members.
AppWizard generates an overridden OnNewDocument() function in your derived document class. Be sure to retain
the call to the base class function.

The Simplest Document - View Application
Suppose you don't need multiple views of your document but you plan to take advantage of the application framework's

file support. In this case, you can forget about the UpdateAl IViews() and OnUpdate() functions. Simply follow
these steps when you develop the application:

1. In your derived document class header file (generated by AppWizard), declare your document's data members.
These data members are the primary data storage for your application. You can make these data members
public, or you can declare the derived view class a friend of the document class.

2. Inyour derived view class, override the OnInitialUpdate () virtual member function. The application
framework calls this function after the document data has been initialized or read from disk. (Module 11
discusses disk file I/0.) OnInitialUpdate() should update the view to reflect the current document data.

3. Inyour derived view class, let your window message handlers, command message handlers and your
OnDraw() function read and update the document data members directly, using GetDocument() to access
the document object.

The sequence of events for this simplified document-view environment is as follows.

Sequence Description

CMyDocument object constructed
CMyView object constructed

View window created

CMyView: :OnCreate called (if mapped)
Application starts CMyDocument: :OnNewDocument called
CMyView: :OnInitialUpdate called
View object initialized

View window invalidated

CMyView: :OnDraw called

User edits data CMyView functions update CMyDocument data members
CMyView object destroyed

CMyDocument object destroyed

User exits application

Table 1.
The CFormView Class

The CFormView class is a useful view class that has many of the characteristics of a modeless dialog window. Like a
class derived from CDialog, a derived CFormView class is associated with a dialog resource that defines the frame
characteristics and enumerates the controls. The CFormView class supports the same dialog data exchange and
validation (DDX and DDV) functions that you saw in the CDialog examples in Module 5.

If AppWizard generates a Form View dialog, the properties are set correctly, but if you use the dialog editor to make a
dialog for a form view, you must specify the following items in the Dialog Properties dialog:

1. Style = Child.
2. Border = None.
3. Visible = unchecked.

A CFormView object receives notification messages directly from its controls, and it receives command messages from
the application framework. This application framework command-processing ability clearly separates CFormView
from CDialog and it makes controlling the view from the frame's main menu or toolbar easy.

The CFormView class is derived from CView (actually, from CScrol 1View) and not from CDialog. You can't,
therefore, assume that CDiallog member functions are supported. CFormView does not have virtual
OnlnitDialog(), OnOK(), and OnCancel () functions. CFormView() member functions do not call
UpdateData() and the DDX functions. You have to call UpdateData() yourself at the appropriate times, usually
in response to control notification messages or command messages.

Even though the CFormView class is not derived from the CDial og class, it is built around the Microsoft Windows
dialog. For this reason, you can use many of the CDialog class member functions such as GotoDIgCtr1 () and
NextDIgCtri (). All you have to do is cast your CFormView pointer to a CDialog pointer. The following
statement, extracted from a member function of a class derived from CFormView, sets the focus to a specified control.
GetDIlgltem() is a CWnd function and is thus inherited by the derived CFormView class.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc11sdi.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc5.html

((CDialog*) this)->GotoDIgCtri(GetDIgltem(1DC_NAME));

AppWizard gives you the option of using CFormView as the base class for your view. When you select CFormView,
AppWizard generates an empty dialog with the correct style properties set. The next step is to use ClassWizard to add
control notification message handlers, command message handlers, and update command UI handlers. (The example
steps starting after Figure 16-2 show you what to do.) You can also define data members and validation criteria.

The CObject Class

If you study the MFC library hierarchy, you'll notice that the CObject class is at the top. Most other classes are derived
from the CObject root class. When a class is derived from COb ject, it inherits a number of important characteristics.
The many benefits of CObject derivation will become clear as you read the modules that follow. In this module, you'll
see how CObject derivation allows objects to participate in the diagnostic dumping scheme and allows objects to be
elements in the collection classes.

Diagnostic Dumping

The MFC library gives you some useful tools for diagnostic dumping. You enable these tools when you select the
Debug target. When you select the Win32 Release target, diagnostic dumping is disabled and the diagnostic code is
not linked to your program. All diagnostic output goes to the Debug view in the debugger's Output window. To clear
diagnostic output from the debugger's Output window, position the cursor in the Output window and click the right
mouse button. Then choose Clear from the pop-up menu.

The TRACE Macro

You've seen the TRACE macro used throughout the preceding examples in this book. TRACE statements are active
whenever the constant _ DEBUG is defined (when you select the Debug target and when the afxTraceEnabled
variable is set to TRUE). TRACE statements work like C language pr intf statements, but they're completely disabled
in the release version of the program. Here's a typical TRACE statement:

int nCount = 9;
CString strDesc('total™);
TRACE(""Count = %d, Description = %s\n", nCount, strDesc);

The TRACE macro takes a variable number of parameters and is thus easy to use. If you look at the MFC source code,
you won't see TRACE macros but rather TRACEO, TRACE1, TRACE2, and TRACE3 macros. These macros take 0, 1, 2,
and 3 parameters, respectively, and are leftovers from the 16-bit environment, where it was necessary to conserve space
in the data segment.

The afxDump Object

An alternative to the TRACE statement is more compatible with the C++ language. The MFC afxDump object accepts
program variables with a syntax similar to that of cout, the C++ output stream object. You don't need complex
formatting strings; instead, overloaded operators control the output format. The aFxDump output goes to the same
destination as the TRACE output, but the aFxDump object is defined only in the Debug version of the MFC library.
Here is a typical stream-oriented diagnostic statement that produces the same output as the TRACE statement above:

int nCount = 9;
CString strDesc('total™);
#ifdef _DEBUG
afxDump << "Count = " << nCount << ", Description = " << strDesc << "\n"';
#endif // _DEBUG

Although both aFxDump and cout use the same insertion operator (<<), they don't share any code. The cout object is
part of the Microsoft Visual C++ 1ostream library, and afxDump is part of the MFC library. Don't assume that any
of the cout formatting capability is available through aFxDump.

Classes that aren't derived from CObject, such as CString, CTime, and CRect, contain their own overloaded
insertion operators for CDumpContext objects. The CDumpContext class, of which aFxDump is an instance,

includes the overloaded insertion operators for the native C++ data types (int, double, char*, and so on). The
CDumpContext class also contains insertion operators for CObject references and pointers, and that's where things
get interesting.

The Dump Context and the CObject Class

If the CDumpContext insertion operator accepts COb ject pointers and references, it must also accept pointers and
references to derived classes. Consider a trivial class, CActiion, that is derived from COb ject, as shown here:

class CAction : public CObject

{
public:
int m_nTime;
}:

What happens when the following statement executes?

#ifdef DEBUG
afxDump << action; // action is an object of class CAction
#endif // DEBUG

The virtual CObject: : Dump function gets called. If you haven't overridden Dump () for CAction, you don't get
much except for the address of the object. If you have overridden Dump, however, you can get the internal state of your
object. Here's a CAction: :Dump function:

#ifdef _DEBUG
void CAction: :Dump(CDumpContext& dc) const

CObject: :Dump(dc); // Always call base class function
dc << "time = " << m_nTime << "\n"';

}
#endif // _DEBUG

The base class (COb ject) Dump () function prints a line such as this:
a CObject at $4115D4

If you have called the DECLARE_DYNAMI C macro in your CAction class definition and the IMPLEMENT_DYNAMIC
macro in your CAction declaration, you will see the name of the class in your dump:

a CAction at $4115D4

Even if your dump statement looks like this:

#ifdef _DEBUG
afxDump << (CObject&) action;
#endif // _DEBUG

The two macros work together to include the MFC library runtime class code in your derived COb ject class. With this
code in place, your program can determine an object's class name at runtime (for the dump, for example) and it can
obtain class hierarchy information. The (DECLARE_SERIAL, IMPLEMENT_ _SERIAL) and (DECLARE_DYNCREATE,
IMPLEMENT_DYNCREATE) macro pairs provide the same runtime class features as those provided by the
(DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC) macro pair.

Automatic Dump of Undeleted Objects

With the Debug target selected, the application framework dumps all objects that are undeleted when your program
exits. This dump is a useful diagnostic aid, but if you want it to be really useful, you must be sure to delete all your
objects, even the ones that would normally disappear after the exit. This object cleanup is good programming discipline.
The code that adds debug information to allocated memory blocks is now in the Debug version of the CRT (C runtime)

http://www.tenouk.com/ModuleA.html

library rather than in the MFC library. If you choose to dynamically link MFC, the MSVCRTD DLL is loaded along with
the necessary MFC DLLs. When you add the line:

#define new DEBUG_NEW

at the top of a CPP file, the CRT library lists the filename and line number at which the allocations were made.
AppWizard puts this line at the top of all the CPP files it generates.

Window Subclassing for Enhanced Data-Entry Control

What if you want an edit control (in a dialog or a form view) that accepts only numeric characters? That's easy. You just
set the Number style in the control's property sheet. If, however, you want to exclude numeric characters or change the
case of alphabetic characters, you must do some programming.

The MFC library provides a convenient way to change the behavior of any standard control, including the edit control.
Actually, there are several ways. You can derive your own classes from CEdit, CListBoX, and so forth (with their
own message handler functions) and then create control objects at runtime. Or you can register a special window class,
as a Win32 programmer would do, and integrate it into the project's resource file with a text editor. Neither of these
methods, however, allows you to use the dialog editor to position controls in the dialog resource.

The easy way to modify a control's behavior is to use the MFC library's window subclassing feature. You use the dialog
editor to position a normal control in a dialog resource, and then you write a new C++ class that contains message
handlers for the events that you want to handle yourself.

Here are the steps for subclassing an edit control:

With the dialog editor, position an edit control in your dialog resource. Assume that it has the child window ID
IDC_EDITI1. Write a new class, for example, CNonNumer icEdi t, derived from CEdit. Map the W_CHAR
message and write a handler like this:

void CNonNumericEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
if (Misdigit(nChar))
{ CEdit::OnChar(nChar, nRepCnt, nFlags);
¥
In your derived dialog or form view class header, declare a data member of class CNonNumer icEdi t in this way:

private:
CNonNumericEdit m_nonNumericEdit;

If you're working with a dialog class, add the following line to your OnInitDialog() override function:
m_nonNumericEdit.SubclassDIgltem(IDC_EDIT1, this);
If you're working with a form view class, add the following code to your OnInitialUpdate() override function:

if (m_nonNumericEdit.m_hWnd == NULL)
{

}

m_nonNumericEdit.SubclassDIgltem(IDC_EDIT1, this);

The CWnd: : SubclassDIgl tem member function ensures that all messages are routed through the application
framework's message dispatch system before being sent to the control's built-in window procedure. This technique is
called dynamic subclassing and is explained in more detail in Technical Note #14 in the online documentation. The code
in the preceding steps only accepts or rejects a character. If you want to change the value of a character, your handler
must call CWnd : : DefWindowProc, which bypasses some MFC logic that stores parameter values in thread object
data members. Here's a sample handler that converts lowercase characters to uppercase:

void CUpperEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)

if (islower(nChar))

nChar = toupper(nChar);

}
DefWindowProc(WM_CHAR, (WPARAM) nChar, (LPARAM) (nRepCnt | (nFlags << 16)));

}

You can also use window subclassing to handle reflected messages, which were mentioned in Module 5. If an MFC
window class doesn't map a message from one of its child controls, the framework reflects the message back to the
control. Technical Note #62 in the online documentation explains the details.

If you need an edit control with a yellow background, for example, you can derive a class CYel lowEdit from CEdit
and use ClassWizard to map the WM_CTLCOLOR message in CYel lowEd i t. ClassWizard lists the message name with
an equal sign in front to indicate that it is reflected. The handler code, shown below, is substantially the same as the non-
reflected WM_CTLCOLOR handler. Member variable m_hYel lowBrush is defined in the control class's constructor.

HBRUSH CYellowEdit::CtlColor(CDC* pDC, UINT nCtlColor)

pDC->SetBkColor(RGB(255, 255, 0)); // yellow
return m_hYellowBrush;

}
The MYMFC15 Example

The first of this module's two examples shows a very simple document-view interaction. The CMymfc15Doc
document class, derived from CDocument, allows for a single embedded CStudent object. The CStudent class
represents a student record composed of a CString name and an integer grade. The CMymFcl15View view class is
derived from CFormView. It is a visual representation of a student record that has edit controls for the name and grade.
The default Enter pushbutton updates the document with data from the edit controls. Figure 1 shows the MYMFC15
program window.

£ Untitled - mymfc15 FEX]

File Edit Wjew Help

0= & 4

& %em Simple Student Data Entryp

Mame |Mr. Bush Elair

Grade 23
Enter

Ready

Figure 1: The MYMFC15 program in action.

Listing 1 shows the code for the CStudent class (Student.h and Student.cpp). Most of the class's features serve
MYMFCI15, but a few items carry forward to MYMFC16 and the programs discussed in Module 11. For now, take note
of the two data members, the default constructor, the operators, and the Dump () function declaration. The
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the class name is available for the diagnostic
dump.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc5.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc11sdi.html

STUDENT.H
// student.h

#ifndef _INSIDE_VISUAL_CPP_STUDENT
#define _INSIDE_VISUAL_CPP_STUDENT
class CStudent : public CObject

DECLARE_DYNAMIC(CStudent)
public:

CString m_strName;

int m_nGrade;

CStudent()
{

}

CStudent(const char* szName, int nGrade) : m_strName(szName)

{
}

CStudent(const CStudent& s) : m_strName(s.m_strName)

m_nGrade = 0;

m_nGrade = nGrade;

// copy constructor
m_nGrade = s.m_nGrade;

}
const CStudent& operator =(const CStudent& s)
{
m_strName = s.m_strName;
m_nGrade = s.m_nGrade;
return *this;
}
BOOL operator ==(const CStudent& s) const
{
ifT ((n_strName == s.m_strName) && (m_nGrade == s.m_nGrade)) {
return TRUE;
else {
return FALSE;
}
}

BOOL operator !'=(const CStudent& s) const

// Let"s make use of the operator we just defined!
return !'(*this == s);

3
#ifdef _DEBUG

void Dump(CDumpContext& dc) const;
#endif // DEBUG

};

#endif // _INSIDE_VISUAL_CPP_STUDENT
STUDENT.CPP

#include "'stdafx.h"

#include "'student.h"

IMPLEMENT_DYNAMIC(CStudent, CObject)

#ifdef DEBUG

void CStudent: :Dump(CDumpContext& dc) const

CObject: :Dump(dc);
dc << "m_strName = " << m_strName << '\nm_nGrade = " <<m_nGrade;

b
#endif // DEBUG

Listing 1: The CStudent class listing.
Follow these steps to build the MYMFCI15 example:

Run AppWizard to generate \mfcprojectimymfc15. In the Step 6 page, change the view's base class to CFormView, as
shown here.

MFC AppWizard - 5tep 6 of &

Appwizard creates the following classes for pou;
Chdprnfc Siew
Chymic] Sépp
ChainFrame
Chdyrmfe1 5000
Clazz name: Header file:
|EM_I,Imf|:'I Bfie |m_l,lmf-:'| Bifier h
Base class: Implementation file:
|EF|:|rm‘»-’iew j |m_l,lmfn:1 Aiew.cpp
CE difwigwm
CHtml e
CLigtigwm hizh | Cancel |
CRichE difiew

CSerolfiew
CTree\iewm
e

Figure 2: Step 6 of 6 AppWizard, changing the view base class to CFormView class.

The options and the default class names are shown here.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application bwpe of mymfcl &
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: CkymfcBApp in mymfc] 5.k and mymfc5.cpp
Frame: CMainFrame in MainFrm b and kainFrm.cpp
Document: Chpmfc150oc in mymfc150oc.h and mymfc150oc.cpp
Formiew: Chymic] Siew in mymfcS¥iew b and rmymic] BYiew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL)
+ Localizable text in:
Englizh [United States]

Froject Directory:
F:\mfcprojectsmymfc]s

Cancel

Figure 3: MYMFCI1S5 project summary.

Use the menu editor to replace the Edit menu options. Delete the current Edit menu items and replace them with a
Clear All option, as shown here.

File Edit

Menu Item Properties @

& B General | Extended Styles |

ID: |ID_EDIT_CLEAR_ALL | Caption: |&Clear Al

[~ Separater [Popup [Inactive Break: |Mone -

| Checked [Grayed [Help
Frompt: |Erase everythingsnErasze All

Figure 4: Adding and modifying the Edit menu properties.

Use the default constant ID_EDIT_CLEAR_ALL, which is assigned by the application framework. A menu prompt
automatically appears.

Use the dialog editor to modify the IDD_MYMFC15_FORM dialog. Open the AppWizard-generated dialog
IDD_MYMFC15_FORM, and add controls as shown below. Be sure that the Styles properties are set exactly as shown in
the Dialog Properties dialog (Style = Child; Border = None) and that Visible is unchecked.

PN e e a etazasecasatasisazaoatatansasasansatasasatanasatatata s e IReaasest e casasaeasazatatatasisasaeanstasatasasaematatatatas asaeacat I

A Yery Simple Student Data Entry

Dialog Properties

........................

4a 7
Style: [Title bar
Child - [
Border: [~
Mone - [

Name |Edi
Grade Edit
Enter
e I —— e

[Clip siblings
[Clip children

[Horizontal scroll

[Yertical scrall

[

Figure 5: Modifying the IDD_MYMFC15_FORM dialog and its properties.

Use the following IDs for the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Enter pushbutton IDC_ENTER
Table 2.

Push Button Properties

=\ 7

General | Styles | Estended Stules |

ID: |IDC_ENTER

v “izible
[Disabled

[Group
[Tab stop

j Caption:

[HelplD

|&Enter

Ed)

Figure 6: Modifying the push button properties.

Use ClassWizard to add message handlers for CMymFc15View. Select the CMymFcl5View class, and then add
handlers for the following messages. Accept the default function names.

Object ID

Message

Member Function

IDC_ENTER

BN_CLICKED

OnEnter()

ID_EDIT CLEAR ALL | COMMAND onEditClearAll1()
ID_EDIT CLEAR ALL | UPDATE_COMMAND Ul | OnUpdateEditClearAll()

Table 3.

MFC ClassWizard

Mezzage Maps b ember Y ariables] Autamation I Activer Events] Clazz Info |

Project: Clazs name: Add Class... =

mymfc5] Chlymfc1Siew _1! e -
Lo, ..
F:h Amwmfe Bhmymfe] B iew b, Foi mumfc] Shmomfc 1 BYiew.cpp m
Object |0 Meszsages: Delete Function
Chyrfc1 5 iew A COMMAND :
|D_4PF_8EOUT S LFDATE COMMAND LI Edi Code
D APF ExIT =
D EDIT CLEARALL | Add Member Function X
ID_EDIT_COPRY |_I
ID_EDIT_CUT

D EDIT_FASTE b erber function narme:

| £

k. |
Member functions: !D”U polat {2 B T |

Cancel
Y DaoDataExchange

Mezzage: UPDATE_COMMARND_L

W OnEditCleandll Or_ID_EDIT_CL Obiect ID: 1D_EDIT_CLEAR_ALL

Wi OnEnter OM_IDC_EMTER

YW Onlnitial)pdate =

Y PreCreatewindow b
Description: Callback far menu and button enablingdgraving

ak. I Cancel J

Figure 7: Using ClassWizard to add message handlers for CMymfcl5View.

Use ClassWizard to add variables for CMymfc15View. Click on the Member Variables tab in the MFC ClassWizard
dialog, and then add the following variables.

Control ID Member Variable Category Variable Type
IDC_GRADE | m_nGrade Value int
I1DC_NAME m_strName Value CString

Table 4.

MFC ClassWizard

tMeszage Maps Member Yanables Autamation I Activer Events | Clazz Info |

FProject;
myrfc]5 Add Member Yariahle

F:h . Armyrnfe T Shmwrnfcl

tember vanable name: 0k
Contral |De: Im <M ame _
IDC_EMNTER - Cancel |
IDC GRADE Cateqgary:

I‘-.-’alue _v__l

Wariable type:

IEString _v_i

Dezcription; Description:

CString with length walidation

Add Clazs.. = |

| pdate Colum:

]S

Cancel

Figure 8: Using ClassWizard to add variables for CMymfcl15View..

For m_nGrade, enter a minimum value of 0 and a maximum value of 100.

Description: it with walidation
Minirnurm W alue: IEI
b airnum W alue: 100

Figure 9: Setting the minimum and maximum value for m_nGrade.

Notice that ClassWizard generates the code necessary to validate data entered by the user.

wvold CHymiclSView: :DoDataExchange({CDataExchange#* pDi)
{

CFormView: :DoDataExchange{plE)

S LAFE_DATA MAP(CHymfclEView)

DDE Text(pDX., IDC CGRADE. m_nGrades):

DDV _MinMamInti{pDX., m_nGrade. 0. 1003:;

DDE_Text(pDi. IDC_HAME, n_strHame):

<<V VAFE DATA HMAP

Listing 2.

Add a prototype for the helper function UpdateControlsFromDoc(). In the ClassView window, right-click on
CMymfcl5View and choose Add Member Function. Fill out the dialog box to add the following function:

private:
void UpdateControlsFromDoc();

Add Member, Function E|E|
Function Tope:

hmd
Cancel
Function Declaration:

|UpdateEDntrDI3FrDmD o]

Access
" Public " Praotected

[Static [Yirtual

Figure 10: Using ClassView to add a prototype for the helper function UpdateControlsFromDoc().

Edit the file Mymfcl5View.cpp. AppWizard generated the skeleton OnInitialUpdate() function and ClassView
generated the skeleton UpdateControlsFromDoc() function. UpdateControlsFromDoc() is a private helper
member function that transfers data from the document to the CMymFc15View data members and then to the dialog
edit controls. Edit the code as shown here:

void CMymfcl5View: :OnlnitialUpdate()

{ // called on startup
UpdateControlsFromDoc();

¥

wvold CHymiclSView: OnlnitialUpdatel)
1

S« called on =tartup
TpdateControlsFromDoc() ;

A
S CHymfclSView diagno=stics

Listing 3.

void CMymfcl5View: :UpdateControlsFromDoc()

{ 7/ called from OnlnitialUpdate and OnEditClearAll
CMymfcl15Doc* pDoc = GetDocument();
m_nGrade = pDoc->m_student.m_nGrade;
m_strName = pDoc->m_student.m_strName;

UpdateData(FALSE); // calls DDX
}

vold CMymfclSView: UpdateControlsFromDoci)
1
S malled from OnlnitiallUpdate and OnEditClearill
CHymfcl15Doc* pDoc = GetDocument ()
m_nGrade = ploc—:m_student m_nGrade;
n_=trHame = pDoc—:m_student m_strHame:

Updatelata(FALSE): ~~ calls DDH

Listing 4.

The OnEnter () function replaces the ONOK() function you'd expect to see in a dialog class. The function transfers
data from the edit controls to the view's data members and then to the document. Add the code shown here:

void CMymfcl5View: :OnEnter()

{
CMymfcl15Doc* pDoc = GetDocument();
UpdateData(TRUE);
pDoc->m_student.m_nGrade = m_nGrade;
pDoc->m_student.m_strName = m_strName;
s
vold CHymfclSView: OnEnter()
{
S TODD: Add wour control notification handler code here
CHynfcl15Doc* ploc = GetDocument ()
UpdatelData{ TRUE) ;
ploc—:m_=tudent m_nGrade = m_nGrade:
b pDoc—:m_=tudent . m_strHamse = n_strHame;

Listing 5.

In a complex multi-view application, the Edit Clear All command would be routed directly to the document. In this
simple example, it's routed to the view. The update command UI handler disables the menu item if the document's
student object is already blank. Add the following code:

void CMymfcl5View: :OnEditClearAll ()

// "blank" student object
GetDocument()->m_student = CStudent();
UpdateControlsFromDoc();

}
void CMymfcl5View: :OnUpdateEditClearAl 1 (CCmdUI* pCmdUl)

// blank?
pCmdUl->Enable(GetDocument()->m_student != CStudent());
}

vold CHMymfclSView: OnEditCleardll()
1

S« TODD: Add wvour command handler code here
¢ "hlank" =tudent object
GetDocument { i—rm_student = CStudenti);
TpdateControlsFromDoci) :

b
vold CHMymfclSView: OnllpdateEditClearAll (CCndlUI* pCndlI)
S« TODOD: Add wvour command update Tl handler code here

A blank?
pemdUI-:Enable{GetDocument {)—rmn_=student |= CStudent{));

Listing 6.

Edit the MYMFC15 project to add the files for CStudent. Choose Add To Project from the Project menu, choose
New from the submenu, and select the C/C++ Header File and type the Student as the file name.

File=] Projects Other Documents

cﬁ Active Server Page ¥ fdd to project:

% Binary File I"'" i1 _]
Wi -

45 Bitmnap File

[CAC++ Header File

[Z] C++ Source File File name:

E% Curzor File 1Studend

[®] HTML Page

EE lcon File Location:

ﬂ tacro File]F:"xmfcprcuieu:t'xm_l.lmfﬂ] ____l
5 Fiezource Script

Resource Template

5L Script File

T et File

] 4 | Cancel

Figure 11: Adding new header file to the project for the Student class.

Then copy the previous Student.h code into the newly created Student.h file. Repeat the similar steps for Student.cpp
file. Select the C++ Source File in this case.

File= l Projects Other Documents

aF] &ctive Server Page v Add to project:

23| Binary File | mymic15 -
wifc -

45 Bitmnap File

[CAC++ Header File

[2] C++ Source File File namme:

E% Curzor File 1Student

[®] HTML Page

EE lcon File Location:

5 Fiezource Script
=5l Resource Template
SGL Script File

T et File

E tacro File]F:"xmfcprcuieu:t'xm_l.lmfﬂ] ____l

] 4 | Cancel

Figure 12: Adding new source file to the project for the Student class.

Visual C++ will add the files' names to the project's DSP file so that they will be compiled when you build the project.
Add a CStudent data member to the CMym¥c15Doc class. Use ClassView to add the following data member, and the
#include will be added automatically.

public:
CStudent m_student;

Add Member Variable

Yariable Type: oK.
|E5 tudent
Cancel
Varnable Name:
| m_student
Access

+ Public " Protected " Private

Figure 13: Adding a CStudent data member to the CMym¥cl15Doc class.

The CStudent constructor is called when the document object is constructed, and the CStudent destructor is called
when the document object is destroyed. Edit the Mymfc15Doc.cpp file. Use the CMym¥cl15Doc constructor to
initialize the student object, as shown here:

CMymfcl15Doc: :CMymfcl5Doc() : m_student(*'The default value', 0)

TRACE("'Document object constructed\n');

}

CHymfclSDoc: :CHymiclSDoc{) : m_student{"The default walu=s". 0)
1

S TODD: add one—-time construction code here
TRACE("Docunent ohject constructedsn"):

Listing 7.

We can't tell whether the MYMFC15 program works properly unless we dump the document when the program exits.
We'll use the destructor to call the document's Dump () function, which calls the CStudent: : Dump function shown
here:

CMymfc15Doc: : ~CMymfc15Doc()
#ifdef _DEBUG

Dump(afxDump) ;
#endif // _DEBUG

ks
CHynfcl15Doo: ~CHymfc15Doc()
{
#ifdef _DEBUG
Cunpfaf=zlunp) ;
#endif -~ _DEEBUG
h

Listing 8.
void CMymfcl5Doc: :Dump(CDumpContext& dc) const

CDocument: :Dump(dc) ;
dc << "\n" << m_student << \n"';

¢ CHymfcl15Doc diagnostics

¥ifdef _DEBUG
vold CHymiclSDoc: AssertValid() const

CDocument : :AssertValid():
I

vold CHymfclSDoc: :Dump(ClumpContexté: do) con=t

Chocument :Dumpi(dc) ;
do << "~n" << m_student << "~n":

I
tendif -~ DEEUG

A
¢ CHymfcl5Doc commands=

Listing 9.

Build and test the MYMFC15 application. Type a name and a grade, and then click Enter. Now exit the application.

Euild Tools ‘Window Help
@ Compile mvmfclSooc.cpp Cer4+F7
Build rmymfclS. exe F7
Rebuild Al
Batch Build. ..

Clean

Start Debug

Debugaer Remaoke Connectian, ..

Execute mymfclS, exe

Set Active Configuration. ..
Configurations. ..

Prafile, ..

ate ﬂ

=15

M

storing code here

CErl+FS

- EE

¥ step Into Fi1
M} Run ko Cursor ChlHFI10

Attach to Process, .

=tics

PTT 1 0 1

Figure 14: Building MYMFC15 in debug mode.

=1

<+ Untitled - mymfc15

File Edit Yiew Help

M=oy =

A e Simple Student D ata Entmy

Marre |h-1r. John Lennon

fGrade |99

Ready

Figure 15: MYMFC15 program output, testing the functionalities.

Does the Debug window show messages similar to those shown here?

a CMymfcl5Doc at $421920
m_strTitle = Untitled
m_strPathName =
m_bModified = 0O
m_pDocTemplate = $421B20

a CStudent at $421974
m_strName = Mr. John Lennon
m_nGrade = 99

a CHymfclSDoc at 5421920
m_=trTitle = Untitled
n_=trFPathHame =
m_bHodified = 00
m_pDocTemplate = $421B20

a CStudent at 5421974

m_=trHame = Mr. John Lennon

mn_nGrade = 99

The thread 02768 has exited with code 0 (0=0).
The program 'F:~mfcproject ~mnymfclS-~Debug~mnymfclS exe’ haz exited with code 0 (0=x0).

Build % Debug FindinFiles1 % FindinFies2 % Resuts 3 SGL Debugging / | 4|

Listing 10.

To see these messages, you must compile the application with the Win32 Debug target selected and you must run the
program from the debugger.

A More Advanced Document-View Interaction

If you're laying the groundwork for a multiview application, the document-view interaction must be more complex than
the simple interaction in example MYMFC15. The fundamental problem is this: the user edits in view #1, so view #2
(and any other views) must be updated to reflect the changes. Now you need the UpdateAl lViews() and
OnUpdate () functions because the document is going to act as the clearinghouse for all view updates. The
development steps are shown here:

1. Inyour derived document class header file (generated by AppWizard), declare your document's data members.
If you want to, you can make these data members private and you can define member functions to access them
or declare the view class as a friend of the document class.

2. Inyour derived view class, use ClassWizard to override the OnUpdate () virtual member function. The
application framework calls this function whenever the document data has changed for any reason.
OnUpdate () should update the view with the current document data.

3. Evaluate all your command messages. Determine whether each one is document-specific or view-specific. A
good example of a document-specific command is the Clear All command on the Edit menu. Now map the
commands to the appropriate classes.

4. Inyour derived view class, allow the appropriate command message handlers to update the document data. Be
sure these message handlers call the CDocument: :UpdateAl 1Views function before they exit. Use the
type-safe version of the CView: :GetDocument member function to access the view's document.

5. Inyour derived document class, allow the appropriate command message handlers to update the document data.
Be sure that these message handlers call the CDocument: : UpdateAl IViews function before they exit.

The sequence of events for the complex document-view interaction is shown here.

Sequence Description
CMyDocument object constructed
CMyView object constructed
Other view objects constructed
View windows created
Application starts CMyView: :OnCreate called (if mapped)
CDocument: :OnNewDocument called
CView: :OnInitialUpdate called
Calls CMyView: :OnUpdate
Initializes the view
CMyView functions update CMyDocument data members
User executes view command Call CDocument: :UpdateAllViews
Other views' OnUpdate () functions called
CMyDocument functions update data members
Call CDocument: :UpdateAllViews

User executes document command

CMyView: :OnUpdate called

Other views' OnUpdate () functions called
View objects destroyed

CMyDocument object destroyed

User exits application

Table 5.
The CDocument: :DeleteContents Function

At some point, you'll need a function to delete the contents of your document. You could write your own private
member function, but it happens that the application framework declares a virtual De leteContents() function for
the CDocument class. The application framework calls your overridden De leteContents() function when the
document is closed and as you'll see in the next module, at other times as well.

The CObList Collection Class

Once you get to know the collection classes, you'll wonder how you ever got along without them. The CObL i st class is
a useful representative of the collection class family. If you're familiar with this class, it's easy to learn the other list
classes, the array classes, and the map classes.

You might think that collections are something new, but the C programming language has always supported one kind of
collection, the array. C arrays must be fixed in size, and they do not support insertion of elements. Many C
programmers have written function libraries for other collections, including linked lists, dynamic arrays, and indexed
dictionaries. For implementing collections, the C++ class is an obvious and better alternative than a C function library. A
list object, for example, neatly encapsulates the list's internal data structures.

The CObL i st class supports ordered lists of pointers to objects of classes derived from CObject. Another MFC
collection class, CPErList, stores void pointers instead of COb ject pointers. Why not use CPtrList instead? The
CObL i st class offers advantages for diagnostic dumping, which you'll see in this chapter, and for serialization, which
you'll see in the next chapter. One important feature of CObL 1St is that it can contain mixed pointers. In other words, a
CObL i st collection can hold pointers to both CStudent objects and CTeacher objects, assuming that both
CStudent and CTeacher were derived from CObject.

Using the CObList Class for a First-In, First-Out List

One of the easiest ways to use a CObL ISt object is to add new elements to the tail, or bottom, of the list and to remove
elements from the head, or top, of the list. The first element added to the list will always be the first element removed
from the head of the list. Suppose you're working with element objects of class CAction, which is your own custom
class derived from CObject. A command-line program that puts five elements into a list and then retrieves them in the
same sequence is shown here:

#include <afx.h>
#include <afxcoll.h>

class CAction : public CObject

{
private:
int m_nTime;
public:
// Constructor stores integer time value
CAction(int nTime) { m_nTime = nTime; }
void PrintTime() { TRACE(''time = %d\n', m_nTime); }
}:
int main(Q)
{

CAction* pAction;

// action list constructed on stack
CObList actionList;

int i;

http://www.tenouk.com/cncplusplustutorials.html

// inserts action objects in sequence {0, 1, 2, 3, 4}
for (i = 0; 1 <5; i++)

{
pAction = new CAction(i);
// no cast necessary for pAction
actionList.AddTail (pAction);

}

// retrieves and removes action objects
// in sequence {0, 1, 2, 3, 4}
while (lactionList.IseEmpty())

{
// cast required for return value
pAction = (CAction*) actionList.RemoveHead();
pAction->PrintTime();
delete pAction;
}
return O;

}

Here's what's going on in the program. First a CObList object, actionList, is constructed. Then the

CObList: :AddTai Il member function inserts pointers to newly constructed CACtion objects. No casting is
necessary for pAction because AddTai 1 () takes a CObject pointer parameter and pACtion is a pointer to a
derived class. Next the CAction object pointers are removed from the list of the objects deleted. A cast is necessary for
the returned value of RemoveHead () because RemoveHead () returns a COb ject pointer that is higher in the class
hierarchy than CAction. When you remove an object pointer from a collection, the object is not automatically deleted.
The delete statement is necessary for deleting the CAction objects.

CObList lteration: The POSITION Variable

Suppose you want to iterate through the elements in a list. The CObL i st class provides a GetNext () member
function that returns a pointer to the "next" list element, but using it is a little tricky. GetNext() takes a parameter of
type POSITION, which is a 32-bit variable. The POSITION variable is an internal representation of the retrieved
element's position in the list. Because the POS 1T 10N parameter is declared as a reference (&), the function can change
its value.

GetNext() does the following:

1. It returns a pointer to the "current" object in the list, identified by the incoming value of the POS1TION
parameter.
2. It increments the value of the POSITION parameter to the next list element.

Here's what a GetNext () loop looks like, assuming you're using the list generated in the previous example:

CAction* pAction;
POSITION pos = actionList.GetHeadPosition();
whille (pos = NULL)

{
pAction = (CAction*) actionList.GetNext(pos);

pAction->PrintTime();
¥

Now suppose you have an interactive Windows-based application that uses toolbar buttons to sequence forward and
backward through the list one element at a time. You can't use GetNext() to retrieve the entry because GetNext()
always increments the POSITION variable and you don't know in advance whether the user is going to want the next
element or the previous element. Here's a sample view class command message handler function that gets the next list
entry. In the CMyView class, m_actionList is an embedded CObL ISt object and the m_position data member
is a POSITION variable that holds the current list position.

CMyView: :OnCommandNext()

{
POSITION pos;

CAction* pAction;
it ((pos = m_position) I!= NULL)

m_actionList.GetNext(pos);

if (pos = NULL)

{ // pos is NULL at end of list
pAction = (CAction*) m_actionList.GetAt(pos);
pAction->PrintTime();
m_position = pos;

}

else

AfxMessageBox("'End of list reached™);

}

GetNext() is now called first to increment the list position, and the CObList: : GetAt member function is called to
retrieve the entry. The m_position variable is updated only when we're sure we're not at the tail of the list.

The CTypedPtrList Template Collection Class

The CObL i st class works fine if you want a collection to contain mixed pointers. If, on the other hand, you want a
type-safe collection that contains only one type of object pointer, you should look at the MFC library template pointer
collection classes. CTypedPtrList is a good example. Templates are a relatively new C++ language element,
introduced by Microsoft Visual C++ version 2.0. CTypedPtrList is a template class that you can use to create a list
of any pointers to objects of any specified class. To make a long story short, you use the template to create a custom
derived list class, using either CPtrList or CObLiSt as a base class. To declare an object for CAction pointers, you
write the following line of code:

CTypedPtrList<CObList, CAction*> m_actionList;

The first parameter is the base class for the collection, and the second parameter is the type for parameters and return
values. Only CPtrList and CObList are permitted for the base class because those are the only two MFC library
pointer list classes. If you are storing objects of classes derived from COb ject, you should use CObL St as your base
class; otherwise, use CPtrList. By using the template as shown above, the compiler ensures that all list member
functions return a CAction pointer. Thus, you can write the following code:

pAction = m_actionList.GetAt(pos); // no cast required

If you want to clean up the notation a little, use a typedef statement to generate what looks like a class, as shown here:

typedef CTypedPtrList<CObList, CAction*> CActionList;

Now you can declare m_actionList as follows:

CActionList m_actionlList;
The Dump Context and Collection Classes

The Dump () function for CObL i st and the other collection classes has a useful property. If you call Dump() for a
collection object, you can get a display of each object in the collection. If the element objects use the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros, the dump will show the class name for each object.

The default behavior of the collection Dump() functions is to display only class names and addresses of element
objects. If you want the collection Dump () functions to call the Dump () function for each element object, you must,
somewhere at the start of your program, make the following call:

#ifdef _DEBUG
afxDump.SetDepth(1);
#endif

Now the statement:

#ifdef _DEBUG
afxDump << actionList;
#endi

Produces output such as this:

a CObList at $411832
with 4 elements
a CAction at $412CD6

time = 0

a CAction at $412632
time = 1

a CAction at $41268E
time = 2

a CAction at $4126EA
time = 3

If the collection contains mixed pointers, the virtual Dump () function is called for the object's class and the appropriate
class name is printed.

The MYMFC16 Example

Run AppWizard to generate SDI \mfcproject\mymfc16 project. In the Step 6 page, change the view's base class to
CFormView, as shown here.

MFC AppWizard - 5tep 6 of &

Appwiizard creates the following classes for pou;
Chdprfc] BYigw
Chdymfcl BApp
ChainFrame
Chdymfel 60 oo

Clazz name: Header file:

|I:Mymf|:1 Efie |m_l,lmf-:1 Bifiewh

Baze class: Implementation file:
CFarnigm |m_l,lmfn:1 BYiew.cpp

< Back | Einizh | Cancel

Figure 16: AppWizard step 6 of 6, changing view's base class to CFormView.

The options and the default class names are shown here.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application bwpe of mymfcl 6
Single Document Interface Application targeting:
Win32

Clagzes to be created:
Application: Ckymfc BApp in mymfc]B.h and mymfc]B.cpp
Frame: CMainFrame in MainFrm b and MainFrm.cpp
Document: Chpmfc1BDoc in mymfc1E0oc.h and mymfc160oc. cpp
Formifiew:; Chdymic] Bview in mymfc] Bview. b and memfc] BYiew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ |zez zhared DLL implementation [MFCA2.DLL]
+ Localizable text in:
Englizh [United States)

Project Directany:
F:\mfcprojecthmymiclB

Cancel

Figure 17: MYMFC16 project summary.

This SDI example improves on MYMFC15 in the following ways:

Instead of a single embedded CStudent object, the document now contains a list of CStudent objects.
Now you see the reason for using the CStudent class instead of making m_strName and m_nGrade data
members of the document.

Toolbar buttons allow the user to sequence through the list.

The application is structured to allow the addition of extra views. The Edit Clear All command is now
routed to the document object, so the document's UpdateAl IViews() function and the view's
OnUpdate() function are brought into play.

The student-specific view code is isolated so that the CMymTc16View class can later be transformed into a
base class that contains only general-purpose code. Derived classes can override selected functions to
accommodate lists of application-specific objects.

The MYMFC16 window, shown in Figure 18, looks a little different from the MYMFC15 window shown in Figure 1.
The toolbar buttons are enabled only when appropriate. The Next (arrow-down graphic) button, for example, is disabled
when we're positioned at the bottom of the list.

++ Untitled - mymfc16
File Edit Student view Help

Dl T 1r 4 & X O %

A%ern Simple Student Diata Entry

Mame: |I'v1r Buzh Blair

Grade: |50
Clear

Ready

Figure 18: The MYMFC16 program in action.

The toolbar buttons function as follows.

Button Function
F Retrieves the first student record

Retrieves the last student record

Retrieves the previous student record

Retrieves the next student record

Deletes the current student record

Of | e=]| =]k

Inserts a new student record

Table 6: MYMFC16 new toolbar buttons

The Clear button in the view window clears the contents of the Name and Grade edit controls. The Clear All command
on the Edit menu deletes all the student records in the list and clears the view's edit controls. This example deviates
from the step-by-step format in the previous examples. Because there's now more code, we'll simply list selected code
and the resource requirements. In the code listing figures, brown color code indicates additional code or other changes
that you enter in the output from AppWizard and ClassWizard. The frequent use of TRACE statements lets you follow
the program's execution in the debugging window.

Resource Requirements
The file mymfcl6.rc defines the application's resources as follows.

Toolbar

The toolbar was created by erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth, and sixth from the left) and
replacing them with six new patterns.

al=

£ mymfc16 resources

+--[_] Accelerator T mEECOTODD s

(21 Dialog (| g 5

£ lcon

£ Meru

[2 String Table

£ Toolbar fas o B
#11| IDR_MAINFRAME | HessEseng suNunu. ;

+--[_]] Wersion

R

Figure 19: Creating new toolbar buttons for MYMFC16 project.

The Flip Vertical command (on the Image menu) was used to duplicate some of the tiles.

Image Tools Window Help

Invert Colors eate

Flip Horizonkal "

Flip Yertical

adjust Colars, .,
Load Palette, .,

Save Palette, ..

Draw Opagque O
v Toolbar Editar
arid Settings...

Figure 20: Toolbar’s button editor utility under Image menu.
The mymTcl6. rc file defines the linkage between the command IDs and the toolbar buttons.
Student Menu
Having menu options that correspond to the new toolbar buttons isn't absolutely necessary. ClassWizard allows you to

map toolbar button commands just as easily as menu commands. However, most applications for Microsoft Windows
have menu options for all commands, so users generally expect them.

File Edit: Student -¥iew Help [~

Previous Record
et record

Lask record
Celete record
Insert new record

Figure 21: New menu and its items for MYMFC16, in this example just for a completeness.

Edit Menu

On the Edit menu, the clipboard menu items are replaced by the Clear All menu item. See previous project example for

an illustration of the Edit menu.

Al

£ mymfc16 resources =
[Accelerator
(2 Dialog
3 lcon
£ Menu
& | IDP_MaINFRAME |
[C3 String Table
£ Toolbar
(£ Version

[[+

+

+

+

Figure 22:

Eile

Edit Student Yiew Help

E

Menu Item Properties

A ? General | Estended Styles |

ID: |ID_EDIT_CLEAR_ALL | Caption: [4Clear Al

[Separator | Pop-up [Ipactive Break: |Mone -
[~ Checked [Grayed [Help
Frompt: |Erase everythingsnEraze Al

Adding and modifying new Edit menu item, Clear All.

The 1DD_MYMFC16_FORM Dialog Template

The IDD_MYMFC16_FORM dialog template, shown here, is similar to the MYMFC15 dialog shown in Figure 1 except
that the Enter pushbutton has been replaced by the Clear pushbutton.

£ mymfc16 resources
+--[_] Accelerator
=]-4=3 Dialog
IDD_ABOUTBOX
= IDD_MYMFC16_FORM]
£ lcon
[IDR_MAINFRAME
[IDR_MvMFCITYPE
-4 Menu
5 IDR_MAINFRAME
[2 String T able
£ Toolbar
2 |DR_MalNFRAME
(L Wersion

+

+

>

Class... | | Reso.. | E] FileView

A0eny Simple Student D ata E

! W .
M arme: i|E':"t u
W, R o

Grade: |Edit
Clear

£

Edit Properties
i ? General | Styles | Extended Styles |

10
v izible [Group [Help D
[Dizabled [v Tab stop

Figure 23: Modifying properties and adding new items to the 1DD_MYMFC16_FORM dialog.

The following IDs identify the controls.

Control ID
The dialog template I1DD_MYMFC16_FORM
Name edit control 1DC_NAME
Grade edit control IDC_GRADE
Clear pushbutton IDC_CLEAR
Table 7.

The controls' styles are the same as for the MYMFC15 program which the Styles properties are: Style = Child; Border
= None and that Visible is unchecked.

Code Requirements

Here's a list of the files and classes in the MYMFC16 example.

Header File Source Code File | Classes Description
Application class (from
mymfcl16.h mymfc16.cpp CMymfcl6App AppWizard)
CAboutDIg About dialog
MainFrm.h MainFrm.cpp CMainFrame SDI main frame
mymfcl6Doc.h | mymfc16Doc.cpp | CMymFcl6Doc Student document

Student form view (derived

mymfcl6View.h | mymfcl6View.cpp | CMymfcl6View from CFormView)

Student record (similar to
Student.h Student.cpp CStudent MYMEFCI5)
Includes the standard
StdAfx.h StdAfx.cpp precompiled headers)
Table 8.

CMymfcl1l6App Class

The files mymfcl16.cpp and mymfcl16.h are standard AppWizard output.
CMainFrame Class

The code for the CMainFrame class in MainFrm.cpp is standard AppWizard output.
CStudent Class

This is the code from MYMFCI15. Insert new header (Student.h) and source (Student.cpp) files by using the Project,
Add To Project and New... menu as shown below. Then, copy the MYMFC15 Student.h and Student.cpp codes and
paste into the MYMFC16 Student.h and Student.cpp files respectively.

Project Build Layout Tools wWindow Help

! Set Active Project [|Eﬂt |OnCreate
| J:l._|:||:| To Projeckt
' Source Conkrol 3
Dependencies. .. b Files. .
Settings. .. alk+F7

Export Makefile. ..
@ Components and Contrals., .

Insert Project into Workspace. ..

Figure 24: Creating and adding new files, Student.h and Student.cpp (for new class) to the project.

Files l Frojects Cther Documents

o] Active Server Page v add to project;

22 Binary File Im i1 _]
prfc -

Bitmap File

[+ CAC++ Header File

[C++ Source File File narme:;

E-\a Curzor File]Student

(8] HTML Page

EE lzon File Location:

ﬂ Macro File]F:'xmfu:pn:uieu:t'xm_l,lmfc'l B _:_J
5 Flezource Script

Resource Template

SOL Script File

Text File

0k, | Cancel

Figure 25: Creating and adding Student.cpp file to the project.

Next add the following line at the end of Student.h:

typedef CTypedPtrList<CObList, CStudent*> CStudentList;

#ifdef _DEBUG

wvold Dump{ClumpContexté doc) const
tendif -~ _DEEUS
b

#endif - _INSIDE_WISUAL CFP_STUDENT

tvpedef CTypedPtrlist<CObLi=t,. CStudent#*: CStudentlist:

Listing 11.
The use of the MFC template collection classes requires the following statement in StdAfx.h:

#include <afxtempl_h>

tdefine VC_EXTRALEAN <+ Emelu
#include <afzwin . h: < MEC «
#include <afzext h: <« MEC &
#include <afzdtctl b <o HEC ¢
tifndef _AFE NO _AFXCHMH SUPPORT

#include <afzcmn. h: & MEC =

#endif - _AFHE HO AFXCHH SUPPORT
#include <afztempl hi

oL TAFE THSERT LOCATICONT
< Hicrosoft Visual C++ will insert

Listing 12.
ClassWizard and CMymfcl16Doc

The Edit Clear All command is handled in the document class. The following message handlers were added through
ClassWizard.

Object ID Message Member Function
ID_ EDIT_CLEAR_ALL | COMMAND OnEditClearAll ()
ID EDIT CLEAR ALL | ON_UPDATE_COMMAND Ul | OnUpdateEditClearAll()

Table 9.

teszage Maps b ember Y anables J Avtomation] Activer Events | Clazz Info l

Project: Clazs name: Add Clazs. =
mymfcl B LJ]EM_I,Imfn:'I BDoc _‘vJ R
F:hSmwmfc] Bsmypmfc BDoc b, oA Amemifc] Bvmymifc] EDoc.cpp m
Object D= Meszages: Dilete Funchon
Chymfc1 B0 o s COMMAND ’
ID_4PP_ABOUT S FDATE COMMAND Ll S |
ID_AFFP_EXIT =

ID_BUTTOMNIZ774

ID_BUTTON32772 ™
ID_EUTTON32773 Add Member Function 2)X
1D EDIT CLEAR ALL

tember functions:

i

W OnEditClearall OM_ID_EDIT_CLY Cancel
W OnMewDocument hMezzage: UFDATE_COMMAND_LII
W Senalize Object 1D; ID_EDIT_CLEAR_ALL

Dezcrnption; Callback for menu and button enabling/graying

k. Cancel

Figure 26: Adding a message handler for the Edit Clear All command in the document class.

Data Members

The document class provides for an embedded CStudentList object, the m_studentList data member, which
holds pointers to CStudent objects. The list object is constructed when the CMym¥c16Doc object is constructed, and
it is destroyed at program exit. CStudentList is a typedef for a CTypedPtrList for CStudent pointers.

SV LAREMSG

DECLARE_MESSAGE HMAF()
private:

CS5tudentLi=st m_=tudentList:
T

Listing 13.
Constructor

The document constructor sets the depth of the dump context so that a dump of the list causes dumps of the individual
list elements.

CHyvmicleDoc: (. CHymicleDoc()

{

TRACE{ "Entering CHymfcleDoz constructor~n"):
#ifdef _DEBUG

afzDunp.SetDepth(l); v Ensure dump of list =lement=
#endif .~ _DEEUG

i

Listing 14.

GetList()

The inline GetList() function helps isolate the view from the document. The document class must be specific to the
type of object in the list, in this case, objects of the class CStudent(). A generic list view base class, however, can
use a member function to get a pointer to the list without knowing the name of the list object.

S Attributes
public:
CStudentLi=t#*® Getlist() {
return &m_studentlist
b

Listing 15.

DeleteContents()

The DeleteContents() function is a virtual override function that is called by other document functions and by the
application framework. Its job is to remove all student object pointers from the document's list and to delete those
student objects. An important point to remember here is that SDI document objects are reused after they are closed.
DeleteContents() also dumps the student list.

vold CHymicleDoo: DeleteContents()
1
#ifdef _DEEUG
Dunp{afzlump) ;
#endif
while (m_=tudentli=st GetHeadFosition())

delete m_studentlist FemowveHe=ad()

Listing 16.
Dump()

AppWizard generates the Dump () function skeleton between the lines #i fdeft _DEBUG and #endif. Because the
afxDump depth was set to 1 in the document constructor, all the CStudent objects contained in the list are dumped.

vold CHymicleDoo: :Dunp({ClumpContexté doc) const

{
CDocunent : :Dunp(dc) ;

do << "~n" << m_studentlist << "~n";

b
#endif -~ DEEUG
Listing 17.
CMymfcl6Doc Class

AppWizard originally generated the CMym¥c16Doc class. Listing 18 shows the code used in the MYMFC16 example.

MYMFC16DOC.H

// MymfcleDoc.h : interface of the CMymfcl6Doc class

//

L1117 17777777777777777777777/7777/7/77777//7/777/7/7//777/7/7//7/7//7////7777/

#if
1defined (AFX_MYMFC16DOC_H__4D011047_7E1C_11D0O_S8FEO_00CO4FC2A0C2__ INCLUDED)
#define AFX_MYMFC16DOC_H__4D011047 7E1C_11D0_8FEO_00CO4FC2A0C2__INCLUDED

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include ''student.h"
class CMymfcl6Doc : public CDocument

protected: // create from serialization only
CMymfcl16Doc();
DECLARE_DYNCREATE(CMymfcl6Doc)

// Attributes
public:
CStudentList* GetList() {
return &m studentList;
}

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides

//7{{AFX_VIRTUAL(CMymfcl6Doc)

public:

virtual BOOL OnNewDocument();

virtual void Serialize(CArchive& ar);
virtual void DeleteContents();
//3}}YAFRX_VIRTUAL

// Implementation
public:
virtual ~CMymfcl6Doc();
#ifdef _DEBUG
virtual void Assertvalid() const;
virtual void Dump(CDumpContexté& dc) const;
#endit

protected:

// Generated message map functions
protected:
1 /7{{AFX_MSG(CMymfcl6Doc)
afx_msg void OnEditClearAll();
afx_msg void OnUpdateEditClearAll (CCmdUl* pCmdul);
//}YARX_MSG
DECLARE_MESSAGE_MAPQ)
private:
CStudentList m_studentList;
}:

11//1/77777777777/7/77/7/7/////7/7///////////////////////////////7//7/777

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endift //
tdefined (AFX_MYMFC16DOC_H_ 4D011047_7E1C_11DO_8FEO_00C04FC2A0C2__ INCLUDED)

MYMFC16DOC.CPP
// MymfcléDoc.cpp : implementation of the CMymfcl6Doc class
//

#include "'stdafx.h"
#include "mymfcl6.h"

#include "Mymfcl6Doc.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_ ;
#endif

////7/7/777777777/77777777777/77777777777777/77777777/77/7777/77/77/77/77777777
// CMymfcl6Doc

IMPLEMENT_DYNCREATE(CMymfcl6Doc, CDocument)

BEGIN_MESSAGE_MAP(CMymfcl6Doc, CDocument)
//7{{AFX_MSG_MAP (CMymfcl6Doc)
ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
//}}YAFX_MSG_MAP

END_MESSAGE_MAPQ)

/1/1/177777777777777777777777/7777777777/777/7/7777//77//7//77//77/7//777777777
// CMymfcl6Doc construction/destruction

CMymfcl6Doc: :CMymFcl6Doc()

{

TRACE("'Entering CMymfcl6éDoc constructor\n');
#ifdef _DEBUG

afxDump.SetDepth(1); // Ensure dump of list elements
#endif // _DEBUG

}

CMymfcl6Doc: : ~CMymfcl6Doc()

{
}

BOOL CMymfcl6Doc: :OnNewDocument()

{
TRACE(*'Entering CMymfcl6éDoc: :OnNewDocument\n™);

if (1CDocument: :OnNewDocument())
return FALSE;

// TODO: add re-initialization code here
// (SDI documents will reuse this document)

return TRUE;

by
////7/7/777/77/77/77/77777/777/77777777777/7777//777/77/7/7/7777/77/7/7/77/7/7/77777777
// CMymfcl6Doc serialization

void CMymfcl6Doc: :Serialize(CArchive& ar)
if (ar.IsStoring())

// TODO: add storing code here
by

else

// TODO: add loading code here

}
}

L1117177777777777777777777777777777/7777777777777/7/7//7777///7777//7/77777
// CMymfcléDoc diagnostics

#ifdef DEBUG
void CMymfcl6Doc: :AssertValid() const

{
CDocument: :AssertValid();
3
void CMymfcl6Doc: :Dump(CDumpContext& dc) const
{

CDocument: :Dump(dc);
dc << "™\n" << m_studentList << "\n"';

¥
#endif //_DEBUG

/////7/7/7/7777/7777/777777/777777777777/7/77/7/777/7777/777/7/7/7/7/7/7/7/7/77/777777
// CMymfcl6Doc commands

void CMymfcl6Doc: :DeleteContents()

{
#ifdef DEBUG
Dump (afxDump) ;
#endif
while (mn_studentList.GetHeadPosition()) {
delete m_studentList.RemoveHead();
bs

}

void CMymfcl6Doc: :OnEditClearAll()
DeleteContents();

UpdateAllViews(NULL);
¥

void CMymfcl6Doc: :OnUpdateEditClearAll1 (CCmdUl* pCmdUl)

pCmdUl->Enable(!m_studentList.IsEmpty());

Listing 18: The CMymfc16Doc class listing.
ClassWizard and CMymfcl6View Class

ClassWizard was used to map the CMym¥c16View Clear pushbutton notification message as follows.

Object ID Message Member Function
IDC_CLEAR | BN_CLICKED | OnClear()

Table 10.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfc1B j | ChdymfcT BV e j
F:h . Amymfe Bhvmymfc] BYiew b, Foh . momifc] Bhmymfc] BYiew. cpp g

Object |0 Mezzages: Delete Function

ID_NEXT_PANE v _
ID_PREY_PANE ~ [BN_DOUBLECLICKED EcliEode

ID_VIEW _STATUS_BAR
ID_VIEW TOOLBAR
IDC CLEAR

IDC_GRADE —
IDC_MAME bt

kember functians:

Y DaoDataExchange ~
YW OnBeqginPrinting

aM_IDC_CLEAR:BM_CLICKED
YW OnEndPrinting
Y Onlnitial)odate b

Description: |ndicates the uzer clicked a buttan

ak. | Cancel

Figure 27: Mapping the CMymFc16View Clear pushbutton notification message.

Because CMymTcl16View is derived from CFormView, ClassWizard supports the definition of dialog data members.
The variables shown here were added with the Add Variables button.

Control ID Member Variable Category | Variable Type
I1DC_GRADE m_nGrade Value int

| IDC_NAME | m_strName | value | CString

Table 11.

MFC ClassWizard

Meszage Mapz Member Yanablesz | Automation | Activel Events | Clazz Info |

Project: Clazs name: Add Class.
mymfc16 ﬂ | Chdymfe B isw ﬂ T ‘v;arial:-le

F:h . Smpmfc] Bhenvmfe Biew b, B Srpmife] Bhmprnfc 1 BYiew. cpp Q_
Contral |De: Type M ember Delete Variable |
IDC_CLEAR

IDC_GRADE ift m_nlEarade

IDC MWAME ZString m_ztif ame

|

Dezcription; CString with length walidation

bd awirmum Characters: 2d

ak. | Cancel

Figure 28: Adding member variables.

The minimum value of the m_nGrade data member was set to 0, and its maximum value was set to 100. The maximum
length of the m_strName data member was set to 20 characters.

ClassWizard maps toolbar button commands to their handlers.

D=t

- = ;
HESEEEEES W
Toolbar Button Properties X
44 R General |
ID: |ID_STUDENT_HOME = |
Width: |16 Height: |15
Frompt; |The first recordvnHaorme
Figure 29: Modifying the toolbar button properties.
Here are the commands and the handler functions to which they were mapped.
Object ID Message Member Function
+ ID_STUDENT_HOME COMMAND OnStudentHome ()
i ID_STUDENT_END COMMAND OnStudentEnd()
T ID_STUDENT_PREV COMMAND OnStudentPrev()
4 ID_STUDENT_NEXT COMMAND OnStudentNext()
.y ID_STUDENT_INS COMMAND OnStudentins()
| ID_STUDENT_DEL COMMAND OnStudentbel)

Table 12.

The message mapping using ClassWizard.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfc1B j | ChdymfcT BV e j
F:h . Amymfe Bhvmymfc] BYiew b, Foh . momifc] Bhmymfc] BYiew. cpp g
Object |0 Mezzages: Delete Function
IDFREY _FAME A] '
UPDATE_COMMAND_UI Edit Code

ID_STUDEMT_EMD
ID_STUDENT_HOME
[D_STUDEMT_IMS
ID_STUDEMT_MNEXT

ID_STUDEMT_FPREY v
kember functians:

Y DaoDataExchange L
Wi OnClear OMN_IDC_CLEAR:BM_CLICKED

Y Onlnitiall pdate

OnStudentDel OM_ID_STUDEMT_DEL:COMMMAMD

W OnStudentE nd OM 1D STUDEMT EMD:COMBAND ¥
Description: Handle a command [fram menw, accel, crd buttan]

ak. | Cancel

Figure 30: Message mapping of the commands and their handler functions.

Each command handler has built-in error checking. The following update command UI message handlers are called
during idle processing to update the state of the toolbar buttons and when the Student menu is painted, to update the
menu items.

Object ID Message Member Function
ID_STUDENT_ HOME | UPDATE_COMMAND Ul | OnUpdateStudentHome()
ID_STUDENT_END | UPDATE_COMMAND Ul | OnUpdateStudentEnd()
ID_STUDENT_PREV | UPDATE_COMMAND Ul | OnUpdateStudentHome()
ID_STUDENT_NEXT | UPDATE_COMMAND_ Ul | OnUpdateStudentEnd()
ID_STUDENT_DEL | UPDATE_COMMAND_ Ul | OnUpdateCommandDel ()

Table 13.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfc1B j | ChdymfcT BV e j -

F:h . Amymfe Bhvmymfc] BYiew b, Foh . momifc] Bhmymfc] BYiew. cpp g

Object |0 Mezzages: Delete Function

ID_PREY_FAME A COMMAND Edit Code
ID STUDEMT DEL UPDATE COMMAND Ul =

ID_STUDENT_HOME
[D_STUDEMT_IMS
ID_STUDEMT_MNEXT

ID_STUDEMT_FPREY v

kember functians:

W OnStudentPrey OM_ID_STUDENT_PREY:COMMAMD .

YW Onlpdate

W OnlpdateStudentDel OM_ID_STUDEMT_DEL:UPDATE _COMMAND_LI
OrnUpdateStudentEnd OM_ID_STUDEMT_EMD:UPDATE_COMMAND_UI

W OnlodateStudentEnd OM (D STUDEMT WEXT:UPDATE COMMAND LI

Description: Callback far menu and button enablingdgraving

ak. | Cancel

Figure 31: Message mapping of the commands and their UI handler functions.

For example, this button: ﬂ

Which retrieves the first student record, is disabled when the list is empty and when the m_position variable is
already set to the head of the list. The Previous button is disabled under the same circumstances, so it uses the same
update command UI handler. The End and the Next buttons share a handler for similar reasons. Because a delay
sometimes occurs in calling the update command Ul functions, the command message handlers must look for error
conditions.

Data Members
The m_position data member is a kind of cursor for the document's collection. It contains the position of the
CStudent object that is currently displayed. The m_pL i st variable provides a quick way to get at the student list in

the document.

class CHynfcleView : public CFormnWView

protected:
FOSITION n_position; < Ccurrent
CStudentlist* m_plist; < copled
Listing 19.
OnlnitialUpdate()

The virtual OnInitialUpdate () function is called when you start the application. It sets the view's m_pList data
member for subsequent access to the document's list object.

wold CHMymfcleView: OnlnitiallUpdatel)
1

TRACE("Entering CHymfcleView: :OnlnitiallUpdate~n"l;
m_pLli=st = GetDocument()—:GetLi=t{):
CFornView: OnInitiallUpdate();

Listing 20.
OnUpdate()

The virtual OnUpdate () function is called both by the OnInitialUpdate () function and by the

CDocument: :UpdateAl 1Views function. It resets the list position to the head of the list, and it displays the head
entry. In this example, the UpdateAl IViews() function is called only in response to the Edit Clear All command.
In a multiview application, you might need a different strategy for setting the CMymfcl6View m_position variable
in response to document updates from another view.

vold CHymfcleView: Onllpdate{CView#* pSender, LPARAM 1Hint., CObject#* pHint)

1
s zalled by OnInitiallpdate and by UTpdatedllViews

TRACE("Entering CHvmfcleView: OnlUpdate~n");
m_pos=ition = m_plist—:GetHeadPositioni);
GetEntryvin_position): - i1nitial data for wiew

Listing 21.
Protected Virtual Functions
The following three functions are protected virtual functions that deal specifically with CStudent objects:

1. GetEntry(Q).
2. InsertEntry().
3. ClearkEntry(Q).

Add Member, Function EIE|

Function Tepe:
|w:|i|:|

Cancel

Function Declaration:

|virtual Cleark ntr()

Access
" Public * Protected " Private

=

Figure 32: Adding a protected virtual function using ClassView.

volid CHymicleView: GetEntrw(FOSITION position)

1f {(po=ition) {
CS5tudent* pStudent = mn_plist—:GetAt(po=sition):
n_=trHame = pStudent—:m_strHamnes;
nm_nGrade = pStudent-:m_nGrade:

el=ze {
ClearEntry ()

T
Tpdatelata(FALSE) ;
T

vold CHymficleView: : InsertEntry (POSITION position)

if (UpdateData(TEUE)) {
A UIpdatelata returns FAISE if it detects a user error
CStudent* pStudent = new CStudent
pStudent—:m_strHame = n_strHame;
pStudent—rn_niGrade = mn_nGrade:
n_position = m_plist—:InsertAfterin_position. pStudent):

h
vold CHymfcleView: ClearEntrvi()

nono,
B

n_=trHame =
n_nGrade = 0;

Tpdatelata (FALSE) ;

({CDialog*) thi=)-:GotollgCtrl(GetDlglten(IDC_HAME)) :

Listing 22.

You can transfer these functions to a derived class if you want to isolate the general-purpose list-handling features in a
base class.

CMymfcl6View Class

Listing 23 shows the code for the CMymFc16View class. This code will be carried over into the next two Modules.

MYMFC16VIEW.H

// Mymfcl6éView.h : interface of the CMymfcl6View class

//
/1/777777777777777777777777777777777777777/77777777/77777777/77/7777777777

#if
1defined (AFX_MYMFC16VIEW_H__4D011049 7E1C_11D0O_8FEO_0OCO4FC2A0C2__INCLUDED)
#define AFX_MYMFC16VIEW_H__4D011049 7E1C_11DO_S8FEO_00CO4FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMymfcl6View : public CFormView

{

protected:
POSITION m_position; // current position in document list
CStudentList* m pList; // copied from document

protected: // create from serialization only
CMymfcleView();
DECLARE_DYNCREATE(CMymfcl6View)

public:

//7{{AFX_DATA(CMymfcl6View)

enum { IDD = IDD_MYMFC16_FORM };
int m_nGrade;

CString m_strName;

//}}AFX_DATA

// Attributes
public:
CMymfcl6Doc* GetDocument();

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CMymfcl6View)
public:
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
virtual void OnlnitialUpdate(); // called first time after construct
virtual void OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint);
//}}YAFX_VIRTUAL

// Implementation
public:
virtual ~CMymfcl6View();
#ifdef _DEBUG
virtual void AssertvValid() const;
virtual void Dump(CDumpContexté& dc) const;
#endif

protected:
virtual void ClearEntry();
virtual void InsertEntry(POSITION position);
virtual void GetEntry(POSITION position);

// Generated message map functions
protected:
//{{AFX_MSG(CMymTfcl6View)
afx_msg void OnClear();
afx_msg void OnStudentHome();
afx_msg void OnStudentEnd();
afx_msg void OnStudentPrev();
afx_msg void OnStudentNext();
afx_msg void OnStudentins();
afx_msg void OnStudentDel();
afx_msg void OnUpdateStudentHome(CCmdUl* pCmdul);
afx_msg void OnUpdateStudentEnd(CCmdUl* pCmduUl);
afx_msg void OnUpdateStudentDel (CCmdUI* pCmdUl);
//}}AFX_MSG
DECLARE_MESSAGE_MAPQ)
};

#ifndef _DEBUG // debug version in Mymfcl6View.cpp
inline CMymfcl6Doc* CMymfcl6View: :GetDocument()

{ return (CMymfcl6Doc*)m_pDocument; }
#endif

L1117 77777777777777777/7777/7/777777/7777/7/7/7777/7/7777/7/7/7/77/7/7/777777
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations

// immediately before the previous line.

#endif //

Tdefined(AFX_MYMFC16VIEW_H__ 4D011049_7E1C_11D0O_8FEO_O0OOC04FC2A0C2__ INCLUDED_)

MYMFC16VIEW.CPP
// NMymfcléView.cpp : implementation of the CMymfcl6View class
//

#include "stdafx.h"”
#include "mymfcl6._h"

#include "Mymfcl6Doc.h"
#include "Mymfcl6View.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE__ ;
#endif

/1/1/1777777777777777777777777777777777/77/7/7/777/77/7////777/777/777777777
// CMymfcl6View

IMPLEMENT_DYNCREATE(CMymfcl6View, CFormView)

BEGIN_MESSAGE_MAP(CMymfcl6View, CFormView)
//{{AFX_MSG_MAP(CMymfcl6View)
ON_BN_CLICKED(IDC_CLEAR, OnClear)
ON_COMMAND(ID_STUDENT_HOME, OnStudentHome)
ON_COMMAND(ID_STUDENT_END, OnStudentEnd)
ON_COMMAND(ID_STUDENT_PREV, OnStudentPrev)
ON_COMMAND(ID_STUDENT_NEXT, OnStudentNext)
ON_COMMAND(ID_STUDENT_INS, OnStudentlIns)
ON_COMMAND(ID_STUDENT_DEL, OnStudentDel)
ON_UPDATE_COMMAND_UI (ID_STUDENT_HOME, OnUpdateStudentHome)
ON_UPDATE_COMMAND_UI'(ID_STUDENT_END, OnUpdateStudentEnd)
ON_UPDATE_COMMAND_UI (ID_STUDENT_PREV, OnUpdateStudentHome)
ON_UPDATE_COMMAND_UI (ID_STUDENT_NEXT, OnUpdateStudentEnd)
ON_UPDATE_COMMAND_UI (ID_STUDENT_DEL, OnUpdateStudentDel)
//}}YAFX_MSG_MAP

END_MESSAGE_MAPQ)

/1/1/1/17777777777777777777777/77/7777777/777///77///7/7///77///7/7//777777777
// CMymfcl6View construction/destruction

CMymfcl6View: :CMymfcl6View() : CFormView(CMymfcl6View: : 1DD)
{

TRACE(*'Entering CMymfcl6View constructor\n™);

//7{{AFX_DATA_INIT(CMymfcl6View)

m_nGrade = 0;

m_strName = _T(");

//3}}ARX_DATA_INIT

m_position = NULL;

}

CMymfcl6View: : ~CMymfcl6View()

{
}

void CMymfcl6View: :DoDataExchange(CDataExchange* pDX)
{
CFormView: :DoDataExchange(pDX) ;
//{{AFX_DATA_ MAP(CMymfcl6View)
DDX_Text(pDX, IDC_GRADE, m_nGrade);
DDV_MinMaxInt(pDX, m_nGrade, 0, 100);
DDX_Text(pDX, IDC_NAME, m_strName);
DDV_MaxChars(pDX, m_strName, 20);
//}}AFX_DATA_MAP

BOOL CMymfcl6View: :PreCreateWindow(CREATESTRUCT& cs)

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
return CFormView: :PreCreateWindow(cs);

}

void CMymfcl6View: :OnlnitialUpdate()

TRACE(*'Entering CMymfcl6View: :OnlnitialUpdate\n™);
m_pList = GetDocument()->GetList();
CFormView: :OnInitialUpdate();

}

L1117177777777777777777777777777777/77777777777777/7/7/7777////777//7/7777
// CMymfcl6View diagnostics

#ifdef _DEBUG
void CMymfcl6View: :AssertValid() const

CFormView: :AssertvValid();
3

void CMymfcl6View: :Dump(CDumpContext& dc) const

CFormView: :Dump(dc);
H

CMymfcl6éDoc* CMymfcl6View: :GetDocument() // non-debug version is inline

ASSERT (m_pDocument->1sKindOf(RUNT IME_CLASS(CMymfcl6Doc)));
return (CMymfcl6Doc*)m_pDocument;

3
#endif // DEBUG

L1171777/7/7/7777///7777//7/77777
// CMymfcl6View message handlers

void CMymfcl6View: :OnClear()

TRACE(*'Entering CMymfcl6View::OnClear\n');
ClearEntry(Q);

}

void CMymfcl6View: :OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint)
{

// called by OnInitialUpdate and by UpdateAllViews

TRACE("'Entering CMymfcl6View: :OnUpdate\n');

m_position = m_pList->GetHeadPosition();

GetEntry(m_position); // initial data for view

}
void CMymfcl6View: :OnStudentHome()
{
TRACE('Entering CMymfcl6View: :OnStudentHome\n');
// need to deal with list empty condition
iT (Im_pList->IsEmpty()) {
m_position = m_pList->GetHeadPosition();
GetEntry(m_position);
by
}

void CMymfcl6View: :OnStudentEnd()

TRACE("'Entering CMymfcl6View: :OnStudentEnd\n'");
if (Im pList->IseEmpty()) {

m_position = m_pList->GetTailPosition();
GetEntry(m_position);

}
¥
void CMymfcl6View: :OnStudentPrev()
{
POSITION pos;
TRACE("Entering CMymfcl6View: :OnStudentPrev\n');
if ((pos = m_position) = NULL) {
m_pList->GetPrev(pos);
it (pos) {
GetEntry(pos);
m_position = pos;
}
}
3
void CMymfcl6View: :OnStudentNext()
{
POSITION pos;
TRACE("Entering CMymfcl6View: :OnStudentNext\n');
if ((pos = m_position) != NULL) {
m_pList->GetNext(pos);
if (pos) {
GetEntry(pos);
m_position = pos;
}
}
3
void CMymfcl6View: :OnStudentins()
{
TRACE("Entering CMymfcl6View: :OnStudentins\n');
InsertEntry(m_position);
GetDocument()->SetModifiedFlag();
GetDocument()->UpdateAllIViews(this);
3
void CMymfcl6View: :OnStudentDel ()
{
// deletes current entry and positions to next one or head
POSITION pos;
TRACE("Entering CMymfcl6View: :OnStudentDel\n");
if ((pos = m_position) = NULL) {
m_pList->GetNext(pos);
it (pos == NULL) {
pos = m_pList->GetHeadPosition();
TRACE(""GetHeadPos = %l1d\n", pos);
if (pos == m_position) {
pos = NULL;
}
}
GetEntry(pos);
CStudent* ps = m_pList->GetAt(m_position);
m_pList->RemoveAt(m_position);
delete ps;
m_position = pos;
GetDocument()->SetModifiedFlag();
GetDocument()->UpdateAllViews(this);
¥
}

void CMymfcl6View: :OnUpdateStudentHome(CCmdUl* pCmdul)

// called during idle processing and when Student menu drops down

POSITION pos;

// enables button if list not empty and not at home already

pos = m_pList->GetHeadPosition();

pCmdUl->Enable((m_position = NULL) && (pos != m_position));
}

void CMymfcl6View: :OnUpdateStudentEnd(CCmdUl* pCmdUl)
{

// called during idle processing and when Student menu drops down
POSITION pos;

// enables button if list not empty and not at end already

pos = m_pList->GetTailPosition();

pCmdUl->Enable((m_position = NULL) && (pos != m_position));
}

void CMymfcl6View: :OnUpdateStudentDel (CCmdUI* pCmdUl)

// called during idle processing and when Student menu drops down
pCmdUl->Enable(m_position != NULL);

3
void CMymfcl6View: :GetEntry(POSITION position)
{
iT (position) {
CStudent* pStudent = m_pList->GetAt(position);
m_strName = pStudent->m_strName;
m_nGrade = pStudent->m_nGrade;
else {
ClearEntry(Q);
}
UpdateData(FALSE);
}

void CMymfcl6View: : InsertEntry(POSITION position)

if (UpdateData(TRUE)) {
// UpdateData returns FALSE if it detects a user error
CStudent* pStudent = new CStudent;
pStudent->m_strName = m_strName;
pStudent->m_nGrade = m_nGrade;
m_position = m_pList->InsertAfter(m_position, pStudent);

ks
s
void CMymfcl6View: :ClearEntry()
{
m_strName = "'';
m_nGrade = 0O;
UpdateData(FALSE);
((CDialog*) this)->GotoDIgCtri(GetDIgltem(IDC_NAME));
b3

Listing 23: The CMymFfc16View class listing.
Testing the MYMFC16 Application

Build the program and start it from the debugger.

Build Tools ‘Window Help

@ Compile mwmfcl éView.cpp Chrl+F7 ke ﬂ
| Build rmymfcl 6. exe F7
b o <1 -
] Rebuild Al -
Batch Build. .. .
EEntrw(POSITION positi
Clean
Debugger Remote Connection, ., T-'l-} Step Iko F11
b Execute mymfclé.exe Ckrl4+-FS A} Run o Cursor ChrH+FLO

fttach to Process., .
Set Active Configuration. ..

Configurations. ..

Profile. ..

ek T b e F DS TT TR -

Figure 33: Running MYMFC16 program from the debugger.

% Untitled - mymfc16
File Edit Student Yiew Help

O =& O T

A Wem Simple Student Data Entry

Name: |Mr. Fink Panthet

Grade; |99
LClear |

L« |

Ready

Figure 34: MYMFC16 program output in action.

Fill in the student name and grade fields, and then click the New button:

=1

To insert the entry into the list. Repeat this action several times, using the Clear pushbutton to erase the data from the
previous entry. Notice the toolbar buttons enable/disable change. When you exit the application, the debug output should
look similar to this:

Entering CMymfcl6View: :OnStudentlins
Entering CMymfcl6View: :OnClear
Entering CMymfcl6View: :OnStudentlins
Entering CMymfcl6View: :OnClear

Entering CMymfcl6View: :OnStudentlins
Entering CMymfcl6View: :OnClear
Entering CMymfcl6View: :OnStudentlins
Entering CMymfcl6View: :OnClear

a CMymfcl6Doc at $4216B0O

m_strTitle = Untitled

m_strPathName =

m_bModified = 1

m_pDocTemplate = $4218C0

a CObList at $421704
with 4 elements

a CStudent at $422DDO
m_strName = Mr. Pink Panther
m_nGrade = 95

a CStudent at $422340
m_strName = Mr. Bush Blair
m_nGrade = 40

a CStudent at $422460
m_strName = Mrs. Rice Plate
m_nGrade = 67

a CStudent at $422200
m_strName = Mr. Mechanick
m_nGrade = 88

Warning: destroying an unsaved document.

The thread 0x5B8 has exited with code 0 (0x0).
The program "F:\mfcproject\mymfcl6\Debug\mymfcl6.exe" has exited with code 0 (0x0).

You can clear all data by using the Edit, Clear All menu.

++ Untitled - mymfc16

File B[Student ‘iew Help

DMy ¢ L x O] ®

A %ery Simple Student D ata Entmyp

Mame: |Mr. Sawadikap

Grade: 95
Clear

a | B

Erase everything

Figure 35: Deleting all the data using the Edit Clear All menu.
Two Exercises for the Reader
You might have noticed the absence of a Modify button on the toolbar. Without such a button, you can't modify an

existing student record. Can you add the necessary toolbar button and message handlers? The most difficult task might
be designing a graphic for the button's tile.

Recall that the CMymFc16View class is just about ready to be a general-purpose base class. Try separating the
CStudent-specific virtual functions into a derived class. After that, make another derived class that uses a new
element class other than CStudent.

Further reading and digging:

1.

Nk w

MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

