
ATL - Attributes Tutorial on Visual C++ .Net

Program examples compiled using Visual Studio/C++ .Net 2003 compiler on Windows XP Pro machine with Service
Pack 2. Topics and sub topics for this tutorial are listed below. Don’t forget to read Tenouk’s small disclaimer. The
supplementary note for this tutorial is .NET.

Using Visual C++ and attributes, you can speed up and simplify the process of COM programming. This tutorial uses
attributes to implement both a client and a server application. During the course of this tutorial, you will use attributes
and events.
The tutorial develops a singleton server object (an object that can have only one instance) that has its own dual interface
and a dispatch interface used for firing off events. The server object takes data, given to it through the Send() method
of its dual interface, and transmits it to all connected components through the Transfer() event on its dispatch
interface.
In addition, the tutorial implements a client (an ActiveX control) that contains a server object. The control responds to
the Transfer() event fired by the server object and has its own dual interface that implements several methods:
Connect(), Send(), and Disconnect(). If the Transfer() event is fired with a variant containing a BSTR,
the string is displayed in the center of the control.
The tutorial is divided into seven steps, each building on the application developed in the previous step. Keep in mind
that all the coding part was done manually, copy and paste, instead of using 'wizard'.

▪ Step 1: Creating the Projects.
▪ Step 2: Adding the Server Object.
▪ Step 3: Implementing the Server.
▪ Step 4: Adding the Client Object.
▪ Step 5: Adding the Client Interfaces.
▪ Step 6: Implementing the Client.
▪ Step 7: Using the Client Control.

Step 1: Creating the Projects

In this step, you will create an initial solution containing two ATL projects. The two projects will implement the server
and client objects of the tutorial.

To create a new solution

1. In the Visual Studio environment, click New from the File menu and then click Blank Solution.

Figure 1: Creating a new Visual C++ .Net project, starting with blank solution.

2. In the Name box, type DispSink.

http://www.tenouk.com/disclaimer.html
http://www.tenouk.com/visualcplusmfc/mfcsupp/NET.html

Figure 2: Entering the blank solution name.

3. Click OK to create a blank solution.

Once the solution has been created, add the two ATL projects to the empty solution.

To create a new project

1. In Solution Explorer, right-click the DispSink solution node.

Figure 3: Adding new project to Visual C++ .Net solution.

2. On the shortcut menu, click Add and then click New Project. The New Project dialog box appears.
3. From the Visual C++ Projects folder, select ATL Project.

Figure 4: Adding DispClient, a new ATL project to solution.

4. In the Name box, type DispClient.
5. Click OK to start the ATL Project Wizard. The ATL Project Wizard offers several choices to configure the

initial project. Because the wizard creates an attributed project by default, you do not have to change any
wizard settings.

Figure 5: ATL Project Wizard Application Settings page.

6. Click Finish to generate the DispClient project. The files generated by the wizard are listed in the following
table.

Figure 6: The generated files and resources for DispClient ATL project.

File Description

DispClient.cpp

Contains the module attribute, which implements DLLMain(),
DLLRegisterServer(), and DLLUnregisterServer(). The module
type also defines the GUID for the type library. Notice that the GUID and
helpstring have been automatically generated.

DispClient.h A MIDL-generated file that will contain interface definitions. For purposes of this
tutorial, this file will be unnecessary.

DispClient.rc The resource file, which initially contains the version information and a string
containing the project name.

DispClient.rgs Contains entries that are added to the registry, which will register your COM
object.

DispClient.vcproj A file containing the project settings.

DispClientps.def The module definition file for the proxy/stub DLL. For purposes of this tutorial,
this is unnecessary.

ReadMe.txt A file containing an explanation of the files generated by the application wizard.
Resource.h The header file for the resource file.
StdAfx.cpp The file that will #include the ATL implementation files.
StdAfx.h The file that will #include the ATL header files.

Table 1.

You will also notice a DispClientPS project. This project creates the proxy and stub that allow your object to be
accessed from outside of its COM apartment.

To create a new server project

1. In Solution Explorer, right-click the DispSink solution node.
2. On the shortcut menu, click Add, and then click New Project. The New Project dialog box appears.

Figure 7: Adding another new project to solution.

3. From the Visual C++ Projects folder, select ATL Project.
4. In the Name box, type DispServer.

Figure 8: Adding new DispServer, an ATL project to solution.

5. Click OK to start the ATL Project Wizard. The ATL Project Wizard appears.
6. Click the Application Settings tab to display the current options for the initial project.

7. Select the Executable server type.

Figure 9: Modifying Application Settings options.

8. Click Finish to generate the DispServer project.

For the DispServer project, the application wizard creates a similar set of files compared to the DispClient project. The
only difference is in the file DispServer.cpp, where the module type is exe instead of dll.
The next step focuses on the implementation of the server object.

Step 2: Adding the Server Object

In this step, you will use Class View to add objects to the project. You need to add a single ATL object (named
CDispServ) to the server. This object also serves as an event source.

To add a class to the project

1. In Class View, right-click the DispServer project. On the shortcut menu, click Add and then click Add Class.
The Add Class dialog box appears.

Figure 10: Adding new class to DispServer.

2. Select ATL Simple Object and click Open. The ATL Simple Object Wizard appears.

Figure 11: Adding an ATL Simple Object template to DispServer.

3. In the Short name field, type DispServ. The remaining fields are automatically completed. The additional
fields contain information on the name of the class as well as the names of the files that should be created. The
Type field is a description of the object, while the ProgID field is the readable name that can be used to look

up the CLSID of the object. Note that the Attributed box is selected and unavailable. An ATL object created
by the wizard in an attributed project is always attributed.

Figure 12: An ATL Simple Object Wizard, Names page.

4. Click the Options tab in the wizard.
5. On the Options tab, select Connection points support. This allows the object to act as an event source.

Figure 13: ATL Simple Object Wizard, Options page.

6. Click Finish to generate the DispServ class.

Note in Class View that the CDispServ class, as well as the IDispServ and _IDispServEvents interfaces,
have been created and are now visible. To implement the new class, the wizard added two new files to the project:

▪ DispServ.h contains most of the implementation of the CDispServ class, as well as the interfaces. The
CDispServ class has automatically been made a COM event source through the event_source attribute
with the _IDispServEvents interface automatically specified as the event interface for CDispServ.
UUIDs, progids, help strings, and version numbers have been automatically generated for the class and the
interfaces.

▪ DispServ.cpp contains the remainder of the CDispServ class. At this point, it includes a few necessary files.

Figure 14: The added interfaces and events (of course respective files also added)

You can build the application by clicking Build DispServer from the Build menu, though DispServer does not actually
do anything interesting yet. However, it does have the capability to register itself. This is done automatically when the
project is built. The next step implements the functionality of the DispServer object.

Step 3: Implementing the Server

In this step, you will add the functionality to make the class do something interesting. In the last two steps, you have
created the CDispServ class, which now exposes a custom interface (IDispServ), and an event source (the
_IDispServEvents event interface). Beyond this implementation, however, it does not actually do anything.
The main purpose of the CDispServ class is to receive data using the Send() method and transmit the information
using the Transfer() event. Therefore, a DispClient object connected to a DispServer object can call Send()
through the IDispServ interface, passing it data. The Send() method then fires the Transfer() event,
propagating the data to all connected DispClient objects. Previously, this required creating a connection point proxy
class to fire the events. With the new events feature, the situation is simplified; you will add the Transfer() event to
the _IDispServEvents interface.

To add and define the Transfer event

1. In Class View, click the DispServer project to expand the node.
2. Double-click the _IDispServEvents interface. This opens the interface definition in the Code editor.
3. Define the Transfer() event for the _IDispServEvents interface by adding the following code to the

_IDispServEvents interface definition:

[id(1), helpstring("method Transfer")] HRESULT Transfer(VARIANT data);

4. Make IDispatch a base class of the interface.

Your interface definition should now match the following definition:

__interface _IDispServEvents : public IDispatch
{
 [id(1), helpstring("method Transfer")] HRESULT Transfer(VARIANT data);
};

Listing 1.

To fire the Transfer() event, make a call to _IDispServEvents_Transfer() from your event source. The
form for firing an event is always InterfaceName_EventName.

To add and define the Send method

1. In Class View, double-click the IDispServ interface. This opens the interface definition in the Code editor.
2. Define the Send() method for the IDispServ interface by adding the following code to the IDispServ

interface definition:

[id(1), helpstring("method Send")] HRESULT Send(VARIANT data);

Your interface definition should now match the following definition:

__interface IDispServ : IDispatch
{
 [id(1), helpstring("method Send")] HRESULT Send(VARIANT data);
};

Listing 2.

To implement the Send() method for the CDispServ class, scroll down to the bottom of DispServ.h and add the
following code directly below the last public: section of the class:

STDMETHOD(Send)(VARIANT data)
{
 _IDispServEvents_Transfer(data);
 return (S_OK);
}

Listing 3.

The full CDispServ class should now look like this:

class ATL_NO_VTABLE CDispServ : public IDispServ
{
public:
 CDispServ()
 {
 }

 __event __interface _IDispServEvents;

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:
 STDMETHOD(Send)(VARIANT data)
 {
 _IDispServEvents_Transfer(data);
 return S_OK;
 }
};

The final task implements the CDispServ class as a singleton server, which means that all clients will connect to the
same server.

To define CDispServ as a singleton server

1. In Class View, double-click the CDispServ node.
2. Add the following lines directly below the DECLARE_PROTECT_FINAL_CONSTRUCT() in class

CDispServ:

DECLARE_CLASSFACTORY_SINGLETON(CDispServ);

Listing 4.

The server is now complete. You can build the server by selecting Build DispServer from the Build menu. Once the
server is successfully built, it will register itself.
The Visual Studio development environment also provides wizards that let you add properties and methods. Just right
click on the interface node in Class View and select a wizard from the context menu. The next step adds a simple client
object to the DispClient project.

Step 4: Adding the Client Object

In this step, you will add a client object (named CDispCtl) to the client project. This client object will be implemented
by a simple, lightweight control added by the Add Class dialog box.

Adding the client object to the project

1. In Class View, right-click the DispClient project.
2. On the shortcut menu, click Add and then click Add Class. The Add Class dialog box appears.

Figure 15: Adding a new class to DispClient.

3. From the ATL folder, double-click ATL Control. The ATL Control Wizard appears.
4. In the Short name field, type DispCtl. The remaining fields are automatically completed.

Figure 16: ATL Control Wizard, Names page.

5. Click the Options tab.
6. Select Minimal control.
7. Change the Threading Model to Single.

Figure 17: ATL Control Wizard, Options page.

8. Click the Interfaces tab.
9. Move IDataObject and IProvideClassInfo2 to the Supported column.

Figure 18: ATL Control Wizard, Interfaces page.

10. Click Finish to generate the CDispCtl class.

CDispCtl inherits from all the ATL template classes required for a light control. Additionally, the class inherits from
IDataObjectImp, providing methods to support Uniform Data Transfer, and IProvideClassInfo2Impl,
allowing the access of type information for the object's coclass from other COM objects.
Registration of the control is achieved using the registration_script attribute. The parameter on this attribute is the
name of the registration script, in this case Control.rgs, which is the default registration script for controls.
Also included is a default implementation of the OnDraw() method.
The final step is to add the event_receiver attribute to the new class.

Adding an attribute to an existing class

1. In Class View, double-click the DispClient node and click the CDispCtl class. This will display the class
definition for CDispCtl.

2. Just above the class definition is the attribute block for the class. Add event_receiver(com) to the
attribute block. Don’t forget to put a comma at the end of the previous line of code.

Listing 5.

The resulting attribute list should resemble the following:

[
 coclass,
 threading("single"),
 progid("DispClient.DispCtl"),
 version(1.0),
 uuid("E26DD5C9-DE30-46FF-B6B6-51F31840B437"),
 registration_script("control.rgs"),
 event_receiver(com)
]

In the next step, you will add the needed interfaces to the control object.

Step 5: Adding the Client Interfaces

In this step, you will implement the various methods of the IDispCtl interface. To allow the client object to handle
events fired from the _IDispServEvents interface you need to allow access to the interface exposed by the
CDispServ class.

To allow the client object to handle events

1. Open DispCtl.h in your source editor.
2. Add the following line below the #include <atlctl.h> line:

#import "progid:DispServer.DispServ.1" embedded_idl, no_namespace

Listing 6.

This assumes that your class name is DispServer.

In the last step, we added a simple client object (CDispCtl) with an empty interface to the project. At this point, you
need to add the following methods to the IDispCtl interface:

▪ Connect() - Causes the client to hook to the server, enabling it to receive events.

▪ Disconnect() - Unhooks the event source of the client.
▪ Send() - Sends the specified data to the server.

To add the methods to your interface

1. In Class View, double-click the IDispCtl node under the DispClient project.
2. In the Source editor, add the following lines to the IDispCtl interface:

[id(1), helpstring("method Connect")] HRESULT Connect();
[id(2), helpstring("method Disconnect")] HRESULT Disconnect();
[id(3), helpstring("method Send")] HRESULT Send(VARIANT data);

Listing 7.

The interface should now resemble the following code:

[
 object,
 uuid(...),
 dual,
 helpstring("IDispCtl Interface"),
 pointer_default(unique)
]
__interface IDispCtl : IDispatch
{
 [id(1), helpstring("method Connect")] HRESULT Connect();
 [id(2), helpstring("method Disconnect")] HRESULT Disconnect();
 [id(3), helpstring("method Send")] HRESULT Send(VARIANT data);
};

In the next step, you will add the implementation of the IDispCtl methods and modify other sections of code.

Step 6: Implementing the Client

In this step, you will implement IDispCtl's methods in CDispCtl, add an event handler, and modify the
OnDraw() function.

Implementing the IDispCtl Interface

CDispCtl is where you will implement methods declared in IDispCtl. The implementation begins with adding the
following three data members, used by the new methods:

▪ m_bConnected(bool) - Indicates the connect state of the server.
▪ m_pIServ(_IDispServEvents*) - A pointer to the IDispServ interface the client will connect

to.
▪ m_OutText(variant) - Holds the data received from the server.

To add the data members

1. In Class View, double-click the IDispCtl node under the DispClient project.

2. In the Source editor, add the following lines at the end of the CDispCtl class, in a private: section:

private:
 // Data
 bool m_bConnected;
 CComPtr<IDispServ> m_spIServ;
 CComVariant m_OutText;

Listing 8.

3. To initialize the new data members, modify the default constructor to match the following:

CDispCtl()
{
 m_bConnected = false;
 m_OutText = L"Not connected";
}

Listing 9.

4. To ensure that you disconnect from the server upon exiting, add a destructor for the CDispCtl class. Add the
following directly below the default constructor declaration:

~CDispCtl()
{
 Disconnect();
}

Listing 10.

The first method you will implement is the Connect() method. This method creates an instance of CDispServ
using CoCreateInstance() and connects the Transfer() event from the newly created instance of
CDispServ to the event handler method, OnTransmit() (not yet implemented). The connection is achieved by the
__hook keyword.

To implement the Connect() method

Below the data members created earlier, add the following code:

HRESULT Connect()
{
 HRESULT hr;
 hr = m_spIServ.CoCreateInstance(__uuidof(CDispServ));
 if (SUCCEEDED(hr))
 {
 hr = __hook(&_IDispServEvents::Transfer, m_spIServ,
 CDispCtl::OnTransmit);
 }
 if (hr == S_OK)
 {
 m_bConnected = true;
 m_OutText = L"Connected";
 }
 FireViewChange();
 return(hr);
}

Listing 11.

The implementation of the Disconnect() method uses __unhook to disconnect the event and Release() to
release the instance of CDispServ created earlier.

To implement the Disconnect() method

Below the Connect() method, add the following code directly:

HRESULT Disconnect()
{
 if (m_bConnected)
 {
 HRESULT hr = __unhook(&_IDispServEvents::Transfer, m_spIServ,
 CDispCtl::OnTransmit);
 if (SUCCEEDED(hr))
 {
 m_spIServ.Release();
 m_bConnected = false;
 }
 return(hr);
 }
 return(S_OK);
}

Listing 12.

Adding the Event Handler

For the control to respond to events fired from the server, you need to implement a handler (called OnTransmit())
for the Transmit() event. The OnTransmit() event handler takes the data passed in from the Transfer()
event and places it in the m_OutText data member. It then calls FireViewChange() (not yet implemented), which
updates the control by displaying the contents of the m_OutText data member.

To implement a handler for the Transmit event

Add the following code to the source file, below Disconnect():

HRESULT OnTransmit(VARIANT data)
{
 if (data.vt == VT_BSTR)
 m_OutText = data;
 FireViewChange();
 return(S_OK);
}

Listing 13.

The last method you will implement is the Send() method. This method sends data to the server object.

To implement the Send() method

Add the following code to the source file, below OnTransmit():

HRESULT Send(VARIANT data)
{
 if (m_bConnected)
 m_spIServ->Send(data);
 return(S_OK);
}

Listing 14.

Modifying the OnDraw() Method

The final modification you will make is to the CDispCtl::OnDraw method. The OnDraw() method needs to output
the contents of the data member m_OutText to the screen.

To modify the OnDraw() method

Replace the body of the existing OnDraw() method with the following:

USES_CONVERSION;
LPCTSTR text = OLE2CT(m_OutText.bstrVal);
RECT& rc = *(RECT*)di.prcBounds;
Rectangle(di.hdcDraw, rc.left, rc.top, rc.right, rc.bottom);
SetTextAlign(di.hdcDraw, TA_CENTER|TA_BASELINE);
TextOut(di.hdcDraw,
 (rc.left + rc.right) / 2,
 (rc.top + rc.bottom) / 2,
 text,
 lstrlen(text));

return S_OK;

Listing 15.

The DispClient control is now complete. Build the control by selecting Build DispClient from the Build menu.

Step 7: Using the Client Control

In this step, you will use the client control to invoke the methods.

To use the client control

1. On the Tools menu, click ActiveX Control Test Container. This starts Tstcon32.exe.
2. Click the New Control button on the toolbar to insert a client controls (CDispCtl).

Figure 19: Inserting new control to ActiveX Control Test Container.

Figure 20: Selecting control in ActiveX Control Test Container.

Figure 21: CDispCtl object in ActiveX Control Test Container.

3. Right-click the control and click Invoke Method on the shortcut menu. The Invoke Method dialog box
appears.

4. Ensure that Method Name is set to Connect and click Invoke.

Figure 22: Invoking the Connect() method of the CDispCtl control in ActiveX Control Test Container.

5. Right-click the control and click Invoke Method on the shortcut menu. The Invoke Method dialog box
appears.

6. Set Method Name to Send.
7. Change the parameter type on the Send method to VT_BSTR.
8. Enter any string in the Parameter Value box.

Figure 23: Invoking the Send() method of the CDispCtl control in ActiveX Control Test Container.

9. Click the Invoke button. The string is displayed in all connected controls.

Figure 24: CDispCtl in action.

---------------------------End---------------------------------

Further reading and digging:
1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. DCOM at MSDN.
5. COM+ at MSDN.
6. COM at MSDN.
7. Windows data type.
8. Win32 programming Tutorial.
9. The best of C/C++, MFC, Windows and other related books.
10. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/dcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/complus_anchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

