ATL - Attributes Tutorial on Visual C++ .Net

Program examples compiled using Visual Studio/C++ .Net 2003 compiler on Windows XP Pro machine with Service
Pack 2. Topics and sub topics for this tutorial are listed below. Don’t forget to read Tenouk’s small disclaimer. The
supplementary note for this tutorial is .NET.

Using Visual C++ and attributes, you can speed up and simplify the process of COM programming. This tutorial uses
attributes to implement both a client and a server application. During the course of this tutorial, you will use attributes
and events.

The tutorial develops a singleton server object (an object that can have only one instance) that has its own dual interface
and a dispatch interface used for firing off events. The server object takes data, given to it through the Send () method
of its dual interface, and transmits it to all connected components through the Transfer () event on its dispatch
interface.

In addition, the tutorial implements a client (an ActiveX control) that contains a server object. The control responds to
the Transfer () event fired by the server object and has its own dual interface that implements several methods:
Connect(), Send(), and Disconnect(). If the Transfer () event is fired with a variant containing a BSTR,
the string is displayed in the center of the control.

The tutorial is divided into seven steps, each building on the application developed in the previous step. Keep in mind
that all the coding part was done manually, copy and paste, instead of using " wizard".

. Step 1: Creating the Projects.

. Step 2: Adding the Server Object.

. Step 3: Implementing the Server.

. Step 4: Adding the Client Object.

= Step 5: Adding the Client Interfaces.
. Step 6: Implementing the Client.

. Step 7: Using the Client Control.

Step 1: Creating the Projects

In this step, you will create an initial solution containing two ATL projects. The two projects will implement the server
and client objects of the tutorial.

To create a new solution

1. Inthe Visual Studio environment, click New from the File menu and then click Blank Solution.

#9 Microsoft Development Environment [design]

File | Edit Wiew Tools Window Help
| Mew P | 5] Project... Chrl+Shif+d
Cpen ¥ | '] Eie... Chrl+

m Blank Solution...

Figure 1: Creating a new Visual C++ .Net project, starting with blank solution.

2. In the Name box, type DispSink.

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/NET.html

Mew Project

Project Tvpes: Templates:

[wisual Basic Projects

-2 wisual C# Projects

-[27 wisual J# Projects

-2 Wisual C++ Projects

--[27] Setup and Deplovment Projects
+-{23 Other Projects

43 Wisual Studio Solutions

Blank Solution

|Create an empty solution containing no projects

Marme: I Disp3ink,

Lacation: I Fimfoproject

LI Browse, .. |

Mew Solution Mame: I DispSink.
Solution will be created at FiiymfcprojectDispSink.

¥ Create directory For Solution

*less | | (04 I Cancel | Help |

Figure 2: Entering the blank solution name.

3. Click OK to create a blank solution.

Once the solution has been created, add the two ATL projects to the empty solution.

To create a new project

1. In Solution Explorer, right-click the DispSink solution node.

Solution Explorer

Mew Projeck, ..

Debug
E Save DispSink.sln

Gl save al

% Add Solution ko Source Contral,.

Rename

Properties

k Existimg Project...

Existing Project Erom Weh, ..

1] Add Mew Ttem, ..
&dd Existing Item...

Figure 3: Adding new project to Visual C++ .Net solution.

2. On the shortcut menu, click Add and then click New Project. The New Project dialog box appears.
3. From the Visual C++ Projects folder, select ATL Project.

Add New Project X
po foo
Project Tyvpes: Templates: Bo o
[wisual Basic Projects ;.F'.SF‘.NET W'eh Service A~
[:l Wisual C# Projects ﬁ ATL Project E
[wisual J# Projects gl ATL Server Project
+-4 3 isual C++ Projects b ATL Server Web Service
[setup and Deployment Projects B Class Library {MET) B
+1- (1 Other Projects - Console Application {,NET)
1| Custom Wizard
Empky Project {MET)
FEdExtended Stored Procedure DIl hd

& project that uses the Active Template Library,

Marne! | DispCliert|

Locakion: | FimfoprojectDispSink ﬂ Browse, ..

Project will be created at Fi\mfcproject) DispSink! DispClient.

| (04 | Cancel | Help |

Figure 4: Adding DispClient, a new ATL project to solution.

In the Name box, type DispClient.
Click OK to start the ATL Project Wizard. The ATL Project Wizard offers several choices to configure the

initial project. Because the wizard creates an attributed project by default, you do not have to change any
wizard settings.

ATL Project Wizand - DispClient

Application Settings

Specify the application tvpe and Feature suppoart For the project.

[v Artributed

Server bype:
{* Drnamic-link. library {OLL)

(™ Executable (EXE)
" Service (EXE)

Application Settings

Additional options:

-

-

[Support COM+ 1.0
[

Finish Cancel Help

Figure 5: ATL Project Wizard Application Settings page.

6. Click Finish to generate the DispClient project. The files generated by the wizard are listed in the following
table.

Solution Explorer - DispClient

- ~
[:5] References
- 3] Source Files
@ stdafx.cpp
@ DispClient.cpp
=~ 3] Header Files
skdafx.h
Resource.h
-l 3 Resource Files
R DispClient.rc
DispClient.rgs
ReadMe bxt
= DispClientPs
[#5] References
(L1 source Files
DispClientps, def
- 3 Generated Files
#4 _DispClient_i.c
@ _DispClient_p.c

£ diidata.c
W

s [BFa. | Elr. [&ls..

Figure 6: The generated files and resources for DispClient ATL project.

File Description
Contains the module attribute, which implements DLLMain(),

DisnClient.c DLLRegisterServer(), and DLLUnregisterServer(). The module

P PP type also defines the GUID for the type library. Notice that the GUID and
helpstring have been automatically generated.
. . A MIDL-generated file that will contain interface definitions. For purposes of this

DispClient.h . . .

tutorial, this file will be unnecessary.
. . The resource file, which initially contains the version information and a string

DispClient.rc .)
containing the project name.

DispClient.rgs Co.ntalns entries that are added to the registry, which will register your COM
object.

DispClient.veproj | A file containing the project settings.

DispClientps.def The module definition file for the proxy/stub DLL. For purposes of this tutorial,
this is unnecessary.

ReadMe.txt A file containing an explanation of the files generated by the application wizard.

Resource.h The header file for the resource file.

StdAfx.cpp The file that will #include the ATL implementation files.

StdAfx.h The file that will #include the ATL header files.

Table 1.

You will also notice a DispClientPS project. This project creates the proxy and stub that allow your object to be
accessed from outside of its COM apartment.

To create a new server project

1. In Solution Explorer, right-click the DispSink solution node.
2. On the shortcut menu, click Add, and then click New Project. The New Project dialog box appears.

3.
4.

5.

Solution Explorer

= 2 DispClientp:

o [3] Referer
= a Source
..... @ <td
..... @ Diisp
= 3] Header
std
..... Res
= a Resour

Solution 'DispSirg
- [DispClient

P
Build Solution

Rebuild Solution

Clean Solution

Batch Build. .
Configuration Manager. ..
Projeck Dependencies. ..

Project Build Crder, .,

----- s3] Referen
----- |:| Source

----- CispClis
= a 3Enera

[T T oYY

add R ||W
Set StartUp Projects. .. Existing Project. ..
Debiug 3 Existing Project Erom Wehb. ..

n Save Dispaink.sin h Add Mew Tkem. ..

ﬁ Save Al Add Existing Ikem. ..

Figure 7: Adding another new project to solution.

From the Visual C++ Projects folder, select ATL Project.
In the Name box, type DispServer.

& project that uses the Active Template Library,

Marmne:

I DispServet|

Lacakion: IF:'I,chpru:uject'l,DispSink

;I Browse. .. |

Project will be created at Fi\mfcproject\DispSinkiDispServer,

| Ik I Cancel | Help |

Add New Project X]
po oo
Project Tyvpes: Templates: Bo o
{1 Wisual Basic Projects #2.ASPNET Web Service *
[visual C# Projects A ATL Project B
l:| Wisual J# Projects [ATL Server Project =
#-4_ Wisual C++ Projects b ATL Server Web Service
{1 Setup and Deployment Projects B Class Library (MET) -
[Other Projects ¥ Console Application {.MET)
[E1| Cuskom ‘izard
Ermphy Project { NET)
FEHlExtended Stored Procedure Dl o

Figure 8: Adding new DispServer, an ATL project to solution.

Click OK to start the ATL Project Wizard. The ATL Project Wizard appears.

6. Click the Application Settings tab to display the current options for the initial project.

7. Select the Executable server type.

ATL Project Wizard - DispServer,

Application Settings

Specify the application tvpe and Feature support for the project,

v Artributed

Server bype:
(" Dnaric-link, library (DLL)
(* Executable (EXE)
™ Service (EXE)

Application Settings

Additional options:

Finish Cancel Help

Figure 9: Modifying Application Settings options.

8. Click Finish to generate the DispServer project.

For the DispServer project, the application wizard creates a similar set of files compared to the DispClient project. The
only difference is in the file DispServer.cpp, where the module type is exe instead of dll.
The next step focuses on the implementation of the server object.

Step 2: Adding the Server Object

In this step, you will use Class View to add objects to the project. You need to add a single ATL object (named
CDispServ) to the server. This object also serves as an event source.

To add a class to the project

1. InClass View, right-click the DispServer project. On the shortcut menu, click Add and then click Add Class.
The Add Class dialog box appears.

Dispg [f% Build

Rebuild

Clean

Project Cnly 3

Project Dependencies. ..

Praoject Build COrder. ..

Add * | 3 Add Mew Ttem,..
Add Reference. .. Add Existing Tkem. ..
Add Web Reference. .. 71 Mew Folder
Set as StartUp Project Pﬁ@ Add Class... |I
= Debug L Add Resaurce. ..
@ [i ot

Figure 10: Adding new class to DispServer.

2. Select ATL Simple Object and click Open. The ATL Simple Object Wizard appears.

Add Class - Disp5Server,

go oo
Categories: Templates: B | e
=3 Yisual C4+4 P ATL Simple Objeck
S MET # ATL Contral
Hid ATL Bl ATL OLEDE Consumer
~amFC A5 ATL Dialog
: E=]
(1 generic b ATL Server Web Service
e fidd ATL Support To MFC
E5i|ATL Property Page
ah|ATL Performance Monitor Obiject
SEIATL OLEDE Provider
rj:_@ ATL Active Server Page Component
EIATL COM+ 1.0 Camponent
Adds an ATL simple object,
Marne: I
Locakion: I Browse, ., |
Cpen Cancel | Help |

Figure 11: Adding an ATL Simple Object template to DispServer.

3. Inthe Short name field, type DispServ. The remaining fields are automatically completed. The additional
fields contain information on the name of the class as well as the names of the files that should be created. The
Type field is a description of the object, while the ProglD field is the readable name that can be used to look

up the CLSID of the object. Note that the Attributed box is selected and unavailable. An ATL object created
by the wizard in an attributed project is always attributed.

ATL Simple Object Wizand - DispServer,

Welcome to the ATL Simple Object Wizard

This wizard adds a simple ATL object to your project,

C++
Short name: b Files
|DispServ| |DispSer'-.f.h J
Class: .cop file:
|CDi5pServ |DispServ.|:pp J
-
oM
Type:
| |DispSer'-.f Class
|Name of coclass in JI0L file. |
Inkerface: Progll:
|IDispServ |DispServer.DispServ

Finish | Cancel Help

Figure 12: An ATL Simple Object Wizard, Names page.

4. Click the Options tab in the wizard.
5. On the Options tab, select Connection points support. This allows the object to act as an event source.

ATL S5imple Object Wizand - DispServer,

Options

Specify threading model, interface tvpe, and any additional interface to support.

Threading model: Interface;
" Single f* Dual
Options {* Anarkment " Cuskom
™ Both r
L Support:
" Meutral (windows 2000 onky) ™ ISuppartErrarinf
fggregation: e i
e ’
M

[IObjectwithSite (IE object support)
" only

Finish Cancel Help

Figure 13: ATL Simple Object Wizard, Options page.
6. Click Finish to generate the DispServV class.

Note in Class View that the CDispServV class, as well as the IDispServ and _1DispServEvents interfaces,
have been created and are now visible. To implement the new class, the wizard added two new files to the project:

. DispServ.h contains most of the implementation of the CDispServ class, as well as the interfaces. The
CDispServ class has automatically been made a COM event source through the event_source attribute
with the _IDispServEvents interface automatically specified as the event interface for CDispServ.
UUIDs, progids, help strings, and version numbers have been automatically generated for the class and the
interfaces.

. DispServ.cpp contains the remainder of the CDiISpServ class. At this point, it includes a few necessary files.

Class View - DispServer

SR
+ CispClient
DispClisntPs
- Dispaerver
+-=4 Global Functions and Yariables

£ Macros and Constants
{}an
QI; CDispSery
&I; CDisp3eryertodule

= IDispSery

+ OI; Bases and Inkerfaces
=2 _IDispServEvents

+ OI; Bases and Inkerfaces
-4 _GUID

g QuID
DispaerverPs

1]+ [F-F-F

Figure 14: The added interfaces and events (of course respective files also added)

You can build the application by clicking Build DispServer from the Build menu, though DispServer does not actually
do anything interesting yet. However, it does have the capability to register itself. This is done automatically when the
project is built. The next step implements the functionality of the DispServer object.

Step 3: Implementing the Server

In this step, you will add the functionality to make the class do something interesting. In the last two steps, you have
created the CDispServ class, which now exposes a custom interface (IDispServ), and an event source (the
__IDispServEvents event interface). Beyond this implementation, however, it does not actually do anything.

The main purpose of the CDispServV class is to receive data using the Send () method and transmit the information
using the Transfer () event. Therefore, a DispClient object connected to a DispServer object can call Send ()
through the 1DispSerV interface, passing it data. The Send () method then fires the Transfer () event,
propagating the data to all connected DispClient objects. Previously, this required creating a connection point proxy
class to fire the events. With the new events feature, the situation is simplified; you will add the Transfer () event to
the _IDispServEvents interface.

To add and define the Transfer event

1. InClass View, click the DispServer project to expand the node.

2. Double-click the _1DispServEvents interface. This opens the interface definition in the Code editor.

3. Define the Transfer () event for the _1DispServEvents interface by adding the following code to the
_IDispServEvents interface definition:

[1d(1), helpstring("method Transfer'™)] HRESULT Transfer(VARIANT data);
4. Make IDispatch a base class of the interface.
Your interface definition should now match the following definition:
__interface _IDispServEvents : public IDispatch

[1d(1), helpstring("method Transfer'™)] HRESULT Transfer(VARIANT data);

L3
E___interface _IDispServaentsl : public IDispatch

{ |_ interface IDispatch|
[1d{1), helpstring("method Transfer™)] HREISULT Transfer (VARTANT data):

Y

Listing 1.

To fire the Transfer () event, make a call to _IDispServEvents_Transfer () from your event source. The
form for firing an event is always InterfaceName_ EventName.

To add and define the Send method

1. InClass View, double-click the IDispServ interface. This opens the interface definition in the Code editor.
2. Define the Send () method for the IDispServV interface by adding the following code to the IDispServ
interface definition:

[1d(1), helpstring("method Send')] HRESULT Send(VARIANT data);
Your interface definition should now match the following definition:
__interface IDispServ : IDispatch

[1d(1), helpstring(‘method Send')] HRESULT Send(VARIANT data);

L]
F __ interface IDispServ : IDispatch

i
[id(1), helpstring("mwethod J3end™)] HRESIULT 3end(VARILNT data):

b
Listing 2.

To implement the Send () method for the CDispServ class, scroll down to the bottom of DispServ.h and add the
following code directly below the last public: section of the class:

STDMETHOD(Send) (VARIANT data)
{

_IDispServEvents_Transfer(data);
return (S_0K);
by

public:

= ATDMETHOD [(Send) (VARIANT data)

i
_IDisp3ervEvents Transfer (data]:
return (3 0K ;

_b :
Listing 3.

The full CDispServ class should now look like this:

class ATL _NO_VTABLE CDispServ : public IDispServ

{
public:
CDispServ(Q)

{
}

__event __ interface _IDispServEvents;
DECLARE_PROTECT_FINAL_CONSTRUCT(Q)

HRESULT FinalConstruct()
{

}

void FinalRelease()

{
+

public:
STDMETHOD(Send) (VARIANT data)

return S_OK;

_IDispServEvents_Transfer(data);
return S_OK;
}
}:

The final task implements the CDiSpSerV class as a singleton server, which means that all clients will connect to the
same server.

To define CDispServ as a singleton server
1. In Class View, double-click the CDispServ node.
2. Add the following lines directly below the DECLARE_PROTECT_FINAL_CONSTRUCT() in class
CDispServ:

DECLARE_CLASSFACTORY_SINGLETON(CDispServ);
__ewvent interface IDisp3ervEvents:
DECLARE PROTECT FINAL CONSTRUCT ()

DECLARE_CLASSFACTORY_SINGLETONiCDiSpSErV]4

EH HREIULT FinalConstructi()
Listing 4.

The server is now complete. You can build the server by selecting Build DispServer from the Build menu. Once the
server is successfully built, it will register itself.

The Visual Studio development environment also provides wizards that let you add properties and methods. Just right
click on the interface node in Class View and select a wizard from the context menu. The next step adds a simple client
object to the DispClient project.

Step 4: Adding the Client Object

In this step, you will add a client object (named CDispCtl) to the client project. This client object will be implemented
by a simple, lightweight control added by the Add Class dialog box.

Adding the client object to the project

1. 1In Class View, right-click the DispClient project.

2. On the shortcut menu, click Add and then click Add Class. The Add Class dialog box appears.

Class Wiew -

& i
¥ r T

(G [gta=id

Disp
+ Disp
+ Disp

Dispi_lient

Dispsery.h

Dispaery,.cpp | oaidl.b

|‘$'I; CDispSery

Biuild
Febuild
Clean

Project Qnly

Projeck Dependencies. ..

Projeck Build Order. ..

{
'

__ewent interf
DECLARE PROTECT
DECLARE CLASSFAC

HEESULT FinalCon

#dd

Set as Starklp Project

“*g Add Class. ..

“@ Add Resource. .,

Figure 15: Adding a new class to DispClient.

3. From the ATL folder, double-click ATL Control. The ATL Control Wizard appears.
4. In the Short name field, type DispCtl. The remaining fields are automatically completed.

ATL Control Wizand - DispClient

Welcome to the ATL Control Wizard

This wizard adds a user interface object ko vour project that supports the interfaces For all
pokential containers,

C++
Short name: i Files
s Dispct Dispctl. [
TR AN A Class: .cop file:
[CDispCt Dispct. cpp [
Appearance
=
Stock Propetties
CoM
Type:
| [DispiCH Class
Inkerface: ProgIl:
IDispcCH Dispilient. DispCH
Finish | Cancel Help

Figure 16: ATL Control Wizard, Names page.

5. Click the Options tab.
6. Select Minimal control.
7. Change the Threading Model to Single.

ATL Control Wizand - DispClient

Options

Specify control bvpe, threading model, interface tvpe, aggregation and additional support For
wour conkrol,

Han Conkral bype: Threading model:
Wames
(* Standard contral f* 3
Options " Composite control " Apartrent
Interfaces @ 0 AL Eoie] Interface:
v Minimal contral * Dual
Appearance (™ Custaom
Agaregation:
Skock Properties [
Stock Propetrties + Yes
(" Mo SUppork:
= Onby [Comnection points
[Licensed
Finish Cancel Help

Figure 17: ATL Control Wizard, Options page.

8. Click the Interfaces tab.
9. Move IDataObject and 1ProvideClassInfo2 to the Supported column.

ATL Control Wizand - DispClient

Interfaces
Specify interfaces that wour object will support,
Mot supported: Supported;
Mames
I0bjectwithSite ool || 1Datasbiect
Options IPersistStarage &= IProvideClassInfo2
HEE IPrDEertENDtiFiﬁink 5
Interfaces I19ervicePravider
ISpecifyPropertyvPages
Appearance ISuppartErrarInfo
€«
Stock Propetties
Finish Cancel Help

Figure 18: ATL Control Wizard, Interfaces page.
10. Click Finish to generate the CDispCtl class.

CDispCtl inherits from all the ATL template classes required for a light control. Additionally, the class inherits from
IDataObjectlImp, providing methods to support Uniform Data Transfer, and 1ProvideClassInfo2lmpl,
allowing the access of type information for the object's coclass from other COM objects.

Registration of the control is achieved using the registration_script attribute. The parameter on this attribute is the
name of the registration script, in this case Control.rgs, which is the default registration script for controls.

Also included is a default implementation of the OnDraw() method.

The final step is to add the event_receiver attribute to the new class.

Adding an attribute to an existing class

1. InClass View, double-click the DispClient node and click the CDispCtl class. This will display the class
definition for CDispCtl.

2. Just above the class definition is the attribute block for the class. Add event_receiver(com) to the
attribute block. Don’t forget to put a comma at the end of the previous line of code.

=44 chispctl

[
coclass,
threading("single™),
vi progid("DispClient.DispCtl™),
progid("DispClient.DispCtl. 1),
wersion(l.0),
uuid("ESDEIFSE-2252-4A83-A006-COBE1ALI1IE12F"),
helpstring("DispCtl Clazs™),
registration script("control.rgs"™),
event recelwver (com)

Listing 5.
The resulting attribute list should resemble the following:

L

coclass,

threading('single™),
progid("'DispClient.DispCtl"),

version(1.0),
uuid(""'E26DD5C9-DE30-46FF-B6B6-51F31840B437""),
registration_script(“control.rgs™),
event_receiver(com)

1

In the next step, you will add the needed interfaces to the control object.
Step 5: Adding the Client Interfaces

In this step, you will implement the various methods of the IDispCtl interface. To allow the client object to handle
events fired from the _IDispServEvents interface you need to allow access to the interface exposed by the
CDispServ class.

To allow the client object to handle events

1. Open DispCtl.h in your source editor.
2. Add the following line below the #include <atlctl.h> line:

#import "progid:DispServer.DispServ.1" embedded idl, no_namespace

=/ DizpCtl.h : Declaration of the CDhispCtl
#pragma once
#include "resource.h' A/ main symbols
f#include <atlcotl.h>
gimport "progid:DispServer.Diap3erv. 1™ erbedded idl, no namwmespace

Listing 6.
This assumes that your class name is DispServer.

In the last step, we added a simple client object (CDispCtl) with an empty interface to the project. At this point, you
need to add the following methods to the IDispCtl interface:

. Connect() - Causes the client to hook to the server, enabling it to receive events.

= Disconnect() - Unhooks the event source of the client.
= Send() - Sends the specified data to the server.

To add the methods to your interface

1. InClass View, double-click the IDispCtl node under the DispClient project.
2. Inthe Source editor, add the following lines to the IDispCtl interface:

[1d(1), helpstring(*'method Connect')] HRESULT Connect();
[1d(2), helpstring("method Disconnect™)] HRESULT Disconnect();
[1d(3), helpstring(“method Send)] HRESULT Send(VARIANT data);

E _ interface IDispCtl : public IDispatch
i
[id{1l), helpstring("wethod Connect®™)] HRESULT Connect():
[id(2), helpstring("mwethod Dizconnect™)] HREZULT Disconnect():
|[id(3] , helpstring("wethod 3end™)] HREIULT Send (VARIANT data):
b

Listing 7.
The interface should now resemble the following code:

L
object,
uuid(--.),
dual,
helpstring("IDispCtl Interface™),
pointer_default(unique)

1
__interface IDispCtl : IDispatch
[1d(1), helpstring(‘method Connect')] HRESULT Connect();

[1d(2), helpstring("method Disconnect™)] HRESULT Disconnect();
[1d(3), helpstring("method Send)] HRESULT Send(VARIANT data);

}:
In the next step, you will add the implementation of the IDispCtl methods and modify other sections of code.
Step 6: Implementing the Client

In this step, you will implement IDispCtl's methods in CDispCtl, add an event handler, and modify the
OnDraw() function.

Implementing the IDispCtl Interface

CDispCtl is where you will implement methods declared in IDispCtl. The implementation begins with adding the
following three data members, used by the new methods:

= m_bConnected(bool) - Indicates the connect state of the server.

= m_plServ(_IDispServEvents®*) - A pointer to the IDispServV interface the client will connect
to.

= m_OutText(variant) - Holds the data received from the server.

To add the data members

1. InClass View, double-click the IDispCtl node under the DispClient project.

2. Inthe Source editor, add the following lines at the end of the CDispCtl class, in a private: section:

private:
// Data
bool m_bConnected;
CComPtr<IDispServ> m_splServ;
CComVariant m_OutText;

é woid FinalRelease ()

i

- *

brivate:
Ff Data
bool w hConnected:
CComPrr<IDisplerv:> m spl3erv;
CComWariant m CutText:

Listing 8.
3. To initialize the new data members, modify the default constructor to match the following:
CDispCtl O
{

m_bConnected = false;
m_OutText = L"Not connected";

}

public:

= ChispCtl()
i
n hConnected = false;
I OucText = L"HNot connected"”;

Listing 9.

4. To ensure that you disconnect from the server upon exiting, add a destructor for the CDispCtl class. Add the
following directly below the default constructor declaration:

~CDispCtl
Disconnect();
}
i hConnected = false;
I OucText = L"HNot connected"”;
H
= ~CDhispCel()

{

b

Disconnect ()

Listing 10.

The first method you will implement is the Connect() method. This method creates an instance of CDispServ
using CoCreatelnstance() and connects the Transfer () event from the newly created instance of

CDispServ to the event handler method, OnTransmit() (not yet implemented). The connection is achieved by the
__hook keyword.

To implement the Connect() method

Below the data members created earlier, add the following code:

HRESULT Connect()

{
HRESULT hr;

hr = m_splServ.CoCreatelnstance(__uuidof(CDispServ));
it (SUCCEEDED(hr))

{

hr = _ hook(&_IDispServEvents::Transfer, m_splServ,
CDispCtl::OnTransmit);

}
if (hr == S_OK)
{

m_bConnected = true;
m_OutText = L"Connected";

}
FireViewChange();

return(hr);

}

CComWVariant rn_Out Text:

= HRESULT Connect (]
{
HREIULT hr;

hr = m splferv.CoCreatelnstance | uuidof (CDisplerv]]);
= if (SUCCEEDED (hr))
i
hr = hooki& IDisp3ervEvents::Transfer, m splierv,

ChizpCtl: :OnTransmit)
= h
= if {(hr == 3 OK]
i
m hConnected = true;
m CutText = L"Connected”;
- ¥
FireViewChandge () :
returnihr) ;

Listing 11.

The implementation of the Disconnect() method uses __unhook to disconnect the event and Release () to
release the instance of CDisSpServV created earlier.

To implement the Disconnect() method

Below the Connect() method, add the following code directly:
HRESULT Disconnect()

it (m_bConnected)

{
HRESULT hr = __ _unhook(&_IDispServEvents::Transfer,
CDispCtl: :OnTransmit);
it (SUCCEEDED(hr))

{ m_splServ.Release();
m_bConnected = false;
}
return(hr);
return(S_0K);
}
=) HRESULT Disconnect |
i
= if (mw hConnected)
i
HRESULT hr = unhook|
& IDisplervEvents::Transfer, m splierwv,
ChizpCtl: :OnTransmit) ;
= if (SUCCEEDED (hr))

i
m splierv.Release(]:
m bConnected = false;
= }
returnihr) ;
= }
recurn (3 OK]:

Listing 12.

Adding the Event Handler

m_splServ,

For the control to respond to events fired from the server, you need to implement a handler (called OnTransmit())
for the Transmit() event. The OnTransmit() event handler takes the data passed in from the Transfer()
event and places it in the m_OutText data member. It then calls FireViewChange() (not yet implemented), which

updates the control by displaying the contents of the m_OutText data member.
To implement a handler for the Transmit event

Add the following code to the source file, below Disconnect():

HRESULT OnTransmit(VARIANT data)
{
if (data.vt == VT_BSTR)
m_OutText = data;
FireViewChange();
return(S_0K);

H—] HREIULT OnTranswmit (VARIAWNT data)
i
if f(data.wt == VT B3ITR]
m CutText = data:
FireViewChange () ;
recurn (3 OK]:

Listing 13.
The last method you will implement is the Send () method. This method sends data to the server object.
To implement the Send() method
Add the following code to the source file, below OnTransmit():
HRESULT Send(VARIANT data)

if (m_bConnected)
m_splServ->Send(data);
return(S_0K);
}

4

HRESULT 3Zend (VARIANT data)

i
if (m hConnected)
 splierv-rxSend(data) ;
recurn(3_O0K]:

Listing 14.
Modifying the OnDraw() Method

The final modification you will make is to the CDispCtl : zOnDraw method. The OnDraw() method needs to output
the contents of the data member m_OutText to the screen.

To modify the OnDraw() method
Replace the body of the existing OnDraw() method with the following:

USES_CONVERSION;
LPCTSTR text = OLE2CT(m_OutText.bstrVal);
RECT& rc = *(RECT*)di.prcBounds;
Rectangle(di .hdcDraw, rc.left, rc.top, rc.right, rc.bottom);
SetTextAlign(di.hdcDraw, TA_CENTER|TA_BASELINE);
TextOut(di .hdcDraw,
(rc.left + rc.right) 7/ 2,
(rc.top + rc.bottom) / 2,
text,
Istrien(text));

return S_OK;

A IDispCrl
public:
= HRESULT OnDraw(ATL DRAWINFO& di)
i
U3ES CONVERSION:
LPCTETE text = OLEZCT (m OutText.bstrVal):
RECT& roc = *[(RECT*)di.prcEounds:
Fectangle (di.hdeDraw, rcoc.left,
ro.top, ro.right, ro.bottom) ;
SetTextdlign{di.hdcDraw, TA CENTER|TL EASELINE):
Textout (di.hdcDraw,
(ree. left + re.righe) /2,
(ro.top + ro.hottom) /2,
text,
lztrlenitext));

return 5 OK;

Listing 15.
The DispClient control is now complete. Build the control by selecting Build DispClient from the Build menu.
Step 7: Using the Client Control
In this step, you will use the client control to invoke the methods.
To use the client control

1. On the Tools menu, click ActiveX Control Test Container. This starts Tstcon32.exe.
2. Click the New Control button on the toolbar to insert a client controls (CDispCtl).

i Untitled - ActiveX Control Test Conta... EI[E|E|
File Edit Container Control Wiew Options Tools Help

O = & e B F L

Rur Macra: | Mew Contral

Insert new conkrol

Figure 19: Inserting new control to ActiveX Control Test Container.

Insert Control

APEX amapDB Object Ok
ATLDice0by Clazs _
AxBrowse AxBrowser

iz Control Eeinoel
BlockerChl Class

Calendar Contral 8.0

=

CDizpCH Object

ColarBywr Class .
COMMSiew Class Implemented Cateqgaries... |
CorverEdChrl Contral g - -

¥, | 3 Bequired Categories. .. |

Esmfcprojectidispsinkdisp... \DispClient.dll [lanore required categories

Figure 20: Selecting control in ActiveX Control Test Container.

“i Untitled - ActiveX Control Test Container |: E'E'

File Edit Container Conktrol Wiew Options Tools Help
DEH ¥ e B s il
Run Macru:u:| j
|
n Mot connected n
|
For Help, press F1 Ackive W

Figure 21: CDispCtl object in ActiveX Control Test Container.

3. Right-click the control and click Invoke Method on the shortcut menu. The Invoke Method dialog box
appears.
4. Ensure that Method Name is set to Connect and click Invoke.

Invoke Methods

Method Mame:
| Connect [Method] ﬂ

Parameters:

Parameter Walue

Parameter 4 aluie; Parameter Type:

| 7

Return Y alue:

| WT_EMPTY]

E wzeption Description

Esception Source:

|

Figure 22: Invoking the Connect () method of the CDispCtl control in ActiveX Control Test Container.

Right-click the control and click Invoke Method on the shortcut menu. The Invoke Method dialog box
appears.

Set Method Name to Send.

Change the parameter type on the Send method to VT_BSTR.

Enter any string in the Parameter Value box.

=

Invoke Methods

Method Mame: Irahe
| Send [Methad) -l
Cloze
Parameters:
Farameter Walue Type
data WT_EMPTY
Parameter 4 aluie; Parameter Type:

|Ser‘u:|ir'|g zome string loll WT_BSTR ﬂ SetValue |

Return Y alue:

E wzeption Description

Esception Source:

|

Figure 23: Invoking the Send () method of the CDispCtl control in ActiveX Control Test Container.

9. Click the Invoke button. The string is displayed in all connected controls.

i Untitled - ActiveX Control Test ... |Z||E|[z|

File Edit Container Control Mjew Options Tools

Help
PEH B e BD #
HunMacm:| j

@ Sending some string lol! g

For Help, press F1 Bk

Figure 24: CDispCtl in action.

End

Further reading and digging:
1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library
3. MSDN Library
4. DCOM at MSDN.
5. COM-+ at MSDN.
6. COM at MSDN.
7. Windows data type.
8. Win32 programming Tutorial.
9. The best of C/C++, MFC, Windows and other related books.
10. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

