
MODULE 9
C FILE INPUT/OUTPUT

MODULE 19
C++ FILE I/O

create this, delete that, write this, read that, close this, open that

My Training Period: hours

Abilities

Trainee must be able to understand and use:

▪ The basic of the data hierarchy.
▪ A sequential access file – Read and Write related functions.
▪ Characters, lines and blocks disk file reading and writing related functions.
▪ A Random access files – Read and Write related functions.
▪ Some File Management Functions.
▪ Other libraries used for file I/O.

9.1 Introduction

- This Module actually shows you how to use the functions readily available in the C standard
library. Always remember this, using the standard library (ISO/IEC C, Single Unix specification or
glibc); you must know which functions to call and which header files provide these functions.
Then, you must be familiar with the proper prototype of the function call.

- The problems normally exist when dealing with the parameters passed to the functions and the
return value of the functions. We will explore some of the very nice and one of the heavily used
functions that available in the stdio.h header file, for our file processing and management tasks.

- Keep in mind that in C++ we will use member functions in class objects for file processing and
some of the advanced file processing examples will be discussed in C++ file I/O Module.

- Storage of data file as you have learned is temporary, all such data is lost when a program
terminates. That is why we have to save files on primary or secondary storage such as disks for
future usage.

- Besides that we also need to process data from external files that may be, located in secondary
storage as well as writing file during software installation and communicating with computer
devices such as floppy, hard disk, networking etc.

- And in socket programming (networking) you will also deal a lot with these open, close, read write
activities.

- File used for permanent retention of large amounts of data, stored online or offline in secondary
storage devices such as hard disk, CD-Rs/DVDs, tape backup or Network Attached Storage (NAS).

9.2 Basic of The Data Hierarchy

- Ultimately, all data items processed by a computer are just combinations of zeroes and ones.
- The smallest data item in computer can assume the value 0 or 1, called a bit (binary digit).
- But, human being prefer to work with data in the form of decimal digits (i.e. 0, 1, 2, 3, 4, 5, 6,

7…9), letters (i.e. A – Z and a – z) and special symbols (i.e. $, @, %, &, *, (,), -, +, ? and many
others) or in readable format.

- As you know, digits, letters and special symbols are referred to as characters, the keys on your
keyboard based on whether the ASCII, EBCDIC, Unicode or other proprietary characters set.

- Every character in a computer’s character set is represented as a pattern of 1’s and 0’s, called byte
(consists 8 bits-ASCII, EBCDIC), and for Unicode it uses multibyte or wide characters.

- Characters are composed of bits, and then fields (columns) are composed of characters.
- A field is a group of characters that conveys meaning such as a field representing a month of year.
- Data items processed by computer form a data hierarchy in which data items become larger and

more complex in structure as we progress from bits, to char (byte) to field and so on.
- A record (row or tuple) is composed of several fields.
- For example, in a payroll system, a record for a particular employee might consist of the following

fields:

0. Name.
0. Address.

Page 1 of 34 www.tenouk.com

http://www.tenouk.com/Module19.html
http://www.tenouk.com/Module39.html

0. Security Social Number (SSN)/Passport Number
0. Salary.
0. Year to date earnings.
0. Overtime claims.

- So, a record is a group of related fields.
- For the payroll example, each of the fields belong to the same employee, in reality a company may

have many employees, and will have a payroll records for each employee.
- Conceptually, a file is a group of related records.
- A company’s payroll file normally contains one record for each employee, thus, a payroll file for a

company might contain up to 100, 000 records.
- To facilitate the retrieval of specific records from a file, at least one field in each record is chosen as

a record key.
- There are many ways of organizing records in a file. Maybe, the most popular type of organization

is called a sequential file in which records are typically stored in order by the record key field.

Figure 9.1: An illustration of a simple data hierarchy.

- For example, in a payroll file, records are usually placed in order by Social Security Number
(SSN). The first employee record in the file contains the lowest SSN number and subsequent
records contain increasingly higher SSN numbers.

- Most business may utilize many different files to store data, for example inventory files, payroll
files, employee files and many other types of files.

- For larger application, a group of related files may be called database.
- An application designed to create and manage databases is called a database management system

(DBMS). This DBMS term used here just for the data structure discussion, in database it may be
different. Popular type of DBMS is Relational DataBase Management System (RDBMS).

- A complete discussion of programming related to the databases can be found in data structure
books.

- Here we just want to have some basic knowledge about the construct of the data that the computer
processes, from bit to characters to fields and so on until we have a very readable data format
organized in a structured manner.

9.3 Files And Streams

- In C, a file can refer to a disk file, a terminal, a printer, a tape drive, sockets or other related
devices. Hence, a file represents a concrete device with which you want to exchange information.

- Before you perform any communication to a file, you have to open the file. Then you need to close
the opened file after finish exchanging or processing information with it.

- The main file processing tasks may involve the opening, reading, writing and closing.
- The data flow of the transmission from your program to a file, or vice versa, is called a stream,

which is a series of bytes. Different with file, a stream is device-independent. All streams have the
same behavior including that used in sockets programming such as the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) streams.

Page 2 of 34 www.tenouk.com

- Hence, to perform I/O operations, you can read from or write to any type of files by simply
associating a stream to the file.

- There are two formats of streams. The first one is called the text stream, which consists of a
sequence of characters (e.g. ASCII data). Depending on the compilers, each character line in a text
stream may be terminated by a newline character. Text streams are used for textual data, which has
a consistent appearance from one system to another.

- The second format of stream is called the binary stream, which is still a series of bytes. The
content of an .exe file would be one example. It is primarily used for non-textual data, which is
required to keep the exact contents of the file.

- And for Unicode it is Unicode stream in text or binary modes.
- In C, a memory area, which is temporarily used to store data before it is sent to its destination, is

called a buffer. By using buffer, the operating system can improve efficiency by reducing the
number of accesses to I/O devices.

- By default all I/O streams are buffered. The buffered I/O is also called the high-level I/O and the
low-level I/O refers to the unbuffered I/O.

- Keep in mind that in order to grasp the basic concepts, this Module will deal mainly with
unformatted text files.

9.4 Directories, Files and streams

9.4.1 Directories (Folders)

- Every OS have different file system for example ext2, ext3 (Linux), FAT, FAT32, NTFS, NTFS 5
(Windows). In general this discussion is biased to Linux file system.

- A file system is organized into a hierarchy of directories. For example:

C:\Program Files\Microsoft Visual Studio\VC98\Bin

- Or in Linux:

/testo1/testo2/testo3

- Or by issuing a tree command at Windows command prompt:

- A directory is a file that contains information to associate other files with names; these associations
are called links (shortcuts) or directory entries. Actually, a directory only contains pointers to files,
not the files themselves but as users we usually just say "files in a directory".

- The name of a file contained in a directory entry is called a file name component.
- In general, a file name consists of a sequence of one or more such components, separated by the

slash character (/). So, a file name which is just one component, names a file with respect to its
directory. A file name with multiple components, names a directory, and then a file in that
directory, and so on.

- Some other documents, such as the POSIX standard, use the term pathname for what was call a file
name here and either filename or pathname component should refer to the same meaning in this
discussion.

9.4.2 File Name Resolution

Page 3 of 34 www.tenouk.com

- A file name consists of file name components separated by slash (/) characters. On the systems
that the GNU C library supports, multiple successive / characters are equivalent to a single /
character.

- The process of determining what file a file name refers to is called file name resolution. This is
performed by examining the components that make up a file name in left-to-right order, and
locating each successive component in the directory, named by the previous component.

- Each of the files that are referenced as directories must actually exist, be directories instead of
regular files, and have the appropriate permissions to be accessible by the process; otherwise the file
name resolution fails.

- Unlike some other operating systems such as Windows, the Linux system doesn't have any built-in
support for file types (or extensions) or file versions as part of its file name prototype.

- Many programs and utilities use conventions for file names. For example, files containing C source
code usually have names suffixed with .c and executable files have .exe extension, but there is
nothing in the Linux file system itself that enforces this kind of convention.

- May be you can better differentiate those file types by using the –F option for ls directory listing
command (ls –F).

- If a file name begins with a /, the first component in the file name is located in the root directory of
the process (usually all processes on the system have the same root directory). In Windows it is
normally a C: drive. Such a file name is called an absolute file name.

- Otherwise, the first component in the file name is located in the current working directory and this
kind of file name is called a relative file name. For example, the Secondir and Thirdir should
be relative file name and Firstdir is an absolute filename.

/Firstdir/Secondir/Thirdir

- The file name components '.' ("dot") and '..' ("dot-dot") have special meanings.

C:\Firstdir>dir /a
 Volume in drive C has no label.
 Volume Serial Number is E8E3-18E2

 Directory of C:\Firstdir

04/18/2005 03:09p <DIR> .
04/18/2005 03:09p <DIR> ..
04/18/2005 03:08p 0 first.txt
04/18/2005 03:09p <DIR> Secondir
 1 File(s) 0 bytes
 3 Dir(s) 1,326,395,392 bytes free

- Every directory has entries for these file name components. The file name component '.' refers to

the directory itself, while the file name component '..' refers to its parent directory (the directory
that contains the link for the directory in question). That is why if we want to change to the parent
directory of the current working directory we just issue the 'cd ..' command for Linux and
Windows.

- Then in Linux, to run a program named testrun in the current working directory we issue the
following command:

./testrun

- As a special case, '..' in the root directory refers to the root directory itself, since it has no parent;

thus '/..' is the same as /.
- Here are some examples of file names:

File name Description
/a The file named a, in the root directory.
/a/b The file named b, in the directory named a in the root directory.
a The file named a, in the current working directory.
/a/./b This is the same as /a/b.
./a The file named a, in the current working directory.
../a The file named a, in the parent directory of the current working directory.

Table 9.1: File names examples

Page 4 of 34 www.tenouk.com

- A file name that names a directory may optionally end in a /. You can specify a file name of / to
refer to the root directory, but the empty string is not a meaningful file name.

- If you want to refer to the current working directory, use a file name of '.' or './'. For example
to run a program named testprog that located in the current working directory we just prefixes
the ./ to the program name.

./testprog

9.4.3 Streams and FILE structure

- The type of the C data structure that represents a stream is called FILE rather than "stream". Since
most of the library functions deal with objects of type FILE *, sometimes the term file pointer is
also used to mean "stream". This leads to confusion over terminology in many reference materials
and books on C.

- The FILE type is declared in the stdio.h header file.

FILE data type
This is the data type used to represent stream objects. A FILE object holds all of the
internal state information about the connection to the associated file, including such
things as the file position indicator and buffering information. Each stream also has
error and end-of-file status indicators that can be tested with the ferror and
feof functions.

Table 9.2: FILE data type

- FILE objects are allocated and managed internally by the I/O library functions.

9.4.4 Standard Streams

- When the main function of your program is invoked, it already has three predefined streams open
and available for use. These represent the standard input and output channels that have been
established for the process. A process here means a running program.

- These streams are declared in the stdio.h header file and summarized in the following Table.

Standard stream Description
FILE * stdin The standard input stream variable, which is the normal source of

input for the program.
FILE * stdout The standard output stream variable, which is used for normal output

from the program.
FILE * stderr The standard error stream variable, which is used for error messages

and diagnostics issued by the program.

Table 9.3: Standard streams

- In the Linux system, you can specify what files or processes correspond to these streams using the
pipe and redirection facilities provided by the shell.

- Most other operating systems provide similar mechanisms, but the details of how to use them can
vary.

- In the GNU C library, stdin, stdout, and stderr are normal variables which you can set just
like any others. For example, to redirect the standard output to a file, you could do:

fclose(stdout);
stdout = fopen ("standard-output-file", "w");

- However, in other systems stdin, stdout, and stderr are macros instead of variables that you

cannot assign to in the normal way. But you can use for example freopen() function to get the
effect of closing one and reopening it.

9.5 Links Story

9.5.1 Hard Links

Page 5 of 34 www.tenouk.com

- In POSIX systems, one file can have many names at the same time. All of the names are equally
real, and no one of them is preferred to the others. In Windows it is called shortcuts.

- To add a name to a file, use the link() function (The new name is also called a hard link to the
file). Creating a new link to a file does not copy the contents of the file; it simply makes a new
name by which the file can be known, in addition to the file's existing name or names.

- One file can have names in several directories, so the organization of the file system is not a strict
hierarchy or tree.

- In most implementations, it is not possible to have hard links to the same file in multiple file
systems. link() reports an error if you try to make a hard link to the file from another file system
when this cannot be done.

- The prototype for the link() function is declared in the header file unistd.h and is
summarized below.

int link(const char *oldname, const char *newname)
The link function makes a new link to the existing file named by oldname, under the new name
newname.
This function returns a value of 0 if it is successful and -1 on failure. In addition to the usual file name
errors, for both oldname and newname, the following errno error conditions are defined for this
function:
EACCES You are not allowed to write to the directory in which the new link is to be written.
EEXIST There is already a file named newname. If you want to replace this link with a new link, you

must remove the old link explicitly first.
EMLINK There are already too many links to the file named by oldname. (The maximum number of

links to a file is LINK_MAX).
ENOENT The file named by oldname doesn't exist. You can't make a link to a file that doesn't exist.
ENOSPC The directory or file system that would contain the new link is full and cannot be extended.
EPERM In the GNU system and some others, you cannot make links to directories. Many systems

allow only privileged users to do so. This error is used to report the problem.
EROFS The directory containing the new link can't be modified because it's on a read-only file

system.
EXDEV The directory specified in newname is on a different file system than the existing file.
EIO A hardware error occurred while trying to read or write the to filesystem.

Table 9.4: link() function

9.5.2 Symbolic Links

- The Linux system for example, supports soft links or symbolic links. This is a kind of "file" that is
essentially a pointer to another file name.

- Unlike hard links, symbolic links can be made to directories or across file systems with no
restrictions. You can also make a symbolic link to a name which is not the name of any file.
(Opening this link will fail until a file by that name is created).

- Likewise, if the symbolic link points to an existing file which is later deleted, the symbolic link
continues to point to the same file name even though the name no longer names any file.

- The reason symbolic links work the way they do is that special things happen when you try to open
the link. The open() function realizes you have specified the name of a link, reads the file name
contained in the link, and opens that file name instead.

- The stat() function (used for file attributes information) likewise operates on the file that the
symbolic link points to, instead of on the link itself.

- By contrast, other operations such as deleting or renaming the file operate on the link itself. The
functions readlink() and lstat() also refrain from following symbolic links, because their
purpose is to obtain information about the link.

- link(), the function that makes a hard link, does too. It makes a hard link to the symbolic link,
which one rarely wants.

- Some systems have for some functions operating on files have a limit on how many symbolic links
are allowed when resolving a path name. The limit if exists is published in the sys/param.h
header file.

- The following lists functions and macros used for links.

int MAXSYMLINKS
The macro MAXSYMLINKS specifies how many symlinks some function will follow before
returning ELOOP. Not all functions behave the same and this value is not the same as a
returned for _SC_SYMLOOP by sysconf. In fact, the sysconf result can indicate that

Page 6 of 34 www.tenouk.com

there is no fixed limit although MAXSYMLINKS exists and has a finite value.

Table 9.5: MAXSYMLINKS macro

- Prototypes for most of the functions listed in the following section are in unistd.h.

int symlink(const char *oldname, const char *newname)
The symlink function makes a symbolic link to oldname named newname.
The normal return value from symlink is 0. A return value of -1 indicates an error. In addition to the
usual file name prototype errors (see File Name Errors), the following errno error conditions are
defined for this function:
EEXIST There is already an existing file named newname.
EROFS The file newname would exist on a read-only file system.
ENOSPC The directory or file system cannot be extended to make the new link.
EIO A hardware error occurred while reading or writing data on the disk.

Table 9.6: symlink() function

int readlink(const char *filename, char *buffer, size_t size)
The readlink function gets the value of the symbolic link filename. The file name that the link points
to is copied into buffer. This file name string is not null-terminated; readlink normally returns the
number of characters copied. The size argument specifies the maximum number of characters to copy,
usually the allocation size of buffer.
If the return value equals size, you cannot tell whether or not there was room to return the entire name.
A value of -1 is returned in case of error. In addition to the usual file name errors, following errno
error conditions are defined for this function:
EINVAL The named file is not a symbolic link.
EIO A hardware error occurred while reading or writing data on the disk.

Table 9.7: readlink() function

- In some situations it is desirable to resolve all the symbolic links to get the real name of a file where

no prefix, names a symbolic link which is followed and no filename in the path is '.' or '..'.
- This is for example desirable if files have to be compared in which case different names can refer to

the same inode. For Linux system we can use canonicalize_file_name() function for this
purpose.

- The UNIX standard includes a similar function which differs from
canonicalize_file_name() in that the user has to provide the buffer where the result is
placed in. It uses realpath() function.

- The advantage of using this function is that it is more widely available. The drawback is that it
reports failures for long path on systems which have no limits on the file name length.

9.6 The Basic Of Disk File I/O

9.6.1 Opening And Closing A Disk File

- Before we dive into the details, take note that the program examples presented here just for basic
file I/O that applies to DOS and Linux.

- For Windows, you have to study the Win32 programming that provides specifics file I/O and other
related functions. Here we do not discuss in details regarding the permission, right and
authorization such as using Discretionary Access Control List (DACL) and Security Access Control
List (SACL) implemented in Windows OS.

- Furthermore for DOS type OS also, Microsoft uses Microsoft C (C Runtime – CRT). Nevertheless
the concepts still apply to any implementation.

- As explained before, in C, a FILE structure is a file control structure defined in the header file
stdio.h. A pointer of type FILE is called a file pointer, which references a disk file.

- A file pointer is used by stream to conduct the operation of the I/O functions. For instance, the
following declaration defines a file pointer called fpter:

FILE *fpter;

Page 7 of 34 www.tenouk.com

- In the FILE structure there is a member, called the file position indicator, which points to the
position in a file where data will be read from or written to.

- The I/O function fopen() gives you the ability to open a file and associate a stream to the opened
file. You need to specify the way to open a file and the filename with the fopen() function. The
prototype is:

FILE *fopen(const char *filename, const char *mode);

- Here, filename is a char pointer that references a string of a filename. The filename is given to

the file that is about to be opened by the fopen() function. mode points to another string that
specifies the way to open the file.

- The fopen() function returns a pointer of type FILE. If an error occurs during the procedure to
open a file, the fopen() function returns a null pointer.

- Table 9.8 shows the possible ways to open a file by various strings of modes.
- Note that, you might see people use the mode rb+ instead of r+b. These two strings are

equivalent. Similarly, wb+ is the same as w+b, ab+ is equivalent to a+b.
- The following program segment example try to open a file named test.txt, located in the same

folder as the main() program for reading.

FILE *fptr;
if((fptr = fopen("test.txt","r")) == NULL)
{
 printf("Cannot open test.txt file.\n");
 exit(1);
}

- Here, "r" is used to indicate that the text file is about to be opened for reading only. If an error

occurs such as the file is non-exist, when the fopen() function tries to open the file, the function
returns a null pointer.

- Then an error message is printed out by the printf() function and the program is aborted by
calling the exit() function with a nonzero value to handle the exception.

Mode Description
r Open a file for reading.
w Create a file for writing. If the file already exists, discard the current contents.
a Append, open or create a file for writing at the end of the file.

r+ Open a file for update (reading and writing).
w+ Create a file for update. If the file already exists, discard the current contents.
a+ Append, open or create a file for update, writing is done at the end of the file.
rb Opens an existing binary file for reading.
wb Creates a binary file for writing.
ab Opens an existing binary file for appending.
r+b Opens an existing binary file for reading or writing.
w+b Creates a binary file for reading or writing.
a+b Opens or creates a binary file for appending.

Table 9.8: Possible ways opening a file by various strings of modes in C

- After a disk file is read, written, or appended with some new data, you have to disassociate the file

from a specified stream by calling the fclose() function.
- The prototype for the fclose() function is:

int fclose(FILE *stream);

- Here, stream is a file pointer that is associated with a stream to the opened file. If fclose()

closes a file successfully, it returns 0. Otherwise, the function returns EOF.
- By assuming the previous program segment successfully opened the test.txt for reading, then

to close the file pointer we should issue the following code:

fclose(fptr);

Page 8 of 34 www.tenouk.com

- Normally, the fclose() function fails only when the disk is removed before the function is called
or there is no more space left on the disk.

- The end-of-file (EOF) combination key for different platform is shown in table 9.9. You have to
check your system documentation.

Computer system Key combination

UNIX® systems <return> <ctrl> d
IBM® PC and compatibles <ctrl> z
Macintosh® - PowerPC <ctrl> d
VAX® (VMS) <ctrl> z

Table 9.9: End-of-file (EOF) key combinations for various computer systems.

- Since all high-level I/O operations are buffered, the fclose() function flushes data left in the

buffer to ensure that no data will be lost before it disassociates a specified stream with the opened
file.

- A file that is opened and associated with a stream has to be closed after the I/O operation.
Otherwise, the data saved in the file may be lost or some unpredictable errors might occur during
the next time file opening.

- Let try the following program example, which shows you how to open and close a text file and how
to check the returned file pointer value as well.

- First of all you have to create file named tkk1103.txt. This file must be in the same folder as
your running program, or you have to provide the full path string if you put it in other folder.

- By default program will try finding file in the same folder where the program is run.
- For example, if you run your C program in folder:

C:\BC5\Myproject\testing\

- Then, make sure you put the tkk1103.txt file in the same folder:

 C:\BC5\Myproject\testing\tkk1103.txt

1. //Opening and closing file example
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. //SUCCESS = 0, FAIL = 1 using enumeration
6. enum {SUCCESS, FAIL};
7.
8. int main (void)
9. {
10. FILE *fptr;
11. //the filename is tkk1103.txt and located
12. //in the same folder as this program
13. char filename[] = "tkk1103.txt";
14.
15. //set the value reval to 0
16. int reval = SUCCESS;
17. //test opening file for reading, if fail...
18. if((fptr = fopen(filename, "r")) == NULL)
19. {
20. printf("Cannot open %s.\n", filename) ;
21. reval = FAIL; //reset reval to 1
22. }
23. //if successful do...
24. else
25. {
26. printf("Opening the %s file successfully\n", filename);
27. //the program will display the address where
28. //the file pointer points to..
29. printf("The value of fptr: 0x%p\n", fptr);
30. printf("\n....file processing should be done here....\n");
31. printf("\nReady to close the %s file.\n", filename);
32. //close the file stream...
33. if(fclose(fptr)==0)
34. printf("Closing the %s file successfully\n", filename);
35. }
36. //for Borland…can remove the following pause and the library,
37. //stdlib.h for other compilers
38. system("pause");
39. return reval;

Page 9 of 34 www.tenouk.com

40. }

40 lines: Output:

- If opening the file is fails, the following will be output:

- Remember, for the "r" mode, you have to create and save tkk1103.txt file in the same folder
where the .exe file for this program resides or provide the full path strings in the program.

- This program shows you how to open a text file. fopen() function tries to open a text file with
the name contained by the string array filename for reading. The filename (stored in array) is
defined and initialized with to tkk1103.txt.

- If an error occurs when you try to open the text file, the fopen() function returns a null pointer.
Next line then prints a warning message, and assigns the value represented by the enum name
FAIL to the int variable reval. From the declaration of the enum data type, we know that the
value of FAIL is 1.

- However, if the fopen() function opens the text file successfully, the following statement:

printf("The value of fptr: 0x%p\n", fptr);

- Will print the value contained by the file pointer fptr.
- At the end line of code tells the user that the program is about to close the file, and then

fclose(fptr); closes the file by calling the fclose() file.
- return reval; the return statement returns the value of reval that contains 0 if the text file

has been opened successfully or 1 otherwise.
- From the output, the value held by the file pointer is 0x0D96:01C2 (memory address) after the

text file is open successfully. Different pc will have different address.
- If your tkk1103.txt file is not in same folder as your main() program, you have to explicitly

provide the full path of the file location.
- For example, if your tkk1103.txt is located in C:\Temp folder, you have to change:

char filename[] = "tkk1103.txt";

- To

char filename[] = "c:\\Temp\\tkk1103.txt";

9.6.2 Reading And Writing Disk File

- The previous program example does not do anything with the text file, tkk1103.txt, except
open and close it. Some text has been saved in tkk1103.txt, so how can you read them from
the file?

- In C you can perform I/O operations in the following ways:

0. Read or write one character at a time.
0. Read or write one line of text (that is, one line of characters) at a time.

Page 10 of 34 www.tenouk.com

0. Read or write one block of characters at a time.

9.6.2.1 One Character At A Time

- Among the C I/O functions, there is a pair of functions, fgetc() and fputc(), that can be used
to read from or write to a disk file one character at a time.

- The prototype for the fgetc() function is:

int fgetc(FILE *stream);

- The stream is the file pointer that is associated with a stream. The fgetc() function fetches the
next character from the stream specified by stream. The function then returns the value of an
int that is converted from the character.

- The prototype for the fputc() function is:

int fputc(int c, FILE *stream);

- c is an int value that represents a character. In fact, the int value is converted to an unsigned
char before being output. stream is the file pointer that is associated with a stream. The
fputc() function returns the character written if the function is successful, otherwise, it returns
EOF. After a character is written, the fputc() function advances the associated file pointer.

- Let explore the program example. Before that, you have to create two text files named,
testone.txt and testtwo.txt then save it in the same folder where the your main()
program is or provide the full path strings if the files is in another folder. Then for file
testtwo.txt, write the following texts and save it

OPENING, READING, WRITING AND CLOSING FILE

Testing file. This file named testtwo.txt.
After opening files for reading and writing,
without error, content of this file (testtwo.txt)
will be read and output (write) to the other
file named testone.txt and standard
output(screen/console) character by character!!!

---HAPPY LEARNING FOLKS!!!----

Content of file testtwo.txt

- Then, if you run the program with no error, modify the content of the testtwo.txt, recompile

and rerun the program. The displaying texts and the content of testone.txt also will change.
- Next check also the content of testone.txt file, the content should be same as testtwo.txt

file and the texts displayed on your screen.

1. //Reading and writing one character at a time
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. //enumerated data type, SUCCESS = 0, FAIL = 1
6. enum {SUCCESS, FAIL};
7.
8. //prototype function for reading from and writing...
9. void CharReadWrite(FILE *fin, FILE *fout);
10.
11. int main()
12. {
13. //declare two file pointers...
14. FILE *fptr1, *fptr2;
15. //define the two files name...
16. char filename1[] = "testone.txt";
17. char filename2[] = "testtwo.txt";
18. int reval = SUCCESS;
19.
20. //test the opening filename1 for writing....
21. //if fails....
22. if ((fptr1 = fopen(filename1, "w")) == NULL)
23. {
24. printf("Problem, cannot open %s.\n", filename1);
25. reval = FAIL;
26. }

Page 11 of 34 www.tenouk.com

27. //if opening filename1 for writing is successful,
28. //test for opening for reading filename2, if fails...
29. else if ((fptr2 = fopen(filename2, "r")) == NULL)
30. {
31. printf("Problem, cannot open %s.\n", filename2);
32.
33. reval = FAIL;
34. }
35. //if successful opening for reading from filename2
36. //and writing to filename1...
37. else
38. {
39. //function call for reading and writing...
40. CharReadWrite(fptr2, fptr1);
41. //close both files...
42. if(fclose(fptr1)==0)
43. printf("%s closed successfully\n", filename1);
44. if(fclose(fptr2)==0)
45. printf("%s closed successfully\n", filename2);
46. }
47. //For Borland if compiled using its IDE…
48. system("pause");
49. return reval;
50. }
51.
52. //read write function definition
53. void CharReadWrite(FILE *fin, FILE *fout)
54. {
55. int c;
56. //if the end of file is reached, do...
57. while ((c = fgetc(fin)) != EOF)
58. {
59. //write to a file...
60. fputc(c, fout);
61. //display on the screen...
62. putchar(c);
63. }
64. printf("\n");
65. }

65 lines: Output:

- This program read one character from a file, writes the character to another file, and then display
the character on the screen.

9.6.2.2 One Line At A Time

- Besides reading or writing one character at a time, you can also read or write one character line at
time. There is a pair of C I/O functions, fgets() and fputs(), that allows you to do so.

- The prototype for the fgets() function is:

char *fgets(char *s, int n, FILE *stream);

- s, references a character array that is used to store characters read from the opened file pointed to
by the file pointer stream. n specifies the maximum number of array elements. If it is successful,
the fgets() function returns the char pointers s. If EOF is encountered, the fgets() function

Page 12 of 34 www.tenouk.com

returns a null pointer and leaves the array untouched. If an error occurs, the function returns a null
pointer, and the contents of the array are unknown.

- The fgets() function can read up to n-1 characters, and can append a null character after the last
character fetched, until a newline or an EOF is encountered.

- If a newline is encountered during the reading, the fgets() function includes the newline in the
array. This is different from what the gets() function does. The gets() function just replaces
the newline character with a null character.

- The prototype for the fputs() function is:

int fputs(const char *s, FILE *stream);

- s points to the array that contains the characters to be written to a file associated with the file
pointer stream. The const modifier indicates that the content of the array pointed to by s
cannot be changed. If it fails, the fputs() function returns a nonzero value, otherwise, it returns
zero.

- The character array must include a null character at the end as the terminator to the fputs()
function. Also, unlike the puts() function, the fputs() function does not insert a newline
character to the string written to a file.

- Let try a program example. First of all, create two text file named testhree.txt and
testfour.txt and put it under folder C:\. File testfour.txt should contain the following
texts:

OPENING, READING, WRITING one line of characters
--
This is file testfour.txt. This file's content will
be read line by line of characters till no more line
of character found. Then, it will be output to the
screen and also will be copied to file testhree.txt.
Check the content of testhree.txt file...
--
------------------HAVE A NICE DAY-------------------

Content of testfour.txt file

1. //Reading and writing one line at a time
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. enum {SUCCESS, FAIL, MAX_LEN = 100};
6.
7. //function prototype for read and writes by line...
8. void LineReadWrite(FILE *fin, FILE *fout);
9.
10. int main(void)
11. {
12. FILE *fptr1, *fptr2;
13. //file testhree.txt is located at the root, c:
14. //you can put this file at any location provided
15. //you provide the full path, same for testfour.txt
16. char filename1[] = "c:\\testhree.txt";
17. char filename2[] = "c:\\testfour.txt";
18. char reval = SUCCESS;
19.
20. //test opening testhree.txt file for writing, if fail...
21. if((fptr1 = fopen(filename1,"w")) == NULL)
22. {
23. printf("Problem, cannot open %s for writing.\n", filename1);
24. reval = FAIL;
25. }
26.
27. //test opening testfour.txt file for reading, if fail...
28. else if((fptr2=fopen(filename2, "r"))==NULL)
29. {
30. printf("Problem, cannot open %s for reading.\n", filename2);
31. reval = FAIL;
32. }
33.
34. //if opening fro writing and reading successful, do...
35. else
36. {
37. //function call for read and write, line by line...
38. LineReadWrite(fptr2, fptr1);

Page 13 of 34 www.tenouk.com

39. //close both files stream...
40. if(fclose(fptr1)==0)
41. printf("%s successfully closed.\n", filename1);
42. if(fclose(fptr2)==0)
43. printf("%s successfully closed.\n", filename2);
44. }
45. //For Borland screenshot
46. system("pause");
47. return reval;
48. }
49.
50. //function definition for line read, write…
51. void LineReadWrite(FILE *fin, FILE *fout)
52. {
53. //local variable...
54. char buff[MAX_LEN];
55. while(fgets(buff, MAX_LEN, fin) !=NULL)
56. {
57. //write to file...
58. fputs(buff, fout);
59. //write to screen.. .
60. printf("%s", buff);
61. }
62. }

62 lines: Output:

- In this program example, the text files are located in C:\ drive. The fgets() function is called
repeatedly in a while loop to read one line of characters at a time from the testfour.txt file,
until it reaches the end of the text file.

- In line 54, the array name buff and the maximum number of the array elements MAX_LEN are
passed to the fgets() function, along with the file pointer fin that is associated with the opened
testfour.txt file.

- Meanwhile, each line read by the fgets() function is written to another opened text file called
testhree.txt that is associated with the file pointer fout. This is done by invoking the
fputs() function in line 58.

- The statement in line 60 prints the contents of each string on the screen so that you see the contents
of the testfour.txt file. You also can view the testhree.txt file content in a text editor
to make sure that the contents of the testfour.txt file have been copied to the
testhree.txt file.

9.6.2.3 One Block At A Time

- You can also read or write a block of data at a time. There are two C I/O functions, fread() and
fwrite(), that can be used to perform block I/O operations.

- The prototype for the fread() function is:
size_t fread(void *ptr, size_t size, size_t n,
FILE *stream);

- The ptr is a pointer to an array in which the data is stored. size indicates the size of each array
element. n specifies the number of elements to be read. stream is a file pointer that is associated
with the opened file for reading.

Page 14 of 34 www.tenouk.com

- size_t is an integral type defined in the header file stdio.h. The fread() function returns
the number of elements actually read.

- The number of elements read by the fread() function should be equal to the value specified by
the third argument to the function, unless an error occurs or an EOF is encountered.

- The fread() function returns the number of elements that are actually read, if an error occurs or
an EOF is encountered.

- The prototype for the fwrite() function is:
size_t fwrite(const void *ptr, size_t size,
size_t n, FILE *stream);

- ptr references the array that contains the data to be written to an opened file pointed to by the file
pointer stream. size indicates the size of each element in the array. n specifies the number of
elements to be written.

- The fwrite() function returns the number of elements actually written.
- If there is no error occurring, the number returned by fwrite() should be the same as the third

argument in the function. The return value may be less than the specified value if an error occurs.
- That is the programmer’s responsibility to ensure that the array is large enough to hold data for

either the fread() function or the fwrite() function.
- In C, a function called feof() can be used to determine when the end of a file is encountered.

This function is more useful when you are reading a binary file because the values of some bytes
may be equal to the value EOF.

- If you determine the end of a binary file by checking the value returned by fread(), you may end
up at the wrong position.

- Using the feof() function helps you to avoid mistakes in determining the end of a file. The
prototype for the feof() function is:

int feof(FILE *stream);

- Here, stream is the file pointer that is associated with an opened file. The feof() function

returns 0 if the end of the file has not been reached, otherwise, it returns a nonzero integer.
- Let take a look at the program example. Create two files named it testfive.txt and

testsix.txt in C:\Temp folder or other folder that you choose provided that you provide the
full path strings in the program. Write the following texts into testsix.txt file and save it.

OPENING, READING AND WRITING ONE BLOCK OF DATA

This is file testsix.txt. Its content will be
read and then output to the screen/console and
copied to testfive.txt file. The reading and
writing based on block of data. May be this
method is faster compared to read/write by
character, by line.....

------------------END--------------------------

Content of testsix.txt file

1. //Reading and writing one block at a time
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. //declare enum data type, you will this
6. //learn in other module...
7. enum {SUCCESS, FAIL, MAX_LEN = 80};
8.
9. //function prototype for block reading and writing
10. void BlockReadWrite(FILE *fin, FILE *fout);
11. //function prototype for error messages...
12. int ErrorMsg(char *str);
13.
14. int main(void)
15. {
16. FILE *fptr1, *fptr2;
17. //define the filenames...
18. //the files location is at c:\Temp
19. char filename1[] = "c:\\Temp\\testfive.txt" ;
20. char filename2[] = "c:\\Temp\\testsix.txt";
21. int reval = SUCCESS;

Page 15 of 34 www.tenouk.com

22.
23. //test opening testfive.txt file for writing, if fail...
24. i ((fptr1 = fopen(filename1, "w")) == NULL) f
25. {
26. reval = ErrorMsg(filename1);
27. }
28.
29. //test opening testsix.txt file for reading, if fail...
30. else if ((fptr2 = fopen(filename2, "r")) == NULL)
31. {
32. reval = ErrorMsg(filename2);
33. }
34. //if opening files for writing and reading is successful, do...
35. e se l
36. {
37. //call function for reading and writing
38. BlockReadWrite(fptr2, fptr1);
39. //close both files streams...
40. if(fclose(fptr1)==0)
41. printf("%s successfully closed\n", filename1);
42. if(fclose(fptr2)==0)
43. printf("%s successfully closed\n", filename2);
44. }
45. printf("\n");
46. //for Borland...
47. system("pause");
48. return reval;
49. }
50.
51. //function definition for block read, write
52. void BlockReadWrite(FILE *fin, FILE *fout)
53. {
54. int num;
55. char buff[MAX_LEN + 1];
56. //while not end of file for input file, do...
57. w ile(!feof(fin)) h
58. {
59. //reading...
60. num = fread(buff, sizeof(char), MAX_LEN, fin);
61. //append a null character
62. buff[num * sizeof(char)] = '\0';
63. printf("%s", buff);
64. //writing...
65. fwrite(buff, sizeof(char), num, fout);
66. }
67. }
68.
69. //function definition for error message
70. int ErrorMsg(char *str)
71. {
72. //display the error message...
73. printf("Problem, cannot open %s.\n", str);
74. return FAIL;
75. }

75 lines: Output:

- Note the use of fread() and fwrite() functions in the program. This program shows you how
to invoke the fread() and fwrite() to perform block I/O operations.

Page 16 of 34 www.tenouk.com

- The testsix.txt file is read by the fread() function, and the fwrite() function used to
write the contents read from testsix.txt to another file called testfive.txt.

9.7 Random Access To Disk Files

- Before this you have learned how to read or write data sequentially. In many cases, however, you
may need to access particular data somewhere in the middle of a disk file.

- Random access is another way to read and write data to disk file. Specific file elements can be
accessed in random order.

- There are two C I/O functions, fseek() and ftell(), that are designed to deal with random
access.

- You can use the fseek() function to move the file position indicator to the spot you want to
access in a file. The prototype for the fseek() function is:

int fseek(FILE *stream, long offset, int whence);

- stream is the file pointer with an opened file. offset indicates the number of bytes from a

fixed position, specified by whence, that can have one of the following integral values represented
by SEEK_SET, SEEK_CUR and SEEK_END.

- If it is successful, the fseek() function return 0, otherwise the function returns a nonzero value.
- whence provides the offset bytes from the file location. whence must be one of the values 0, 1,

or 2 which represent three symbolic constants (defined in stdio.h) as follows:

Constants whence File location
SEEK_SET 0 File beginning
SEEK_CUR 1 Current file pointer position
SEEK_END 2 End of file

Table 9.10: offset bytes

- If SEEK_SET is chosen as the third argument to the fseek() function, the offset is counted from

the beginning of the file and the value of the offset is greater than or equal to zero.
- If however, SEEK_END is picked up, then the offset starts from the end of the file, the value of the

offset should be negative.
- When SEEK_CUR is passed to the fseek() function, the offset is calculated from the current

value of the file position indicator.
- You can obtain the value of the current position indicator by calling the ftell() function. The

prototype for the ftell() function is,

long ftell(FILE *stream);

- stream is the file pointer associated with an opened file. The ftell() function returns the
current value of the file position indicator.

- The value returned by the ftell() function represents the number of bytes from the beginning of
the file to the current position pointed to by the file position indictor.

- If the ftell() function fails, it returns –1L (that is, a long value of minus 1). Let explore the
program example. Create and make sure text file named tesseven.txt is located in the
C:\Temp folder before you can execute the program. The contents of the tesseven.txt is,

THIS IS THE FIRST LINE OF TEXT, tesseven.txt file
THIS IS THE SECOND LINE OF TEXT, tesseven.txt fil e
THIS IS THE THIRD LINE OF TEXT, tesseven.txt file
THIS IS THE FOURTH LINE OF TEXT, tesseven.txt file

The content of tesseven.txt file

1. //Random access to a file
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. enum {SUCCESS, FAIL, MAX_LEN = 120};
6.
7. //function prototypes, seek the file position indicator
8. void PtrSeek(FILE *fptr);

Page 17 of 34 www.tenouk.com

9. //function prototype, tell the file position indicator…
10. long PtrTell(FILE *fptr);
11. //function prototype read and writes…
12. void DataRead(FILE *fptr) ;
13. int ErrorMsg(char *str);
14.
15. int main(void)
16. {
17. FILE *fptr;
18. char filename[] = "c:\\Temp\\tesseven.txt";
19. int reval = SUCCESS;
20.
21. //if there is some error opening file for reading…
22. i ((fptr = fopen(filename, "r")) == NULL) f
23. {
24. reval = ErrorMsg(filename);
25. }
26. //if opening is successful…
27. e se l
28. {
29. //PtrSeek() function call…
30. PtrSeek(fptr);
31. //close the file stream…
32. if(fclose(fptr)==0)
33. printf("%s successfully closed.\n", filename);
34. }
35. //for Borland...
36. system("pause");
37. return reval;
38. }
39.
40. //PtrSeek() function definition
41. void PtrSeek(FILE *fptr)
42. {
43. long offset1, offset2, offset3, offset4;
44.
45. offset1 = PtrTell(fptr);
46. DataRead(fptr);
47. offset2 = PtrTell(fptr);
48. DataRead(fptr);
49. offset3 = PtrTell(fptr);
50. DataRead(fptr);
51. offset4 = PtrTell(fptr);
52. DataRead(fptr);
53.
54. printf("\nReread the tesseven.txt, in random order:\n");
55. //reread the 2nd line of the tesseven.txt
56. fseek(fptr, offset2, SEEK_SET);
57. DataRead(fptr);
58. //reread the 1st line of the tesseven.txt
59. fseek(fptr, offset1, SEEK_SET);
60. DataRead(fptr);
61. //reread the 4th line of the tesseven.txt
62. fseek(fptr, offset4, SEEK_SET);
63. DataRead(fptr);
64. //reread the 3rd line of the tesseven.txt
65. fseek(fptr, offset3, SEEK_SET);
66. DataRead(fptr);
67. }
68.
69. //PtrTell() function definition
70. long PtrTell(FILE *fptr)
71. {
72. long reval;
73. //tell the fptr position…
74. reval = ftell(fptr);
75. printf("The fptr is at %ld\n", reval);
76. return reval;
77. }
78.
79. //DataRead() function definition
80. void DataRead(FILE *fptr)
81. {
82. char buff[MAX_LEN];
83. //reading line of text at the fptr position…
84. fgets(buff, MAX_LEN, fptr);
85. //and display the text…
86. printf("-->%s\n", buff);
87. }
88.

Page 18 of 34 www.tenouk.com

89. //Error message function definition
90. int ErrorMsg(char *str)
91. {
92. //display this error message…
93. printf("Problem, cannot open %s.\n", str);
94. return FAIL;
95. }

95 lines: Output:

- We try to open the tesseven.txt file for reading by calling the fopen() function. If
successful, we invoke the PtrSeek() function with the fptr file pointer as the argument in line
30.

PtrSeek(fptr);

- The definition of our first function PtrSeek() is shown in lines 41-67. The statement in line 45
obtains the original value of the fptr file pointer by calling another function, PtrTell(), which
is defined in lines 70–77.

- The PtrTell() function can find and print out the value of the file position indicator with the
help of the ftell() function.

- The third function, DataRead() is called to read one line of characters from the opened file and
print out the line of characters on the screen. Line 47 gets the new value of the fptr file position
indicator right after the reading and assigns the value to another long variable, offset2.

- Then the DataRead() function in line 48 reads the second line of characters from the opened
file. Line 49 obtains the value of the file position indicator that points to the first byte of the third
line and assigns the value to the third long variable offset3 and so on for the fourth line of text.

- Line 50 calls the DataRead() function to read the third line and print it out on the screen.
- From the first portion of the output, you can see the four different values of the file position

indicator at four different positions, and the four lines of texts. The four values of the file position
indicator are saved by offset1, offset2, offset3 and offset4 respectively.

- Then, we read the lines of text randomly, one line at a time. Firstly read the second line, then the
first line, fourth and finally the third one.

- C function, called rewind(), can be used to rewind the file position indicator. The prototype for
the rewind() function is:

void rewind(FILE *stream);

- Here, stream is the file pointer associated with an opened file. No value is returned by

rewind() function. In fact the following statement of rewind() function:

Page 19 of 34 www.tenouk.com

rewind(fptr);

- Is equivalent to this:

(void) fseek(fptr, 0L, SEEK_SET);

- The void data type is cast to the fseek() function because the rewind() function does not
return a value. Study the following program example.

- This program also contains example of reading and writing binary data. We create and open the
teseight.bin file for writing.

1. //Reading, writing, rewind and binary data
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. enum {SUCCESS, FAIL, MAX_NUM = 5};
6.
7. //functions prototype...
8. void DataWrite(FILE *fout);
9. void DataRead(FILE *fin);
10. int ErrorMsg(char *str);
11.
12. int main(void)
13. {
14. FILE *fptr;
15. //binary type files...
16. char filename[] = "c:\\Temp\\teseight.bin";
17. int reval = SUCCESS;
18.
19. //test for creating, opening binary file for writing...
20. if((fptr = fopen(filename, "wb+")) == NULL)
21. {
22. reval = ErrorMsg(filename);
23. }
24. else
25. {
26. //Write data into file teseight.bin
27. DataWrite(fptr);
28. //reset the file position indicator...
29. rewind(fptr);
30. //read data...
31. DataRead(fptr);
32. //close the file stream...
33. if(fclose(fptr)==0)
34. printf("%s successfully closed\n", filename);
35. }
36. //for Borland
37. system("pause");
38. return reval;
39. }
40.
41. //DataWrite() function definition
42. void DataWrite(FILE *fout)
43. {
44. int i;
45. double buff[MAX_NUM] = { 145.23, 589.69, 122.12, 253.21, 987.234};
46.
47. printf("The size of buff: %d-byte\n", sizeof(buff));
48. for(i=0; i<MAX_NUM; i++)
49. {
50. printf("%5.2f\n", buff[i]);
51. fwrite(&buff[i], sizeof(double), 1, fout);
52. }
53. }
54.
55. //DataRead() function definition
56. void DataRead(FILE *fin)
57. {
58. int i;
59. double x;
60.
61. printf("\nReread from the binary file:\n");
62. for(i=0; i<MAX_NUM; i++)
63. {
64. fread(&x, sizeof(double), (size_t)1, fin);
65. printf("%5.2f\n", x);
66. }

Page 20 of 34 www.tenouk.com

67. }
68.
69. //ErrorMsg() function definition
70. int ErrorMsg(char *str)
71. {
72. printf("Cannot open %s.\n", str);
73. return FAIL;
74. }

74 lines
Output:

- This program writes five values of the double data type into a binary file named
teseight.bin and then rewind the file position indicator and re read the five double values
from the binary file.

- The two functions, DataWrite() and DataRead(), that perform the writing and reading,
declared in lines 8 and 9. The enum names, SUCCESS, FAIL, and MAX_NUM, are defined in line 5
with values 0, 1, and 5 respectively.

- The statement in line 20, tries to create and open a binary file called teseight.bin for both
reading and writing.

- If the fopen() function is successful, the DataWrite() function is called in line 27 to write
four double data items, into the opened binary file, according to the definition of the
DataWrite() function.

- The fwrite() function in line 51 does the writing. Right after the execution of the
DataWrite() function, the file position indicator is reset to the beginning of the binary file by
calling the rewind() function in line 29 because we want to re read all five double data items
written to the file.

- The fread() function is used to perform the reading operation. The output from running the
program shows the five double data items before the writing and after the reading as well.

- As you learned, two C library functions scanf() and printf() can be used to read or write
formatted data through the standard I/O (that is, stdin and stdout). For C disk file I/O
functions, there are two equivalent functions; fscanf() and fprintf() functions allow the
programmer to specify I/O streams.

- The prototype for the fscan() function is:

int fscanf(FILE *stream, const char *format,…);

- stream is the file pointer associated with an opened file. format, which usage is the same as in
the scanf() function, is a char pointer pointing to a string that contains the format specifiers. If
successful, the fscan() function returns the number of data items read. Otherwise, the function
returns EOF.

- The prototype for the fprintf() function is:

int fprintf(FILE *stream, const char *format, …);

Page 21 of 34 www.tenouk.com

- Here, stream is the file pointer associated with an opened file. format, whose usage is the same
as in the printf() function, is a char pointer pointing to a string that contains the format
specifiers.

- If successful, the fprintf() function returns the number of formatted expressions. Otherwise,
the function returns a negative value.

- Let try a program example. Firstly create testcal.txt file with the following data and save it.

23 12 33 10 4 6 44 31 7 50

- Then create another text file named testavg.txt for writing the average value computed from
data read from testcal.txt file. Then compile and run the following program.

/*C Program to calculate the average of a list of numbers.*/
/*calculate the total from one file, output the average*/
/*into another file*/
#include <stdio.h>
/*for exit()*/
#include <stdlib.h>

int main(void)
{
int value, total = 0, count = 0;

/*fileptrIn and fileptrOut are variables of type (FILE *)*/
FILE * fileptrIn, * fileptrOut;
char filenameIn[100], filenameOut[100];

printf("Please enter an input filename (use path if needed):\n");
scanf("%s", filenameIn);
printf("Please enter an output filename (use path if needed):\n");
scanf("%s", filenameOut);

/*open files for reading, "r" and writing, "w"*/
i ((fileptrIn = fopen(filenameIn, "r")) == NULL) f
{
 printf("Error opening %s for reading.\n", filenameIn);
 exit (1);
}
else
printf("Opening %s for reading is OK.\n", filenameIn);

if((fileptrOut = fopen(filenameOut, "w")) == NULL)
{
 printf("Error opening %s for writing.\n", filenameOut);
 exit (1);
}
else
printf("Opening %s for writing is OK.\n", filenameOut);

/*fscanf*/
printf("\nCalculate the total...\n");
whil (EOF != fscanf(fileptrIn, "%i", &value)) e
{
 total += value;
 ++count;
}/*end of while loop*/

/*Write the average value to the file.*/
/*fprintf*/
printf("Calculate the average...\n\n");
fprintf(fileptrOut, "Average of %i numbers = %f \n", count, total/(double)count);
printf("Average of %i numbers = %f \n\n", count, total/(double)count);
printf("Check also your %s file content\n", filenameOut);

if(fclose(fileptrIn) == 0)
printf("%s closed successfully\n", filenameIn);
if(fclose(fileptrOut) == 0)
printf("%s closed successfully\n", filenameOut);
return 0;
}

Output:

Page 22 of 34 www.tenouk.com

9.8 Redirecting The Standard Streams With freopen()

- We will discuss how to redirect the standard streams, such as stdin and stdout, to disk files.
We can use freopen() function, which can associate a standard stream with a disk file.

- The prototype for the freopen() function is:

FILE *freopen(const char *filename, const char *mode, FILE *stream);

- filename is a char pointer referencing the name of a file that you want to associate with the
standard stream represented by stream.

- mode is another char pointer pointing to a string that defines the way to open a file. The values
that mode can have in freopen() are the same as the mode values in the fopen() function.

- The freopen() function returns a null pointer if an error occurs. Otherwise, the function returns
the standard stream that has been associated with a disk file identified by filename.

- Let try a program example.

1. //Redirecting a standard stream
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. enum {SUCCESS, FAIL, STR_NUM = 6};
6.
7. void StrPrint(char **str) ;
8. int ErrorMsg(char *str);
9.
10. int main(void)
11. {
12. //declare and define a pointer to string...
13. char *str[STR_NUM] = {
14. "Redirecting a standard stream to the text file.",
15. "These 5 lines of text will be redirected",
16. "so many things you can do if you understand the",
17. "concept, fundamental idea - try this one!",
18. "--------------DONE--------------------------"};
19.
20. char filename[] = "c:\\Temp\\testnine.txt";
21. int reval = SUCCESS;
22.
23. StrPrint(str);
24. //create file if not exist and open for writing...
25. //if exist, discard the previous content.. .
26. if(freopen(filename, "w", stdout) == NULL)
27. {
28. reval = ErrorMsg(filename);
29. }
30. else
31. {
32. //call StrPrint() function...
33. StrPrint(str);
34. //close the standard output...
35. fclose(stdout);
36. }
37. return reval;
38. }

Page 23 of 34 www.tenouk.com

39.
40. //StrPrint() function definition
41. void StrPrint(char **str)
42. {
43. int i;
44. for(i=0; i<STR_NUM; i++)
45. //to standard output-screen/console...
46. printf("%s\n", str[i]);
47. system("pause");
48. }
49.
50. //ErrorMsg() function definition
51. int ErrorMsg(char *str)
52. {
53. printf("Problem, cannot open %s.\n", str);
54. return FAIL;
55. }

55 lines: Output:

- Notice that the last line in the output is NULL, why? Because NULL is appended at the end of the
string. We enumerate STR_NUM = 6, but there are only 5 lines of text, if you don’t want to see
the NULL, change STR_NUM = 5.

- The purpose of this program is to save a paragraph, consist of five lines of text, into a text file,
testnine.txt. We call the printf() function instead of the fprintf() function or other disk I/O
functions after we redirect the default stream, stdout, of the printf() function to point to the text
file.

- The function that actually does the writing is called StrPrint(), which invoke the C function
printf() to send out formatted character strings to the output stream.

- In main() function, we call the StrPrint() function in line 33 before we redirect stdout to the
testnine.txt file. The paragraph is printed on the screen because the printf() function
automatically sends out the paragraph to stdout that directs to the screen by default.

- Then in line 26, we redirect stdout to the testnine.txt text file by calling the freopen()
function. The "w" is used as the mode that indicates to open the text file for writing.

- If freopen() is successful, we then call the StrPrint() function in line 33. However, this
time, the StrPrint() function writes the paragraph into the opened text file, testnine.txt.
The reason is that stdout is now associated with the text file, not the screen.

- There is a set of low-level I/O functions, such as open(), create(), close(), read(),
write(), lseek() and tell() that you may still see them in some platform-dependent C
programs.

9.9 File Management Functions

- It refers to dealing with existing files, not reading or writing to them, but renaming, deleting and
copying them. Normally the file management functions are provided in the standard library
function. Again, do not reinvent the wheels :o).

9.9.1 Deleting A File

- We use function remove() to delete a file. Its prototype is in stdio.h file and the prototype is
as follows:

int remove(const char *filename);

Page 24 of 34 www.tenouk.com

- The variable filename is a pointer to the name of the file to be deleted. The specified file must
not be opened. If the file exists, it is deleted (just as if the del in DOS and rm command in
UNIX), and remove() return 0.

- If the file doesn’t exist, if it’s read only, if you don’t have sufficient access rights or permission, or
if some other error occurs, remove() return –1. Be careful if you remove a file, it is gone
forever.

- Let try a program example.

1. //Demonstrate the remove() function
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. void main()
6. {
7. //declare an array to store file name...
8. char filename[80];
9.
10. printf("Enter the filename to be deleted: ");
11. gets(filename);
12.
13. //check any error...
14. if(remove(filename) == 0)
15. printf("File %s has been deleted.\n", filename);
16. else
17. fprintf(stderr, "Error deleting file %s.\n", filename);
18. system("pause");
19. }

19 lines: Output:

- This program prompts the user on line 10 for the file name to be deleted. Line 14 then calls
remove() to delete the entered file. If the return value is 0, the file was removed, and a message
is displayed stating this fact. If the return value is not zero, an error occurred, and the file was not
removed.

9.9.2 Renaming A File

- The rename() function changes the name of an existing disk file. The function prototype, in
stdio.h, is as follows:

int rename(const char *oldname, const char *newname);

- Both names must refer to the same disk drive; you can’t rename a file to a different disk drive

means if the old name is in drive C:\test.txt, you can’t rename it to D:\testnew.txt.
- The function rename() returns 0 on success, or –1 if an error occurs. Errors can be caused by the

following conditions (among others):

0. The file oldname does not exist.
0. A file with the name newname already exists.
0. You try to rename to another disk.

- Let take a look at a program example.

1. //Using rename() to change a filename
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. void main()
6. {
7. char oldname[80], newname[80];
8.

Page 25 of 34 www.tenouk.com

9. printf("Enter current filename: ");
10. gets(oldname);
11. printf("Enter new name for file: ");
12. gets(newname);
13.
14. if(rename(oldname, newname) == 0)
15. {
16. printf("%s has been rename %s.\n", oldname, newname);
17. }
18. else
19. {
20. fprintf(stderr, "An error has occurred renaming %s.\n", oldname);
21. }
22. system("pause");
23. }

23 lines: Output:

- This program example, with only 23 lines of code, replaces an operating system command
rename, and it’s a much friendlier function. Line 9 prompts for the name of the file to be
renamed. Line 11 prompts for the new filename.

- The if statement checks to ensure that the renaming of the file was carried out correctly. If so, line
16 prints an affirmative message, otherwise, line 20 prints a message stating that there was an error.

9.7.2 Copying A File

- Copying a file performs an exact duplicate with a different name (or with the same name but in a
different drive or directory). There are no library functions; you have to write your own.

- The steps:

0. Open the source file for reading in binary mode, using binary mode ensures that the
function can copy all sorts of content, not just texts.

0. Open the destination file for writing in binary mode.
0. Read a character from the source file. When a file is first opened, the pointer is at the start

of the file, so there is no need to position the file pointer explicitly.
0. If the function feof() indicates that you’re reached the end of the source file, you’re

done and can close both files and return to the calling program.
0. If you haven’t reached end-of-file, write the character to the destination file, and then loop

back to step 3.

- Let try a program example.

1. //Copying a file
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. int file_copy(char *oldname, char *newname);
6.
7. void main()
8. {
9. char source[80], destination[80];
10.
11. //get the source and destination names
12. printf("\nEnter source file: ");
13. gets(source);
14. printf("\nEnter destination file: ");
15. gets(destination);
16.
17. if(file_copy(source, destination) == 0)
18. puts("Copy operation successful");
19. else
20. fprintf(stderr, "Error during copy operation");

Page 26 of 34 www.tenouk.com

21. system("pause");
22. }
23.
24. int file_copy(char *oldname, char *newname)
25. {
26. FILE *fold, *fnew;
27. int c;
28.
29. //Open the source file for reading in binary mode
30. if((fold = fopen(oldname, "rb")) == NULL)
31. return -1;
32. //Open the destination file for writing in binary mode
33. if((fnew = fopen(newname, "wb")) == NULL)
34. {
35. fclose(fold);
36. return -1;
37. }
38.
39. //Read one byte at a time from the source, if end of file
40. //has not been reached, write the byte to the destination
41. while(1)
42. {
43. c = fgetc(fold);
44.
45. if(!feof(fold))
46. fputc(c, fnew);
47. else
48. break;
49. }
50. fclose(fnew);
51. fclose(fold);
52. return 0;
53. }

 53 lines: Output:

- The file_copy() function let you copy anything from a small text file to a huge program file.
But for this program, if the destination file already exists, the function overwrites it without asking.

- Lines 24 through 37 create a copy function. Line 30 open the source file, pointed by fold pointer,
in binary read mode.

- Line 33 open the destination file, pointed by fnew pointer, in binary write mode. Line 35 closes
the source file if there is an error opening the destination file. The while loop does the actual
copying of the file. Line 43 gets a character from the source file, pointed by fold pointer assign to
the variable c.

- Line 45 tests to see whether the end-of-line marker was read. If the end of the file has been
reached, a break statement is executed in order to get out of the while loop in line 48.

- If the end of the file has not been reached, the character is written to the destination file, pointed by
fnew pointer in line 46.

- For C++ file I/O it is discussed in Module 19.
- The following is a previous C program example, read and write files under the current working

directory using gcc. Create 2 files named testhree.txt and testfour.txt under the
current working directory and save some texts in the testfour.txt.

/***************readline.c************
/*Reading and writing one line at a time*/
#include <stdio.h>
#include <stdlib.h>

enum {SUCCESS, FAIL, MAX_LEN = 100};

/*function prototype for read and writes by line...*/
void LineReadWrite(FILE *fin, FILE *fout);

Page 27 of 34 www.tenouk.com

http://www.tenouk.com/Module000.html

int main(void)
{
FILE *fptr1, *fptr2;
/*file testhree.txt is located at current directory.
 you can put this file at any location provided
 you provide the full path, same for testfour.txt*/

char filename1[] = "testhree.txt";
char filename2[] = "testfour.txt";
char reval = SUCCESS;

/*test opening testhree.txt file for writing, if fail...*/
if((fptr1 = fopen(filename1,"w")) == NULL)
{
 printf("Problem, cannot open %s for writing.\n", filename1);
 reval = FAIL;
}

/*test opening testfour.txt file for reading, if fail...*/
else if((fptr2=fopen(filename2, "r"))==NULL)
{
 printf("Problem, cannot open %s for reading.\n", filename2);
 reval = FAIL;
}

/*if opening fro writing and reading successful, do...*/
else
{
/*function call for read and write, line by line...*/
LineReadWrite(fptr2, fptr1);
/*close both files stream...*/
if(fclose(fptr1)==0)
printf("%s successfully closed.\n", filename1);
if(fclose(fptr2)==0)
 printf("%s successfully closed.\n", filename2);
}
return reval;
}

/*function definition for line read, write.*/
void LineReadWrite(FILE *fin, FILE *fout)
{
 /*local variable...*/
 char buff[MAX_LEN];
 while(fgets(buff, MAX_LEN, fin) !=NULL)
 {
 /*write to file...*/
 fputs(buff, fout);
 /*write to screen...*/
 printf("%s", buff);
 }
}

[bodo@bakawali ~]$ gcc readline.c -o readline
[bodo@bakawali ~]$./readline

------------------LINUX LOR!------------------------
------------FEDORA 3, gcc x.x.x--------------------
OPENING, READING, WRITING one line of characters
--
This is file testfour.txt. This file's content will
be read line by line of characters till no more lin e
of character found. Then, it will be output to the
screen and also will be copied to file testhree.txt.
Check the content of testhree.txt file...
--
------------------HAVE A NICE DAY-------------------

testhree.txt successfully closed.
testfour.txt successfully closed.

- Another program example for non-current directory files location. Our program under

/home/bodo/ directory but we try to create teseight.bin under /testo1/testo2/ directory.
You must have root privilege to create files in this case.

////////////rwbinary.c///////////
/////FEDORA 3, gcc x.x.x/////

Page 28 of 34 www.tenouk.com

//Reading, writing, rewind and binary data
#include <stdio.h>

enum {SUCCESS, FAIL, MAX_NUM = 5};

//functions prototype...
void DataWrite(FILE *fout);
void DataRead(FILE *fin);
int ErrorMsg(char *str);

int main(void)
{
 FILE *fptr;
 //binary type files...
 char filename[] = "/testo1/testo2/teseight.bin";
 int reval = SUCCESS;

 //test for creating, opening binary file for writing...
 if((fptr = fopen(filename, "wb+")) == NULL)
 {
 reval = ErrorMsg(filename);
 }
 else
 {
 //Write data into file teseight.bin
 DataWrite(fptr);
 //reset the file position indicator...
 rewind(fptr);
 //read data...
 DataRead(fptr);
 //close the file stream...
 if(fclose(fptr) == 0)
 printf("%s successfully closed\n", filename);
 }
 return reval;
 }

//DataWrite() function definition
void DataWrite(FILE *fout)
{
 int i;
 double buff[MAX_NUM] = {145.23, 589.69, 122.12, 253.21, 987.234};

 printf("The size of buff: %d-byte\n", sizeof(buff));
 for(i=0; i<MAX_NUM; i++)
 {
 printf("%5.2f\n", buff[i]);
 fwrite(&buff[i], sizeof(double), 1, fout);
 }
}

//DataRead() function definition
void DataRead(FILE *fin)
{
 int i;
 double x;

 printf("\nReread from the binary file:\n");
 for(i=0; i<MAX_NUM; i++)
 {
 fread(&x, sizeof(double), (size_t)1, fin);
 printf("%5.2f\n", x);
 }
}

//ErrorMsg() function definition
int ErrorMsg(char *str)
{
 printf("Cannot open %s.\n", str);
 return FAIL;
}

[root@bakawali bodo]# gcc rwbinary.c -o rwbinary
[root@bakawali bodo]# ./rwbinary

The size of buff: 40-byte
145.23
589.69
122.12
253.21

Page 29 of 34 www.tenouk.com

987.23

Reread from the binary file:
145.23
589.69
122.12
253.21
987.23
/testo1/testo2/teseight.bin successfully closed

Further readings

- The following sections compiled from GNU glibc library documentation, provide a summary and
other collections that you may interested☺ related to file I/O. Sockets will be discussed in another
Module. It looks that the file attributes also not discussed here.

A. Simple Output by Characters or Lines

- The following Table describes functions for performing character and line-oriented output.
- These narrow streams functions are declared in the header file stdio.h and the wide stream

functions in wchar.h.

int fputc(int c, FILE *stream)
The fputc() function converts the character c to type unsigned char, and writes it to the stream stream.
EOF is returned if a write error occurs; otherwise the character c is returned.
wint_t fputwc(wchar_t wc, FILE *stream)
The fputwc() function writes the wide character wc to the stream stream. WEOF is returned if a write error
occurs; otherwise the character wc is returned.
int fputc_unlocked(int c, FILE *stream)
The fputc_unlocked() function is equivalent to the fputc function except that it does not implicitly lock
the stream.
int putc(int c, FILE *stream)
This is just like fputc(), except that most systems implement it as a macro, making it faster. One
consequence is that it may evaluate the stream argument more than once, which is an exception to the general
rule for macros. putc is usually the best function to use for writing a single character.
wint_t putwc(wchar_t wc, FILE *stream)
This is just like fputwc(), except that it can be implement as a macro, making it faster. One consequence is
that it may evaluate the stream argument more than once, which is an exception to the general rule for macros.
putwc() is usually the best function to use for writing a single wide character.
int putc_unlocked(int c, FILE *stream)
The putc_unlocked() function is equivalent to the putc function except that it does not implicitly lock the
stream.
int putchar(int c)
The putchar() function is equivalent to putc with stdout as the value of the stream argument.
wint_t putwchar(wchar_t wc)
The putwchar() function is equivalent to putwc with stdout as the value of the stream argument.
int putchar_unlocked(int c)
The putchar_unlocked() function is equivalent to the putchar function except that it does not
implicitly lock the stream.
int fputs(const char *s, FILE *stream)
The function fputs() writes the string s to the stream stream. The terminating null character is not written.
This function does not add a newline character, either. It outputs only the characters in the string.
This function returns EOF if a write error occurs, and otherwise a non-negative value.
For example:

fputs ("Are ", stdout);
fputs ("you ", stdout);
fputs ("hungry?\n", stdout);

Outputs the text Are you hungry? followed by a newline.
int fputws(const wchar_t *ws, FILE *stream)
The function fputws() writes the wide character string ws to the stream stream. The terminating null
character is not written. This function does not add a newline character, either. It outputs only the characters in
the string. This function returns WEOF if a write error occurs, and otherwise a non-negative value.
int puts(const char *s)
The puts() function writes the string s to the stream stdout followed by a newline. The terminating null

Page 30 of 34 www.tenouk.com

character of the string is not written. (Note that fputs does not write a newline as this function does.)
puts is the most convenient function for printing simple messages. For example:

puts("This is a message.");

Outputs the text This is a message. followed by a newline.

Table 9.11: Output by characters or lines functions

B. Character Input

- This section describes functions for performing character-oriented input. These narrow streams
functions are declared in the header file stdio.h and the wide character functions are declared in
wchar.h.

- These functions return an int or wint_t value (for narrow and wide stream functions
respectively) that is either a character of input, or the special value EOF/WEOF (usually -1). For the
narrow stream functions it is important to store the result of these functions in a variable of type
int instead of char, even when you plan to use it only as a character.

- Storing EOF in a char variable truncates its value to the size of a character, so that it is no longer
distinguishable from the valid character (char) -1.

- So always use an int for the result of getc and friends, and check for EOF after the call; once
you've verified that the result is not EOF, you can be sure that it will fit in a char variable without
loss of information.

int fgetc(FILE *stream)
This function reads the next character as an unsigned char from the stream stream and returns its value,
converted to an int. If an end-of-file condition or read error occurs, EOF is returned instead.
wint_t fgetwc(FILE *stream)
This function reads the next wide character from the stream stream and returns its value. If an end-of-file
condition or read error occurs, WEOF is returned instead.
int fgetc_unlocked(FILE *stream)
The fgetc_unlocked() function is equivalent to the fgetc() function except that it does not implicitly
lock the stream.
int getc(FILE *stream)
This is just like fgetc(), except that it is permissible (and typical) for it to be implemented as a macro that
evaluates the stream argument more than once. getc is often highly optimized, so it is usually the best function
to use to read a single character.
wint_t getwc(FILE *stream)
This is just like fgetwc(), except that it is permissible for it to be implemented as a macro that evaluates the
stream argument more than once. getwc() can be highly optimized, so it is usually the best function to use to
read a single wide character.
int getc_unlocked(FILE *stream)
The getc_unlocked() function is equivalent to the getc function except that it does not implicitly lock the
stream.
int getchar(void)
The getchar() function is equivalent to getc() with stdin as the value of the stream argument.
wint_t getwchar(void)
The getwchar() function is equivalent to getwc() with stdin as the value of the stream argument.
int getchar_unlocked(void)
The getchar_unlocked() function is equivalent to the getchar() function except that it does not
implicitly lock the stream.

Table 9.12: Character oriented input functions

- An example of a function that does input using fgetc, it would normally work just as well using

getc() instead, or using getchar() instead of fgetc(stdin). The code would also work
for the wide character stream functions as well.

C. Line-Oriented Input

- Since many programs interpret input on the basis of lines, it is convenient to have functions to read
a line of text from a stream. Standard C functions for these tasks aren't very safe: null characters
and even (for gets()) long lines can confuse them.

Page 31 of 34 www.tenouk.com

- This vulnerability creates exploits through buffer overflows. That is why you see warning
everywhere; you may check your implementation documentation for safer version of those
functions. All these functions are declared in stdio.h.

char * fgets(char *s, int count, FILE *stream)
The fgets() function reads characters from the stream stream up to and including a newline character and
stores them in the string s, adding a null character to mark the end of the string. You must supply count
characters worth of space in s, but the number of characters read is at most count - 1. The extra character space is
used to hold the null character at the end of the string.
If the system is already at end of file when you call fgets, then the contents of the array s are unchanged and a
null pointer is returned. A null pointer is also returned if a read error occurs. Otherwise, the return value is the
pointer s.
Warning: If the input data has a null character, you can't tell. So don't use fgets unless you know the data
cannot contain a null. Don't use it to read files edited by the user because, if the user inserts a null character, you
should either handle it properly or print a clear error message. We recommend using getline instead of
fgets.
wchar_t * fgetws(wchar_t *ws, int count, FILE *stream)
The fgetws() function reads wide characters from the stream stream up to and including a newline character
and stores them in the string ws, adding a null wide character to mark the end of the string. You must supply
count wide characters worth of space in ws, but the number of characters read is at most count - 1. The extra
character space is used to hold the null wide character at the end of the string.
If the system is already at end of file when you call fgetws, then the contents of the array ws are unchanged and
a null pointer is returned. A null pointer is also returned if a read error occurs. Otherwise, the return value is the
pointer ws.
Warning: If the input data has a null wide character (which are null bytes in the input stream), you can't tell. So
don't use fgetws unless you know the data cannot contain a null. Don't use it to read files edited by the user
because, if the user inserts a null character, you should either handle it properly or print a clear error message.
char * gets(char *s)
The function gets() reads characters from the stream stdin up to the next newline character, and stores them
in the string s. The newline character is discarded (note that this differs from the behavior of fgets, which
copies the newline character into the string). If gets encounters a read error or end-of-file, it returns a null
pointer; otherwise it returns s.
Warning: The gets function is very dangerous because it provides no protection against overflowing the string
s. The GNU library includes it for compatibility only. You should always use fgets or getline instead. To
remind you of this, the linker (if using GNU ld) will issue a warning whenever you use gets.

Table 9.13: Line oriented input functions

D. Block Input/Output

- This section describes how to do the input and output operations on blocks of data. You can use
these functions to read and write binary data, as well as to read and write text in fixed size blocks
instead of by characters or lines.

- Binary files are typically used to read and write blocks of data in the same format as is used to
represent the data in a running program.

- In other words, arbitrary blocks of memory, not just character or string objects, can be written to a
binary file, and meaningfully read in again by the same program.

- Storing data in binary form is often considerably more efficient than using the formatted I/O
functions.

- Also, for floating-point numbers, the binary form avoids possible loss of precision in the conversion
process. On the other hand, binary files can't be examined or modified easily using many standard
file utilities (such as text editors), and are not portable between different implementations of the
language, or different kinds of computers.

- These functions are declared in stdio.h.

size_t fread(void *data, size_t size, size_t count, FILE *stream)
This function reads up to count objects of size size into the array data, from the stream stream. It returns the
number of objects actually read which might be less than count if a read error occurs or the end of the file is
reached. This function returns a value of zero (and doesn't read anything) if either size or count is zero.
If fread encounters end of file in the middle of an object, it returns the number of complete objects read, and
discards the partial object. Therefore, the stream remains at the actual end of the file.
size_t fwrite(const void *data, size_t size, size_t count, FILE *stream)
This function writes up to count objects of size size from the array data, to the stream stream. The return value
is normally count, if the call succeeds. Any other value indicates some sort of error, such as running out of
space.

Page 32 of 34 www.tenouk.com

Table 9.14: Block oriented I/O functions

E. Some File System Interfaces

E.1 Deleting Files

- You can delete a file with unlink() or remove().
- Deletion actually deletes a file name. If this is the file's only name, then the file is deleted as well. If

the file has other remaining names, it remains accessible under those names.

int rmdir(const char *filename)
The rmdir() function deletes a directory. The directory must be empty before it can be removed; in other
words, it can only contain entries for . and ... In most other respects, rmdir() behaves like unlink().
int remove(const char *filename)
This is the ISO C function to remove a file. It works like unlink() for files and like rmdir() for
directories. remove() is declared in stdio.h.

Table 9.15: Remove directory and file functions

- The rename() function is used to change a file's name.

int rename(const char *oldname, const char *newname)
The rename() function renames the file oldname to newname. The file formerly accessible under the name
oldname is afterwards accessible as newname instead. (If the file had any other names aside from oldname, it
continues to have those names.)
The directory containing the name newname must be on the same file system as the directory containing the name
oldname.
One special case for rename is when oldname and newname are two names for the same file. The consistent way
to handle this case is to delete oldname. However, in this case POSIX requires that rename do nothing and report
success--which is inconsistent. We don't know what your operating system will do.
If oldname is not a directory, then any existing file named newname is removed during the renaming operation.
However, if newname is the name of a directory, rename fails in this case.
If oldname is a directory, then either newname must not exist or it must name a directory that is empty. In the latter
case, the existing directory named newname is deleted first. The name newname must not specify a subdirectory of
the directory oldname which is being renamed.
One useful feature of rename is that the meaning of newname changes "atomically" from any previously existing
file by that name to its new meaning (i.e. the file that was called oldname). There is no instant at which newname is
non-existent "in between" the old meaning and the new meaning. If there is a system crash during the operation, it is
possible for both names to still exist; but newname will always be intact if it exists at all.

Table 9.16: Rename function

E.2 Creating Directories

- Directories are created with the mkdir function. There is also a shell command mkdir which
does the same thing.

int mkdir(const char *filename, mode_t mode)
The mkdir() function creates a new, empty directory with name filename.
The argument mode specifies the file permissions for the new directory file.

Table 9.17: Create directory function

F. Pipes and FIFOs

- A pipe is a mechanism for interprocess communication; data written to the pipe by one process
can be read by another process. The data is handled in a first-in, first-out (FIFO) order. The pipe has
no name; it is created for one use and both ends must be inherited from the single process which
created the pipe.

- A FIFO special file is similar to a pipe, but instead of being an anonymous, temporary
connection, a FIFO has a name or names like any other file. Processes open the FIFO by name in
order to communicate through it.

Page 33 of 34 www.tenouk.com

- A pipe or FIFO has to be open at both ends simultaneously. If you read from a pipe or FIFO file
that doesn't have any processes writing to it (perhaps because they have all closed the file, or
exited), the read returns end-of-file.

- Writing to a pipe or FIFO that doesn't have a reading process is treated as an error condition; it
generates a SIGPIPE signal, and fails with error code EPIPE if the signal is handled or blocked.

- Neither pipes nor FIFO special files allow file positioning. Both reading and writing operations
happen sequentially; reading from the beginning of the file and writing at the end.

--------------------------------o0o-------------------------------------

Further reading and digging:

1. Check the best selling C/C++ books at Amazon.com.
2. Wide character/Unicode is discussed HERE and the implementation using Microsoft C is discussed

HERE.
3. Implementation specific information for Microsoft can be found HERE (CRT) and HERE (Win32).

Page 34 of 34 www.tenouk.com

http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html
http://www.tenouk.com/ModuleA.html
http://www.tenouk.com/ModuleC.html

