
MODULE 40 
NETWORK PROGRAMMING 

SOCKET PART II 
  
My Training Period:          hours 
  
Note: 
This is a continuation from Part I, Module 39.  Working program examples compiled using gcc, tested using the 
public IPs, run on Fedora 3, with several times of update, as normal user.  The Fedora machine used for the testing 
having the "No Stack Execute" disabled and the SELinux set to default configuration. 
  
Abilities 
  

▪         Able to understand and use the Unix/Linux C language socket APIs. 
▪         Able to und stand and implement several simple TCP and UDP Client and server basic designs. er

Client Design Consideration   

  
- Some of the information in this section is a repetition from the previous one. 

  
Identifying a Server's Address 
  

- A server's ip address must be used in connect. 
- Usually the name is used to get the address. 
- The name could be in the code mailhost for an email program. 
- The user could specify the name common because it is flexible and simple. 
- The name or address could be in a file. 
- Broadcast on the network to ask for a server. 
- Example telneting the telserv.test.com server through the standard telnet port 25: 

  
telnet telserv.test.com 

  
- Or using the IP address of the telnet server: 

  
telnet 131.95.115.204 

  
- Client software typically allows either names or numbers. 
- Ports usually have a default value in the code if not explicitly mentioned. 

  
Looking Up a Computer Name 
  

NAME 
       gethostbyname() - get network host entry 
  
SYNOPSIS 
       #include <netdb.h> 
       extern int h_errno; 
  
       struct hostent 
       *gethostbyname(const char *name); 
struct hostent { 
   char  *h_name; 
   char  **h_aliases; 
   int   h_addrtype; 
   int   h_length; 
   char  **h_addr_list; 
}; 
#define h_addr h_addr_list[0] 

  
- name could be a name or dotted decimal address. 
- Hosts can have many names in h_aliases. 
- Hosts can have many addresses in h_addr_list. 
- Addresses in h_addr_list are not strings network order addresses ready to copy and use. 

  
Looking Up a Port Number by Name 
  

www.tenouk.com

http://www.tenouk.com/Module39.html
http://www.tenouk.com/Module000.html


NAME 
   getservbyname() - get service entry 
  
SYNOPSIS 
   #include <netdb.h> 
  
   struct servent *getservbyname(const char *name, const char *proto); 
  
struct servent { 
   char  *s_name; 
   char  **s_aliases; 
   int   s_port; 
   char  *s_proto; 
} 

  
- s_port: port number for the service given in network byte order. 

  
Looking Up a Protocol by Name 
  

NAME 
       getprotobyname() - get protocol entry 
  
SYNOPSIS 
       #include <netdb.h> 
  
       struct protoent 
       *getprotobyname(const char *name); 
struct protoent { 
   char  *p_name; 
   char  **p_aliases; 
   int   p_proto; 
} 

  
- p_proto: the protocol number (can be used in socket call). 

  
getpeername() 
  

- The function getpeername() will tell you who is at the other end of a connected stream socket. 
- The prototype: 

  
#include <sys/socket.h> 
int getpeername(int sockfd, struct sockaddr *addr, int *addrlen); 

  
- sockfd is the descriptor of the connected stream socket. 
- addr is a pointer to a struct sockaddr (or a struct sockaddr_in) that will hold the 

information about the other side of the connection. 
- addrlen is a pointer to an int, which should be initialized to sizeof(struct sockaddr). 
- The function returns -1 on error and sets errno accordingly. 
- Once you have their address, you can use inet_ntoa() or gethostbyaddr() to print or get 

more information. 
  
Allocating a Socket 
  

#include <sys/types.h> 
#include <sys/socket.h> 
  
int s; 
  
s = socket(PF_INET, SOCK_STREAM, 0); 

  
- Specifying PF_INET and SOCK_STREAM leaves the protocol parameter irrelevant. 

  
Choosing a Local Port Number 
  

- The server will be using a well-known port. 
- Once a client port is set, the server will be aware as needed. 
- You could bind to a random port above 1023. 
- A simpler choice is to leave out the bind call. 
- connect() will choose a local port if required. 

www.tenouk.com



  
Connecting to a Server with TCP 
  

- connect(). 
  

NAME 
       connect - initiate a connection on a socket 
  
SYNOPSIS 
       #include <sys/types.h> 
       #include <sys/socket.h> 
  
       int connect(int s, struct sockaddr *serv_addr, int addrlen); 
  
RETURN VALUE 
       If the connection or binding succeeds, zero is returned. 
       On error, -1 is returned, and errno is set appropriately. 

  
- We will use a sockaddr_in structure (possibly cast). 
- After connect, s is available to read/write. 

  
Communicating with TCP 
  

- Code segment example: 
  

char *req = "send cash"; 
char buf[100], *b; 
  
write (s, req, strlen(req)); 
  
left = 100; 
b = buf; 
while (left && (n = read(s, buf, left)) > 0) 
{ 
   b += n; 
   left -= n; 
} 

  
- The client and server can not know how many bytes are sent in each write. 
- Delivered chunks are not always the same size as in the original write. 
- Reads must be handled in a loop to cope with stream sockets. 

  
Closing a TCP Connection 
  

- In the simplest case close works well. 
- Sometimes it is important to tell the server that a client will send no more requests, while still keeping 

the socket available for reading. 
  

res = shutdown(s, 1); 
  

- The 1 means no more writes will happen. 
- The server detects end of file on the socket. 
- After the server sends all the replies it can close. 

  
Connected vs Unconnected UDP Sockets 
  

- A client can call connect with a UDP socket or not. 
- If connect is called read and write will work. 
- Without connect the client needs to send with a system call specifying a remote endpoint. 
- Without connect it might be useful to receive data with a system call which tells the remote endpoint. 
- Connect with TCP involves a special message exchange sequence. 
- Connect with UDP sends no messages.  You can connect to non-existent servers. 

  
Communicating with UDP 
  

- UDP data is always a complete message (datagram). 
- Whatever is specified in a write becomes a datagram. 

www.tenouk.com



- Receiver receives the complete datagram unless fewer bytes are read. 
- Reading in a loop for a single datagram is pointless with UDP. 
- close() is adequate, since shutdown() does not send any messages. 
- UDP is unreliable.  UDP software needs an error protocol. 

  
Example Clients – Some variations 
  
A Simple Client Library 
  

- To make a connection, a client must: 
  

▪         select UDP or TCP... 
▪         determine a server's IP address... 
▪         determine the proper port... 
▪         make the socket call... 
▪         make the connect call... 

  
- Frequently the calls are essentially the same. 
- A library offers normal capability with a simple interface. 

  
connectTCP() 
  

- The following is a code segment example using the connectTCP() function. 
  

int connectTCP(const char *host, const char *service) 
{ return connectsock(host, service, "tcp"); } 

  
connectUDP() 
  

- The following is a code segment example using the connectUDP() function. 
  

int connectUDP(const char *host, const char *service) 
{ return connectsock(host, service, "udp"); } 

  
connectsock() 
  

- The following is a code segment example using the connectsock() function. 
  

int connectsock(const char *host, const char *service, const char *transport) 
{ 
    struct hostent      *phe;   /* pointer to host information entry    */ 
    struct servent      *pse;   /* pointer to service information entry */ 
    struct protoent     *ppe;   /* pointer to protocol information entry*/ 
    struct sockaddr_in sin;     /* an Internet endpoint address         */ 
    int s, type;                /* socket descriptor and socket type    */ 
  
    memset(&sin, 0, sizeof(sin)); 
    sin.sin_family = AF_INET; 
  
    /* Map service name to port number */ 
    if(pse = getservbyname(service, transport)) 
        sin.sin_port = pse->s_port; 
    else if ((sin.sin_port = htons((u_ short)atoi(service))) == 0) 
        errexit("can't get \"%s\" service entry\n", service); 
  
    /* Map host name to IP address, allowing for dotted decimal */ 
    if(phe = gethostbyname(host)) 
        memcpy(&sin.sin_addr, phe->h_addr, phe->h_length); 
    else if ((sin.sin_addr.s_addr = inet_addr(host)) == INADDR_NONE) 
        errexit("can't get \"%s\" host entry\n", host); 
  
    /* Map transport protocol name to protocol number */ 
    if((ppe = getprotobyname(transport)) == 0) 
        errexit("can't get \"%s\" protocol entry\n", transport); 
  
    /* Use protocol to choose a socket type */ 
    if(strcmp(transport, "udp") == 0) 
        type = SOCK_DGRAM; 
    else 

www.tenouk.com



        type = SOCK_STREAM; 
  
    /* Allocate a socket */ 
    s = socket(PF_INET, type, ppe->p_proto); 
    if(s < 0) 
       errexit("can't create socket: %s\n", strerror(errno)); 
  
    /* Connect the socket */ 
    if(connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) 
       errexit("can't connect to %s.%s: %s\n", host, service, strerror(errno)); 
    return s; 
} 

  
A TCP DAYTIME Client 
  

- DAYTIME service prints date and time. 
- TCP version sends upon connection.  Server reads no client data. 
- UDP version sends upon receiving any message. 
- The following is a code segment example implementing the TCP Daytime. 

  
#define LINELEN 128 
  
int main(int argc, char *argv[]) 
{ 
    /* host to use if none supplied */ 
    char *host = "localhost"; 
    /* default service port */ 
    char *service = "daytime"; 
    switch (argc) { 
    case 1: 
        host = "localhost"; 
        break; 
    case 3: 
        service = argv[2]; 
        /* FALL THROUGH */ 
    case 2: 
        host = argv[1]; 
        break; 
    default: 
        fprintf(stderr, "usage: TCPdaytime [host [port]]\n"); 
        exit(1); 
    } 
    TCPdaytime(host, service); 
    exit(0); 
} 
  
void TCPdaytime(const char *host, const char *service) 
{ 
    /* buffer for one line of text */ 
    char buf[LINELEN+1]; 
    /* socket, read count */  
    int s, n; 
  
    s = connectTCP(host, service); 
  
 while((n = read(s, buf, LINELEN)) > 0) 
 { 
      /* ensure null-terminated */ 
      buf[n] = '\0'; 
      (void) fputs(buf, stdout); 
 } 
} 

  
A UDP TIME Client 
  

- The TIME service is for computers. 
- Returns seconds since 1-1-1900. 
- Useful for synchronizing and time-setting. 
- TCP and UDP versions return time as an integer. 
- Need to use ntohl to convert. 
- The following is a code segment example implementing UDP Time. 

  
#define MSG  "What time is it?\n" 

www.tenouk.com



  
int main(int argc, char *argv[]) 
{ 
    char   *host = "localhost"; /* host to use if none supplied */ 
    char   *service = "time";   /* default service name         */ 
    time_t now;                 /* 32-bit integer to hold time  */  
    int    s, n;                /* socket descriptor, read count*/ 
  
    switch (argc) { 
    case 1: 
        host = "localhost"; 
        break; 
    case 3: 
        service = argv[2]; 
        /* FALL THROUGH */ 
    case 2: 
        host = argv[1]; 
        break; 
    default: 
        fprintf(stderr, "usage: UDPtime [host [port]]\n"); 
        exit(1); 
    } 
  
    s = connectUDP(host, service); 
  
    (void) write(s, MSG, strlen(MSG)); 
  
    /* Read the time */ 
    n = read(s, (char *)&now, sizeof(now)); 
    if(n < 0) 
        errexit("read failed: %s\n", strerror(errno)); 
    /* put in host byte order*/ 
    now = ntohl((u_long)now); 
    printf("%s", ctime(&now)); 
    exit(0); 
} 

  
TCP and UDP Echo Clients 
  

- main() is like the other clients. 
  
TCPecho() function 
  

- The following is a code segment example for using the TCPecho() function. 
  

int TCPecho(const char *host, const char *service) 
{ 
    char buf[LINELEN+1];   /* buffer for one line of text  */ 
    int s, n;              /* socket descriptor, read count*/ 
    int outchars, inchars; /* characters sent and received */ 
  
    s = connectTCP(host, service); 
  
while(fgets(buf, sizeof(buf), stdin)) 
{ 
   /* insure line null-terminated */ 
   buf[LINELEN] = '\0'; 
   outchars = strlen(buf); 
   (void) write(s, buf, outchars); 
  
  /* read it back */ 
 for(inchars = 0; inchars < outchars; inchars+=n) 
 { 
    n = read(s, &buf[inchars], outchars - inchars); 
    if(n < 0) 
      errexit("socket read failed: %s\n", strerror(errno)); 
 } 
 fputs(buf, stdout); 
} 
} 

  
UDPecho() function 
  

- The following is a code segment example for using the UDPecho() function. 

www.tenouk.com



  
int UDPecho(const char *host, const char *service) 
{ 
    /* buffer for one line of text */ 
    char buf[LINELEN+1]; 
    /* socket descriptor, read count */ 
    int s, nchars; 
  
    s = connectUDP(host, service); 
  
 while(fgets(buf, sizeof(buf), stdin)) 
 { 
    /* ensure null-terminated */ 
    buf[LINELEN] = '\0'; 
    nchars = strlen(buf); 
    (void) write(s, buf, nchars); 
  
    if(read(s, buf, nchars) < 0) 
        errexit("socket read failed: %s\n", strerror(errno)); 
    fputs(buf, stdout); 
} 
} 

  
Server Design Consideration 
  
Concurrent vs Iterative Servers 
  

- An iterative server processes one request at a time. 
- A concurrent server processes multiple requests at a time real or apparent concurrency. 
- A single process can use asynchronous I/O to achieve concurrency. 
- Multiple server processes can achieve concurrency. 
- Concurrent servers are more complex. 
- Iterative servers cause too much blocking for most applications. 
- Avoiding blocking results in better performance. 

  
Connection-Oriented vs Connectionless Servers 
  

- TCP provides a connection-oriented service. 
- UDP provides a connectionless service. 

  
Connection-oriented Servers 

  
- Easy to program, since TCP takes care of communication problems. 
- Also a single socket is used for a single client exclusively (connection). 
- Handling multiple sockets is intense juggling. 
- For trivial applications the 3-way handshake is slow compared to UDP. 
- Resources can be tied up if a client crashes. 

  
Connectionless Servers 

  
- No resource depletion problem. 
- Server/client must cope with communication errors.  Usually client sends a request and resends if 

needed. 
- Selecting proper timeout values is difficult. 
- UDP allows broadcast/multicast. 

  
Stateless Servers 
  

- Statelessness improves reliability at the cost of longer requests and slower performance. 
- Improving performance generally adds state information.  For example, adding a cache of file data. 
- Crashing clients leave state information in server. 
- You could use LRU replacement to re-use space. 
- A frequently crashing client could dominate the state table, wiping out performance gains. 
- Maintaining state information correctly and efficiently is complex. 

  
Request Processing Time 
  

www.tenouk.com



- Request processing time (rpt) = total time server uses to handle a single request. 
- Observed response time (ort) = delay between issuing a request and receiving a response  
- rpt <= ort. 
- If the server has a large request queue, ort can be large. 
- Iterative servers handle queued requests sequentially. 
- With N items queued the average iterative (ort = N * rpt). 
- With N items queued a concurrent server can do better. 
- Implementations restrict queue size. 
- Programmers need a concurrent design if a small queue is inadequate. 

  
Iterative, Connection-Oriented Server Algorithm 
  

- The following is a sample of pseudo codes for iterative, connection oriented server. 
  

create a socket 
bind to a well-known port 
place in passive mode 
while (1) 
{ 
    Accept the next connection 
    while (client writes) 
    { 
        read a client request 
        perform requested action 
        send a reply 
    } 
    close the client socket 
} 
close the passive socket 

  
Using INADDR_ANY 
  

- Some server computers have multiple IP addresses. 
- A socket bound to one of these will not accept connections to another address. 
- Frequently you prefer to allow any one of the computer's IP addresses to be used for connections. 
- Use INADDR_ANY (0L) to allow clients to connect using any one of the host's IP addresses. 

  
Iterative, Connectionless Server Algorithm 
  

- The following is a sample of pseudo codes for iterative, connectionless server. 
  

create a socket 
bind to a well-known port 
while (1) 
{ 
    read a request from some client 
    send a reply to that client 
} 

  
recvfrom(s, buf, len, flags, from, fromlen)  
sendto(s, buf, len, flags, to, to_len) 

  
Concurrent, Connectionless Server Algorithm 
  

- The following is a sample of pseudo codes for concurrent, connectionless server. 
  

create a socket 
bind to a well-known port 
while (1) 
{ 
    read a request from some client 
    fork 
    if(child) 
    { 
        send a reply to that client 
        exit 
    } 
  } 

  
- Overhead of fork and exit is expensive. 
- Not used much. 

www.tenouk.com



  
Concurrent, Connection-Oriented Server Algorithm 
  

- The following is a sample of pseudo codes for connection-oriented server. 
  

create a socket 
bind to a well-known port 
use listen to place in passive mode 
while (1) 
{ 
    accept a client connection 
    fork 
    if (child) 
    { 
        communicate with new socket 
        close new socket 
        exit 
     } 
 else 
 {close new socket} 
} 

  
- Single program has master and slave code. 
- It is possible for slave to use execve. 

  
Concurrency Using a Single Process 
  

- The following is a sample of pseudo codes for concurrency using a single process. 
  

create a socket 
bind to a well-known port 
while (1) 
{ 
    use select to wait for I/O 
    if(original socket is ready) 
    { 
        accept() a new connection and add to read list 
    } 
 else if (a socket is ready for read) 
 { 
        read data from a client 
        if(data completes a request) 
        { 
           do the request 
           if(reply needed) add socket to write list 
        } 
   } 
 else if (a socket is ready for write) 
 { 
   write data to a client 
   if(message is complete) 
   { 
       remove socket from write list 
   } 
 else 
 { 
    adjust write parameters and leave in write list 
 } 
  }
} 

  
When to Use the Various Server Types 
  

- Iterative vs Concurrent. 
  

▪         Iterative server is simpler to write. 
▪         Concurrent server is faster. 
▪         Use iterative if it is fast enough. 

  
- Real vs Apparent Concurrency. 

  
▪         Writing a single process concurrent server is harder. 
▪         Use a single process if data must be shared between clients. 

www.tenouk.com



▪         Use multiple processes if each slave is isolated or if you have multiple CPUs. 
  

- Connection-Oriented vs Connectionless. 
  

▪         Use connectionless if the protocol handles reliability. 
▪         Use connectionless on a LAN with no errors. 

  
Avoiding Server Deadlock 
  

- Client connects but sends no request.  Server blocks in read call. 
- Client sends request, but reads no replies.  Server blocks in write call. 
- Concurrent servers with slaves are robust. 

  
Iterative, Connectionless Servers (UDP) 
  
Creating a Passive UDP Socket 
  

- The following is a sample codes for a passive UDP socket. 
  

int passiveUDP(const char *service) 
{ 
    return passivesock(service, "udp", 0); 
} 
  
u_short portbase = 0; 
  
int passivesock(const char *service, const char *transport, int qlen) 
{ 
    struct servent  *pse; 
    struct protoent *ppe; 
    struct sockaddr_in sin; 
    int     s, type; 
  
    memset(&sin, 0, sizeof(sin)); 
    sin.sin_family = AF_INET; 
    sin.sin_addr.s_addr = INADDR_ANY; 
  
    /* Map service name to port number */ 
    if(pse = getservbyname(service, transport)) 
        sin.sin_port = htons(ntohs((u_short)pse->s_port) + portbase); 
    else if((sin.sin_port = htons((u_short)atoi(service))) == 0) 
        errexit("can't get \"%s\" service entry\n", service); 
  
    /* Map protocol name to protocol number */ 
    if((ppe = getprotobyname(transport)) == 0) 
        errexit("can't get \"%s\" protocol entry\n", transport); 
  
    /* Use protocol to choose a socket type */ 
    if(strcmp(transport, "udp") == 0) 
        type = SOCK_DGRAM; 
    else 
        type = SOCK_STREAM; 
  
    /* Allocate a socket */ 
    s = socket(PF_INET, type, ppe->p_proto); 
    if(s < 0) 
        errexit("can't create socket: %s\n", strerror(errno)); 
  
    /* Bind the socket */ 
    if(bind(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) 
        errexit("can't bind to %s port: %s\n", service, strerror(errno)); 
    if(type == SOCK_STREAM && listen(s, qlen) < 0) 
        errexit("can't listen on %s port: %s\n", service, strerror(errno)); 
    return s; 
} 

  
A TIME Server 
  

- The following is a sample codes for Time server. 
  

/* main() - Iterative UDP server for TIME service */ 
int main(int argc, char *argv[]) 

www.tenouk.com



{ 
    struct sockaddr_in fsin  ;
    char *service = "time"; 
    char buf[1]; 
    int sock; 
    time_t now; 
    int alen; 
  
    sock = passiveUDP(service); 
  
 while (1) 
{ 
     alen = sizeof(fsin); 
     if(recvfrom(sock, buf, sizeof(buf), 0, (struct sockaddr *)&fsin, &alen) < 0) 
        errexit("recvfrom: %s\n", strerror(errno)); 
     time(&now); 
     now = htonl((u_long)now); 
     sendto(sock, (char *)&now, sizeof(now), 0, (struct sockaddr *)&fsin, sizeof(fsin)); 
 } 
} 

  
Iterative, Connection-Oriented Servers (TCP) 
  
A DAYTIME Server 
  

- The following is a sample codes for Daytime server. 
  

int passiveTCP(const char *service, int qlen) 
{ 
    return passivesock(service, "tcp", qlen); 
} 
  
int main(int argc, char *argv[]) 
{ 
    struct sockaddr_in fsin; 
    char *service = "daytime"; 
    int msock, ssock; 
    int alen; 
  
    msock = passiveTCP(service, 5); 
  
    while (1) { 
        ssock = accept(msock, (struct sockaddr *)&fsin, &alen); 
        if(ssock < 0) 
            errexit("accept failed: %s\n", strerror(errno)); 
        TCPdaytimed(ssock); 
        close(ssock); 
  } 
} 
  
void TCPdaytimed(int fd) 
{ 
    char *pts; 
    time_t now; 
    char *ctime(); 
  
    time(&now); 
    pts = ctime(&now); 
    write(fd, pts, strlen(pts)); 
    return; 
} 

  
- Close call requests a graceful shutdown. 
- Data in transit is reliably delivered. 
- Close requires messages and time. 
- If the server closes you may be safe. 
- If the client must close, the client may not cooperate. 
- In our simple server, a client can make rapid calls and use resources associated with TCP shutdown 

timeout. 
  
Concurrent, Connection-Oriented Servers (TCP) 
  
The Value of Concurrency 

www.tenouk.com



  
- An iterative server may block for excessive time periods. 
- An example is an echo server.  A client could send many megabytes blocking other clients for 

substantial periods. 
- A concurrent echo server could handle multiple clients simultaneously.  Abusive clients would not 

affect polite clients as much. 
  
A Concurrent Echo Server Using fork() 
  

- The following is a sample codes for concurrent Echo server using fork(). 
  

int main(int argc, char *argv[]) 
{ 
    char   *service = "echo";   /* service name or port number*/ 
    struct sockaddr_in fsin;    /* the address of a client    */ 
    int alen;                   /* length of client's address */ 
    int msock;                  /* master server socket       */ 
    int ssock;                  /* slave server socket        */ 
  
    msock = passiveTCP(service, QLEN); 
  
    signal(SIGCHLD, reaper); 
  
 while (1) 
 { 
     alen = sizeof(fsin); 
     ssock = accept(msock, (struct sockaddr *)&fsin, &alen); 
     if(ssock < 0) { 
        if(errno == EINTR) 
            continue; 
       errexit("accept: %s\n", strerror(errno)); 
  } 
  switch (fork()) 
 { 
     /* child */ 
     case 0: 
       close(msock); 
     exit(TCPechod(ssock)); 
     /* parent */ 
     default: 
       close(ssock); 
       break; 
     case -1: 
        errexit("fork: %s\n", strerror(errno)); 
   } 
   } 
} 
  
int TCPechod(int fd) 
{ 
    char  buf[BUFSIZ]; 
    int   cc; 
  
 while (cc = read(fd, buf, sizeof buf)) 
 { 
        if(cc < 0) 
            errexit("echo read: %s\n", strerror(errno)); 
        if(write(fd, buf, cc) < 0) 
            errexit("echo write: %s\n", strerror(errno)); 
  } 
    return 0; 
} 
  
void reaper(int sig) 
{ 
    int status; 
  
    while (wait3(&status, WNOHANG, (struct rusage *)0) >= 0) 
    /* empty */; 
} 

  
Single-Process, Concurrent Servers (TCP) 
  
Data-driven Processing 

www.tenouk.com



  
- Arrival of data triggers processing. 
- A message is typically a request. 
- Server replies and awaits additional requests. 
- If processing time is small, the requests may be possible to handle sequentially. 
- Timesharing would be necessary only when the processing load is too high for sequential processing. 
- Timesharing with multiple slaves is easier. 

  
Using Select for Data-driven Processing 
  

- A process calls select to wait for one (or more) of a collection of open files (or sockets) to be ready for 
I/O. 

  
int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval 
*timeout); 
  
FD_CLR(int fd, fd_set *set); 
FD_ISSET(int fd, fd_set *set); 
FD_SET(int fd, fd_set *set); 
FD_ZERO(fd_set *set); 

  
- select() returns the number of fd's ready for I/O. 
- FD_ISSET is used to determine which fd's are ready. 
- select() returns 0 if the timer expires. 
- select() returns -1 if there is an error. 

  
An ECHO Server using a Single Process 
  

- The following is a sample codes for Echo server using a single process. 
  

int main(int argc, char *argv[]) 
{ 
    char   *service = "echo"; 
    struct sockaddr_in fsin; 
    int    msock; 
    fd_set rfds; 
    fd_set afds; 
    int    alen; 
    int    fd, nfds; 
    msock = passiveTCP(service, QLEN); 

  
    nfds = getdtablesize(); 
    FD_ZERO(&afds); 
    FD_SET(msock, &afds); 
  
    while (1) { 
        memcpy(&rfds, &afds, sizeof(rfds)); 
  
      if(select(nfds, &rfds, (fd_set *)0, (fd_set *)0, (struct timeval *)0) < 0) 
            errexit("select: %s\n", strerror(errno)); 
        if(FD_ISSET(msock, &rfds)) 
 { 
    int ssock; 
  
    alen = sizeof(fsin); 
    ssock = accept(msock, (struct sockaddr *)&fsin, &alen); 
    if(ssock < 0) 
       errexit("accept: %s\n", strerror(errno)); 
     FD_SET(ssock, &afds); 
   } 
   for(fd=0; fd < nfds; ++fd) 
     if(fd != msock && FD_ISSET(fd, &rfds)) 
        if(echo(fd) == 0) 
          { 
              (void) close(fd); 
              FD_CLR(fd, &afds); 
           } 
    } 
} 
  
int echo(int fd) 
{ 

www.tenouk.com



    char buf[BUFSIZ]; 
    int  cc; 
  
    cc = read(fd, buf, sizeof buf); 
    if(cc < 0) 
        errexit("echo read: %s\n", strerror(errno)); 
    if(cc && write(fd, buf, cc) < 0) 
        errexit("echo write: %s\n", strerror(errno)); 
    return cc; 
} 

  
Multiprotocol Servers 
  
Why use multiple protocols in a server? 
  

- Using separate UDP and TCP servers gives the system administrator more flexibility. 
- Using separate servers result in 2 moderately simple servers. 
- Using one server eliminates duplicate code simplifying software maintenance. 
- Using one server reduces the number of active processes. 

  
A Multiprotocol DAYTIME Server 
  

- The following is a sample codes for Multiprotocol Daytime server. 
  

int main(int argc, char *argv[]) 
{ 
    char   *service = "daytime"; /* service name or port number */ 
    char   buf[LINELEN+1];       /* buffer for one line of text */ 
    struct sockaddr_in fsin;     /* the request from address    */ 
    int    alen;                 /* from-address length         */ 
    int    tsock;                /* TCP master socket           */ 
    int    usock;                /* UDP socket                  */ 
    int    nfds; 
    fd_set rfds;                 /* readable file descriptors   */ 
  
    tsock = passiveTCP(service, QLEN); 
    usock = passiveUDP(service); 
    /* bit number of max fd */ 
    nfds = MAX(tsock, usock) + 1; 
  
    FD_ZERO(&rfds); 
  
    while (1) { 
        FD_SET(tsock, &rfds); 
        FD_SET(usock, &rfds); 
  
        if(select(nfds, &rfds, (fd_set *)0, (fd_set *)0, (struct timeval *)0) < 0) 
            errexit("select error: %s\n", strerror(errno)); 
        if(FD_ISSET(tsock, &rfds)) 
       { 
            /* TCP slave socket */ 
            int ssock;  
            alen = sizeof(fsin); 
            ssock = accept(tsock, (struct sockaddr *)&fsin, &alen); 
            if(ssock < 0) 
                errexit("accept failed: %s\n", strerror(errno)); 
            daytime(buf); 
            (void) write(ssock, buf, strlen(buf)); 
            (void) close(ssock); 
        } 
  if(FD_ISSET(usock, &rfds)) 
 { 
   alen = sizeof(fsin); 
   if(recvfrom(usock, buf, sizeof(buf), 0, (struct sockaddr *)&fsin, &alen) < 0) 
      errexit("recvfrom: %s\n", strerror(errno)); 
   daytime(buf); 
   (void) sendto(usock, buf, strlen(buf), 0, (struct sockaddr *)&fsin, sizeof(fsin));   
   } 
  } 
} 
  
int daytime(char buf[]) 
{ 
    char   *ctime(); 
    time_t now; 

www.tenouk.com



  
    (void) time(&now); 
    sprintf(buf, "%s", ctime(&now)); 
} 

  
  
Multiservice Servers 
  
Why combine services into one server? 
  

- Fewer processes. 
- Less memory. 
- Less code duplication. 
- Server complexity is really a result of accepting connections and handling concurrency. 
- Having one server means the complex code does not need to be replicated. 

  
Iterative Connectionless Server Design 
  

- Server opens multiple UDP sockets each bound to a different port. 
- Server keeps an array of function pointers to associate each socket with a service functions. 
- Server uses select to determine which socket (port) to service next and calls the proper service function. 

  
Iterative Connection-Oriented Server Design 
  

- Server opens multiple passive TCP sockets each bound to a different port. 
- Server keeps an array of function pointers to associate each socket with a service functions. 
- Server uses select to determine which socket (port) to service next. 
- When a connection is ready, server calls accept to start handling a connection. 
- Server calls the proper service function. 

  
Concurrent Connection-Oriented Server Design 
  

- Master uses select to wait for connections over a set of passive TCP sockets. 
- Master forks after accept. 
- Slave handles communication with the client. 

  
Single-Process Server Design 
  

- Master uses select to wait for connections over a set of passive TCP sockets. 
- After each accepts the new socket is added to the fd_set(s) as needed to handle client 

communication. 
- Complex if the client protocols are not trivial. 

  
Invoking Separate Programs from a Server 
  

- Master uses select() to wait for connections over a set of passive TCP sockets. 
- Master forks after accept. 
- Child process uses execve to start a slave program to handle client communication. 
- Different protocols are separated making it simpler to maintain. 
- Changes to a slave program can be implemented without restarting the master. 

  
Multiservice, Multiprotocol Servers 
  

- Master uses select to wait for connections over a set of passive TCP sockets. 
- In addition the fd_set includes a set of UDP sockets awaiting client messages. 
- If a UDP message arrives, the master calls a handler function which formulates and issues a reply. 
- If a TCP connection is needed the master calls accept. 
- For simpler TCP connections, the master can handle read and write requests iteratively. 
- The master can also use select. 
- Lastly the master can use fork and let the child handle the connection. 

  
Code Example of Super Server 
  

- The following is a sample codes for super server. 

www.tenouk.com



  
struct service { 
    char  *sv_name; 
    char  sv_useTCP; 
    int   sv_sock; 
    int   (*sv_func)(int); 
}; 
  
struct service svent[] = { 
    { "echo", TCP_SERV, NOSOCK, TCPechod }, 
    { "chargen", TCP_SERV, NOSOCK, TCPchargend }, 
    { "daytime", TCP_SERV, NOSOCK, TCPdaytimed }, 
    { "time", TCP_SERV, NOSOCK, TCPtimed }, 
    { 0, 0, 0, 0 }, 
}; 
  
int main(int argc, char *argv[]) 
{ 
    struct service  *psv,    /* service table pointer */ 
            *fd2sv[NOFILE];  /* map fd to service pointer */ 
    int     fd, nfds; 
    fd_set  afds, rfds;      /* readable file descriptors */ 
  
    nfds = 0; 
    FD_ZERO(&afds); 
    for(psv = &svent[0]; psv->sv_name; ++psv) 
 { 
        if(psv->sv_useTCP) 
            psv->sv_sock = passiveTCP(psv->sv_name, QLEN); 
        else 
            psv->sv_sock = passiveUDP(psv->sv_name); 
        fd2sv[psv->sv_sock] = psv; 
        nfds = MAX(psv->sv_sock+1, nfds); 
        FD_SET(psv->sv_sock, &afds); 
  } 
   
  (void) signal(SIGCHLD, reaper); 
  
    while (1) { 
      memcpy(&rfds, &afds, sizeof(rfds)); 
      if(select(nfds, &rfds, (fd_set *)0, (fd_set *)0, (struct timeval *)0) < 0) 
       { 
         if(errno == EINTR) 
           continue; 
         errexit("select error: %s\n", strerror(errno)); 
       } 
        for(fd=0; fd<nfds; ++fd) 
        { 
            if(FD_ISSET(fd, &rfds)) 
            { 
                psv = fd2sv[fd]; 
                if(psv->sv_useTCP) 
                   doTCP(psv); 
                else 
                   psv->sv_func(psv->sv_sock); 
            } 
          } 
    } 
} 
  
/* doTCP() - handle a TCP service connection request */ 
void doTCP(struct service *psv) 
{ 
    /* the request from address */ 
    struct  sockaddr_in fsin; 
    /* from-address length */ 
    int alen; 
    int fd, ssock; 
  
    alen = sizeof(fsin); 
    ssock = accept(psv->sv_sock, (struct sockaddr *)&fsin, &alen); 
    if(ssock < 0) 
        errexit("accept: %s\n", strerror(errno)); 
    switch (fork()) 
   { 
    case 0:  
        break; 
    case -1: 

www.tenouk.com



        errexit("fork: %s\n", strerror(errno)); 
    default: 
        (void) close(ssock); 
        /* parent */ 
        return; 
    } 
    /* child */ 
    for(fd = NOFILE; fd >= 0; --fd) 
        if(fd != ssock) (void) close(fd); 
    exit(psv->sv_func(ssock)); 
} 
  
/* reaper() - clean up zombie children */ 
void reaper(int sig) 
{ 
    int status; 
    while(wait3(&status, WNOHANG, (struct rusage *)0) >= 0) 
    /* empty */; 
} 

  
Some Idea In Managing Server Concurrency 
  
Concurrency vs Iteration 
  
Making the decision 
  

- Program design is vastly different. 
- Programmer needs to decide early. 
- Network and computer speeds change. 
- Optimality is a moving target. 
- Programmer must use insight based on experience to decide which is better. 

  
Level of Concurrency 
  

- Number of concurrent clients. 
- Iterative means 1 client at a time. 
- Unbounded concurrency allows flexibility. 
- TCP software limits the number of connections. 
- OS limits each process to a fixed number of open files. 
- OS limits the number of processes. 

  
Problems with Unbounded Concurrency 
  

- OS can run out of resources such as memory, processes, sockets, buffers causing blocking, thrashing, 
crashing...  

- Demand for one service can inhibit others e.g. web server may prevent other use. 
- Over-use can limit performance e.g. ftp server could be so slow that clients cancel requests wasting 

time spent doing a partial transfer. 
  
Cost of Concurrency 
  

- Assuming a forking concurrent server, each connection requires time for a process creation (c). 
- Each connection also requires some time for processing requests (p). 
- Consider 2 requests arriving at the same time. 
- Iterative server completes both at time 2p. 
- Concurrent server completes both perhaps at time 2c+p. 
- If p < 2c the iterative server is faster. 
- The situation can get worse with more requests. 
- The number of active processes can exceed the CPU capacity. 
- Servers with heavy loads generally try to dodge the process creation cost. 

  
Process Pre-allocation to Limit Delays 
  

- Master server process forks n times. 
- The n slaves handle up to n clients. 
- Operates like n iterative servers. 

www.tenouk.com



- Due to child processes inheriting the parent's passive socket, the slaves can all wait in accept on the 
same socket. 

- For UDP, the slaves can all call recvfrom on the same socket. 
- To avoid problems like memory leaks, the slaves can be periodically replaced. 
- For UDP, bursts can overflow buffers causing data loss.  Pre-allocation can limit this problem. 

  
Dynamic Pre-allocation 
  

- Pre-allocation can cause extra processing time if many slaves are all waiting on the same socket. 
- If the server is busy, it can be better to have many slaves pre-allocated. 
- If the server is idle, it can be better to have very few slaves pre-allocated. 
- Some servers (Apache) adjust the level of concurrency according to service demand. 

  
Delayed Allocation 
  

- Rather than immediately forking, the master can quickly examine a request. 
- It may be faster for some requests to handle them in the master rather than forking. 
- Longer requests may be more appropriate to handle in a child process. 
- If it is hard to quickly estimate processing time, the server can set a timer to expire after a small time 

and then fork to let a child finish the request. 
  
Client Concurrency 
  

- Shorter Response Time. 
- Increased Throughput. 
- Concurrency Allows Better Control. 
- Communicating with Multiple Servers. 
- Achieving Concurrency with a Single Client Process. 

  
------------------------Program Examples---------------------- 

  
DNS 
  

- DNS stands for "Domain Name System" (for Windows implementation it is called Domain Name 
Service).  For socket it has three major components: 

  
▪         Domain name space and resource records: Specifications for a tree-structured name space and the 

data associated with the names. 
▪         Name servers: Server programs that hold information about the domain tree structure and that set 

information. 
▪         Resolvers: Programs that extract information from name servers in response to client requests. 

  
- DNS used to translate the IP address to domain name and vice versa.  This way, when someone enters: 

  
telnet serv.google.com 

  
- telnet can find out that it needs to connect() to let say, "198.137.240.92".  To get these 

information we can use gethostbyname(): 
  

#include <netdb.h> 
  
struct hostent *gethostbyname(const char *name); 

  
- As you see, it returns a pointer to a struct hostent, and struct hostent is shown below: 

  
struct hostent 
{ 
char  *h_name; 
char  **h_aliases  ;
int   h_addrtype; 
int   h_length; 
char  **h_addr_list; 
}  ;
  
#define h_addr h_addr_list[0] 

  
- And the descriptions: 

www.tenouk.com



  
Member Description 

h_name Official name of the host. 
h_aliases A NULL-terminated array of alternate names for the host. 
h_addrtype The type of address being returned; usually AF_INET. 
h_length The length of the address in bytes. 

h_addr_list A zero-terminated array of network addresses for the host. Host 
addresses are in Network Byte Order. 

h_addr The first address in h_addr_list. 
  

Table 40.1 
  

- gethostbyname() returns a pointer to the filled struct hostent, or NULL on error but errno 
is not set, h_errno is set instead. 

- As said before in implementation we use Domain Name Service in Windows and BIND in Unix/Linux.  
Here, we configure the Forward Lookup Zone for name to IP resolution and Reverse Lookup Zone for 
the reverse. 

- The following is a program example using the gethostname(). 
  

/*****getipaddr.c ******/ 
/****a hostname lookup program example******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <netdb.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h  >
#include <arpa/inet.h> 
  
int main(int argc, char *argv[]) 
{ 
struct hostent *h; 
  
/*error check the command line*/ 
if(argc != 2) 
{ 
fprintf(stderr, "Usage: %s <domain_name>\n", argv[0]); 
exit(1); 
} 
  
/*get the host info*/ 
if((h=gethostbyname(argv[1])) == NULL) 
{ 
herror("gethostbyname(): "); 
exit(1); 
} 
else 
printf("gethostbyname() is OK.\n"); 
  
printf("The host name is: %s\n", h->h_name); 
printf("The IP Address is: %s\n", inet_ntoa(*((struct in_addr *)h->h_addr))); 
printf("The address length is: %d\n", h->h_length); 
  
printf("Sniffing other names...sniff...sniff...sniff...\n"); 
int j = 0; 
d  o
{ 
printf("An alias #%d is: %s\n", j, h->h_aliases[j]); 
j++; 
} 
while(h->h_aliases[j] != NULL); 
  
printf("Sniffing other IPs...sniff....sniff...sniff...\n"); 
int i = 0; 
do 
{ 
printf("Address #%i is: %s\n", i, inet_ntoa(*((struct in_addr *)(h->h_addr_list[i])))); 
i++; 
} 
while(h->h_addr_list[i] != NULL); 
return 0; 
} 

  

www.tenouk.com



- Compile and link the program. 
  

[bodo@bakawali testsocket]$ gcc -g getipaddr.c -o getipaddr 
  

- Run the program.  Because of the server used in this testing is using public IP address, we can test it 
querying the public domain such as www.yahoo.com :o). 

  
[bodo@bakawali testsocket]$ ./getipaddr www.yahoo.com 
The host name is: www.yahoo.akadns.net 
The IP Address is: 66.94.230.50 
The address length is: 4 
Sniffing other names...sniff...sniff...sniff... 
An alias #0 is: www.yahoo.com 
Sniffing other IPs...sniff....sniff...sniff... 
Address #0 is: 66.94.230.50 
Address #1 is: 66.94.230.36 
Address #2 is: 66.94.230.41 
Address #3 is: 66.94.230.34 
Address #4 is: 66.94.230.47 
Address #5 is: 66.94.230.32 
Address #6 is: 66.94.230.35 
Address #7 is: 66.94.230.45 

  
- Again, running the program testing another domain. 

  
[bodo@bakawali testsocket]$ ./getipaddr www.google.com 
The host name is: www.l.google.com 
The IP Address is: 66.102.7.104 
The address length is: 4 
Sniffing other names...sniff...sniff...sniff... 
An alias #0 is: www.google.com 
Sniffing other IPs...sniff....sniff...sniff... 
Address #0 is: 66.102.7.104 
Address #1 is: 66.102.7.99 
Address #2 is: 66.102.7.147 
[bodo@bakawali testsocket]$ 

  
- With gethostbyname(), you can’t use perror() to print error message since errno is not used 

instead, call herror(). 
- You simply pass the string that contains the machine name ("www.google.com") to 

gethostbyname(), and then grab the information out of the returned struct hostent. 
- The only possible weirdness might be in the printing of the IP address.  Here, h->h_addr is a 

char*, but inet_ntoa() wants a struct in_addr passed to it.  So we need to cast h-
>h_addr to a struct in_addr*, then dereference it to get the data. 

  
Some Client-Server Background 
  

- Just about everything on the network deals with client processes talking to server processes and vice-
versa.  For example take a telnet. 

- When you telnet to a remote host on port 23 at client, a program on that server normally called 
telnetd (telnet daemon), will respond.  It handles the incoming telnet connection, sets you up with a 
login prompt, etc.  In Windows this daemon normally called a service.  The daemon or service must be 
running in order to do the communication. 

- Note that the client-server pair can communicate using SOCK_STREAM, SOCK_DGRAM, or anything 
else (as long as they’re using the same protocol).  Some good examples of client-server pairs are 
telnet/telnetd, ftp/ftpd, or bootp/bootpd. Every time you use ftp, there’s a remote 
program, ftpd that will serve you. 

- Often, there will only be one server, and that server will handle multiple clients using fork() etc. The 
basic routine is: server will wait for a connection, accept() it and fork() a child process to handle 
it.  The following program example is what our sample server does. 

  
A Simple Stream Server Program Example 
  

- What this server does is send the string "This is a test string from server!" out over a 
stream connection. 

www.tenouk.com



- To test this server, run it in one window and telnet to it from another window or run it in a server and 
telnet to it from another machine with the following command. 

  
telnet the_remote_hostname 3490 

  
- Where the_remote_hostname is the name of the machine you’re running it on.  The following is 

the server source code: 
  

/*serverprog.c - a stream socket server demo*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h  >
#include <arpa/inet.h  >
#include <sys/wait.h> 
#include <signal.h> 
  
/* the port users will be connecting to */ 
#define MYPORT 3490 
/* how many pending connections queue will hold */ 
#define BACKLOG 10  
  
void sigchld_handler(int s) 
{ 
while(wait(NULL) > 0); 
} 
  
int main(int argc, char *argv[]) 
{ 
/*listen on sock_fd, new connection on new_fd*/ 
int sockfd, new_fd; 
/*my address information*/ 
struct sockaddr_in my_addr; 
/*connector’s address information*/ 
struct sockaddr_in their_addr; 
int sin_size; 
struct sigaction sa; 
int yes = 1; 
  
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
{ 
perror("Server-socket() error lol!"); 
exit(1); 
} 
else 
printf("Server-socket() sockfd is OK...\n"); 
  
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1) 
{ 
perror("Server-setsockopt() error lol!"); 
exit(1); 
} 
else 
printf("Server-setsockopt is OK...\n"); 
  
/* host byte order*/ 
my_addr.sin_family = AF_INET; 
/* short, network byte order*/ 
my_addr.sin_port = htons(MYPORT); 
/* automatically fill with my IP*/ 
my_addr.sin_addr.s_addr = INADDR_ANY; 
  
printf("Server-Using %s and port %d...\n", inet_ntoa(my_addr.sin_addr), MYPORT); 
  
/* zero the rest of the struct*/ 
memset(&(my_addr.sin_zero), '\0', 8); 
  
if(bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1) 
{ 
perror("Server-bind() error"); 
exit(1); 
} 
else 
printf("Server-bind() is OK...\n"); 

www.tenouk.com



  
if(listen(sockfd, BACKLOG) == -1) 
{ 
perror("Server-listen() error"); 
exit(1); 
} 
printf("Server-listen() is OK...Listening...\n"); 
  
/*clean all the dead processes*/ 
sa.sa_handler = sigchld_handler; 
sigemptyset(&sa.sa_mask); 
sa.sa_flags = SA_RESTART; 
  
if(sigaction(SIGCHLD, &sa, NULL) == -1) 
{ 
perror("Server-sigaction() error"); 
exit(1); 
} 
else 
printf("Server-sigaction() is OK...\n"); 
  
/*accept() loop*/ 
while(1) 
{ 
sin_size = sizeof(struct sockaddr_in); 
if((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size)) == -1) 
{ 
perror("Server-accept() error"); 
continue; 
} 
else 
printf("Server-accept() is OK...\n"); 
printf("Server-new socket, new_fd is OK...\n"); 
printf("Server: Got connection from %s\n", inet_ntoa(their_addr.sin_addr)); 
  
/* this is the child process */ 
if(!fork()) 
{ 
/* child doesn’t need the listener */ 
close(sockfd); 
  
if(send(new_fd, "This is a test string from server!\n", 37, 0) == -1) 
perror("Server-send() error lol!"); 
close(new_fd); 
exit(0); 
} 
else 
printf("Server-send is OK...!\n"); 
  
/* parent doesn’t need this*/ 
close(new_fd); 
printf("Server-new socket, new_fd closed successfully...\n"); 
} 
return 0; 
} 

  
- Compile and link the program. 

  
[bodo@bakawali testsocket]$ gcc -g serverprog.c -o serverprog 

  
- Run the program. 

  
[bodo@bakawali testsocket]$ ./serverprog 
Server-socket() sockfd is OK... 
Server-setsockopt() is OK... 
Server-Using 0.0.0.0 and port 3490... 
Server-bind() is OK... 
Server-listen() is OK...Listening... 
Server-sigaction() is OK... 
  
[1]+  Stopped                 ./serverprog 

  
[bodo@bakawali testsocket]$ 

  
- Verify that the program is running in the background.  You may do this from another terminal. 

  

www.tenouk.com



[bodo@bakawali testsocket]$ bg 
[1]+ ./serverprog & 

  
- Verify that the program/process is listening on the specified port, waiting for connection. 

  
[bodo@bakawali testsocket]$ netstat -a | grep 3490 
tcp        0      0 *:3490       *:*                 LISTEN 

  
- Again, verify that the program/process is listening, waiting for connection. 

  
[bodo@bakawali testsocket]$ ps aux | grep serverprog 
bodo      2586  0.0  0.2  2940  296 pts/3    S    14:04   0:00 ./serverprog 
bodo      2590  0.0  0.5  5432  660 pts/3    R+   14:04   0:00 grep serverprog 

  
- Then, trying the telnet.  Open another terminal, telnet itself with the specified port number.  Here we 

use the server name, bakawali.  When the string is displayed press the Escape character Ctrl+] ( ^] 
).  Then we have a real telnet session. 

  
[bodo@bakawali testsocket]$ telnet bakawali 3490 
Trying 203.106.93.94... 
Connected to bakawali.jmti.gov.my (203.106.93.94). 
Escape character is '^]'. 
This is the test string from server! 
^] 
telnet> ? 
Commands may be abbreviated.  Commands are: 
  
close           close current connection 
logout          forcibly logout remote user and close the connection 
display         display operating parameters 
mode            try to enter line or character mode ('mode ?' for more) 
open            connect to a site 
quit            exit telnet 
send            transmit special characters ('send ?' for more) 
set             set operating parameters ('set ?' for more) 
unset           unset operating parameters ('unset ?' for more) 
status          print status information 
toggle          toggle operating parameters ('toggle ?' for more) 
slc             change state of special charaters ('slc ?' for more) 
auth            turn on (off) authentication ('auth ?' for more) 
encrypt         turn on (off) encryption ('encrypt ?' for more) 
forward         turn on (off) credential forwarding ('forward ?' for more) 
z               suspend telnet 
!               invoke a subshell 
environ         change environment variables ('environ ?' for more) 
?               print help information 
telnet> 

  
- Type quit to exit the session. 

  
... 
telnet> quit 
Connection closed. 
[bodo@bakawali ~]$ 

  
- If we do not stop the server program/process (Ctrl+Z), at the server terminal the following messages 

should be displayed.  Press Enter  (Carriage Return) key back to the prompt. 
  

[bodo@bakawali testsocket]$ ./serverprog 
Server-socket() sockfd is OK... 
Server-setsockopt() is OK... 
Server-Using 0.0.0.0 and port 3490... 
Server-bind() is OK... 
Server-listen() is OK...Listening... 
Server-sigaction() is OK... 
Server-accept() is OK... 
Server-new socket, new_fd is OK... 
Server: Got connection from 203.106.93.94 
Server-send() is OK...! 
Server-new socket, new_fd closed successfully... 

  
- To stop the process just issue a normal kill command.  Before that verify again. 

  

www.tenouk.com



[bodo@bakawali testsocket]$ netstat -a | grep 3490 
tcp        0      0 *:3490        *:*                  LISTEN 

  
[bodo@bakawali testsocket]$ ps aux | grep ./serverprog 
bodo  3184  0.0  0.2  1384  324 pts/3  S   23:46   0:00 ./serverprog 
bodo  3188  0.0  0.5  3720  652 pts/3  R+  23:48   0:00 grep ./serverprog 

  
[bodo@bakawali testsocket]$ kill -9 3184 
[bodo@bakawali testsocket]$ netstat -a | grep 3490 
[1]+  Killed                  ./serverprog 

  
[bodo@bakawali testsocket]$ 

  
- The server program seems OK.  Next section is a client program, clientprog.c that we will use to 

test our server program, serverprog.c. 
- The sigaction() code is responsible for cleaning the zombie processes that appear as the 

fork()ed child processes.  You will get the message from this server by using the client program 
example presented in the next section. 

  
A Simple Stream Client Program Example 
  

- This client will connect to the host that you specify in the command line, with port 3490.  It will get the 
string that the previous server sends.  The following is the source code. 

  
/*** clientprog.c ****/ 
/*** a stream socket client demo ***/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <netdb.h> 
#include <sys/types.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 
  
//the port client will be connecting to 
#define PORT 3490 
//max number of bytes we can get at once 
#define MAXDATASIZE 300 
  
int main(int argc, char *argv[]) 
{ 
int sockfd, numbytes; 
char buf[MAXDATASIZE]; 
struct hostent *he; 
//connector’s address information 
struct sockaddr_in their_addr; 
  
//if no command line argument supplied 
if(argc != 2) 
{ 
fprintf(stderr, "Client-Usage: %s the_client_hostname\n", argv[0]); 
//just exit 
exit(1); 
} 
  
//get the host info 
if((he=gethostbyname(argv[1])) == NULL) 
{ 
perror("gethostbyname()"); 
exit(1); 
} 
else 
printf("Client-The remote host is: %s\n", argv[1]); 
  
if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
{ 
perror("socket()"); 
exit(1); 
} 
else 
printf("Client-The socket() sockfd is OK...\n"); 
  

www.tenouk.com



//host byte order 
their_addr.sin_family = AF_INET; 
//short, network byte order 
printf("Server-Using %s and port %d...\n", argv[1], PORT); 
their_addr.sin_port = htons(PORT); 
their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
//zero the rest of the struct 
memset(&(their_addr.sin_zero), '\0', 8); 
  
if(connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1) 
{ 
perror("connect()"); 
exit(1); 
} 
else 
printf("Client-The connect() is OK...\n"); 
  
if((numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) 
{ 
perror("recv()"); 
exit(1); 
} 
else 
printf("Client-The recv() is OK...\n"); 
  
buf[numbytes] = '\0'; 
printf("Client-Received: %s", buf); 
  
printf("Client-Closing sockfd\n"); 
close(sockfd); 
return 0; 
} 

  
- Compile and link the program. 

  
[bodo@bakawali testsocket]$ gcc -g clientprog.c -o clientprog 

  
- Run the program without argument. 

  
[bodo@bakawali testsocket]$ ./clientprog 
Client-Usage: ./clientprog the_client_hostname 

  
- Run the program with server IP address or name as an argument.  Here we use IP address. 
- Make sure your previous serverprog program is running.  We will connect using the same server.  

You can try running the server and client program at different machines. 
  

[bodo@bakawali testsocket]$ ./clientprog 203.106.93.94 
… 
[bodo@bakawali testsocket]$ ./clientprog bakawali 
Client-The remote host is: bakawali 
Client-The socket() sockfd is OK... 
Server-Using bakawali and port 3490... 
Client-The connect() is OK... 
Client-The recv() is OK... 
Client-Received: This is the test string from server! 
Client-Closing sockfd  

  
- Verify the connection. 

  
[bodo@bakawali testsocket]$ netstat -a | grep 3490 
tcp        0      0 *:3490           *:*                  LISTEN 
tcp        0      0 bakawali.jmti.gov.my:3490   bakawali.jmti.gov.my:1358   
TIME_WAIT 
[bodo@bakawali testsocket]$ 

  
- At server’s console, we have the following messages. 

  
[bodo@bakawali testsocket]$ ./serverprog 
Server-socket() sockfd is OK... 
Server-setsockopt() is OK... 
Server-Using 0.0.0.0 and port 3490... 

www.tenouk.com



Server-bind() is OK... 
Server-listen() is OK...Listening... 
Server-sigaction() is OK... 
Server-accept() is OK... 
Server-new socket, new_fd is OK... 
Server: Got connection from 203.106.93.94 
Server-send() is OK...! 
Server-new socket, new_fd closed successfully... 

  
- Well, our server and client programs work!  Here we run the server program and let it listens for 

connection.  Then we run the client program.  They got connected! 
- Notice that if you don’t run the server before you run the client, connect() returns "Connection 

refused" message as shown below. 
  

[bodo@bakawali testsocket]$ ./clientprog bakawali 
Client-The remote host is: bakawali 
Client-The socket() sockfd is OK... 
Server-Using bakawali and port 3490... 
connect: Connection refused 

  
Datagram Sockets:  The Connectionless 
  

- The following program examples use the UDP, the connectionless datagram.  The senderprog.c 
(client) is sending a message to receiverprog.c (server) that acts as listener. 

  
/*receiverprog.c - a server, datagram sockets*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
/* the port users will be connecting to */ 
#define MYPORT 4950 
#define MAXBUFLEN 500 
  
int main(int argc, char *argv[]) 
{ 
int sockfd; 
/* my address information *  /
struct sockaddr_in my_addr; 
/* connector’s address information */ 
struct sockaddr_in their_addr; 
int addr_len, numbytes; 
char buf[MAXBUFLEN]; 
  
if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) 
{ 
perror("Server-socket() sockfd error lol!"); 
exit(1); 
} 
else 
printf("Server-socket() sockfd is OK...\n"); 
  
/* host byte order */ 
my_addr.sin_family = AF_INET; 
/* short, network byte order */ 
my_addr.sin_port = htons(MYPORT); 
/* automatically fill with my IP */ 
my_addr.sin_addr.s_addr = INADDR_ANY; 
/* zero the rest of the struct */ 
memset(&(my_addr.sin_zero), '\0', 8); 
  
if(bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1) 
{ 
perror("Server-bind() error lol!"); 
exit(1); 
} 
else 
printf("Server-bind() is OK...\n"); 
  
addr_len = sizeof(struct sockaddr); 

www.tenouk.com



  
if((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1, 0, (struct sockaddr *)&their_addr, 
&addr_len)) == -1) 
{ 
perror("Server-recvfrom() error lol!"); 
/*If something wrong, just exit lol...*/ 
exit(1); 
} 
else 
{ 
printf("Server-Waiting and listening...\n"); 
printf("Server-recvfrom() is OK...\n"); 
} 
  
printf("Server-Got packet from %s\n", inet_ntoa(their_addr.sin_addr)); 
printf("Server-Packet is %d bytes long\n", numbytes); 
buf[numbytes] = '\0'; 
printf("Server-Packet contains \"%s\"\n", buf); 
  
if(close(sockfd) != 0) 
printf("Server-sockfd closing failed!\n"); 
else 
printf("Server-sockfd successfully closed!\n"); 
return 0; 
} 

  
- Compile and link the program. 

  
[bodo@bakawali testsocket]$ gcc -g receiverprog.c -o receiverprog 

  
- Run the program, and then verify that it is running in background, start listening, waiting for 

connection. 
  

[bodo@bakawali testsocket]$ ./receiverprog 
Server-socket() sockfd is OK... 
Server-bind() is OK... 
  
[1]+  Stopped                 ./receiverprog 
[bodo@bakawali testsocket]$ bg 
[1]+ ./receiverprog & 
[bodo@bakawali testsocket]$ netstat -a | grep 4950 
udp        0      0 *:4950                  *:* 
[bodo@bakawali testsocket]$ 

  
- This is UDP server, trying telnet to this server will fail because telnet uses TCP instead of UDP. 

  
[bodo@bakawali testsocket]$ telnet 203.106.93.94 4950 
Trying 203.106.93.94... 
telnet: connect to address 203.106.93.94: Connection refused 
telnet: Unable to connect to remote host: Connection refused 
[bodo@bakawali testsocket]$ 

  
- Notice that in our call to socket() we’re using SOCK_DGRAM.  Also, note that there’s no need to 

listen() or accept().  The following is the source code for senderprog.c (the client). 
  

/*senderprog.c - a client, datagram*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h  >
#include <arpa/inet.h> 
#include <netdb.h> 
/* the port users will be connecting to */ 
#define MYPORT 4950 
  
int main(int argc, char *argv[]) 
{ 
int sockfd; 
/* connector’s address information */ 

www.tenouk.com



struct sockaddr_in their_addr; 
struct hostent *he; 
int numbytes; 
  
if (argc != 3) 
{ 
fprintf(stderr, "Client-Usage: %s <hostname> <message>\n", argv[0]); 
exit(1); 
} 
/* get the host info */ 
if ((he = gethostbyname(argv[1])) == NULL) 
{ 
perror("Client-gethostbyname() error lol!"); 
exit(1); 
} 
else 
printf("Client-gethostname() is OK...\n"); 
  
if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) 
{ 
perror("Client-socket() error lol!"); 
exit(1); 
} 
else 
printf("Client-socket() sockfd is OK...\n"); 
  
/* host byte order */ 
their_addr.sin_family = AF_INET; 
/* short, network byte order */ 
printf("Using port: 4950\n"); 
their_addr.sin_port = htons(MYPORT); 
their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
/* zero the rest of the struct */ 
memset(&(their_addr.sin_zero), '\0', 8); 
  
if((numbytes = sendto(sockfd, argv[2], strlen(argv[2]), 0, (struct sockaddr *)&their_addr, 
sizeof(struct sockaddr))) == -1) 
{ 
perror("Client-sendto() error lol!"); 
exit(1); 
} 
else 
printf("Client-sendto() is OK...\n"); 
  
printf("sent %d bytes to %s\n", numbytes, inet_ntoa(their_addr.sin_addr)); 
  
if (close(sockfd) != 0) 
printf("Client-sockfd closing is failed!\n"); 
else 
printf("Client-sockfd successfully closed!\n"); 
return 0; 
} 

  
- Compile and link the program. 

  
[bodo@bakawali testsocket]$ gcc -g senderprog.c -o senderprog 

  
- Run the program without arguments. 

  
[bodo@bakawali testsocket]$ ./senderprog 
Client-Usage: ./senderprog <hostname> <message> 

  
- Run the program with arguments. 

  
[bodo@bakawali testsocket]$ ./senderprog 203.106.93.94 "Testing UDP datagram message from client" 
Client-gethostname() is OK... 
Client-socket() sockfd is OK... 
Using port: 4950 
Server-Waiting and listening... 
Server-recvfrom() is OK... 
Server-Got packet from 203.106.93.94 
Server-Packet is 42 bytes long 
Server-Packet contains "Testing UDP datagram message from client" 
Server-sockfd successfully closed! 
Client-sendto() is OK... 

www.tenouk.com



sent 42 bytes to 203.106.93.94 
Client-sockfd successfully closed! 
[1]+  Done                    ./receiverprog 
[bodo@bakawali testsocket]$ 

  
- Here, we test the UDP server and the client using the same machine.  Make sure there is no restriction 

such as permission etc. for the user that run the programs. 
- To make it really real, may be you can test these programs by running receiverprog on some 

machine, and then run senderprog on another.  If there is no error, they should communicate. 
- If senderprog calls connect() and specifies the receiverprog’s address then the 

senderprog may only sent to and receive from the address specified by connect(). 
- For this reason, you don’t have to use sendto() and recvfrom(); you can simply use send() 

and recv(). 
  
Blocking 
  

- In a simple word 'block' means sleep but in a standby mode.  You probably noticed that when you run 
receiverprog, previously, it just sits there until a packet arrives. 

- What happened is that it called recvfrom(), there was no data, and so recvfrom() is said to 
"block" (that is, sleep there) until some data arrives.  The socket functions that can block are: 

  
accept() 
read() 
readv() 
recv() 
recvfrom() 
recvmsg() 
send() 
sendmsg() 
sendto() 
write() 
writev() 

  
- The reason they can do this is because they’re allowed to.  When you first create the socket descriptor 

with socket(), the kernel sets it to blocking. 
- If you don’t want a socket to be blocking, you have to make a call to fcntl() something like the 

following: 
  

#include <unistd.h> 
#include <fcntl.h> 
... 
... 
sockfd = socket(AF_INET, SOCK_STREAM, 0); 
fcntl(sockfd, F_SETFL, O_NONBLOCK); 
... 
... 

  
- By setting a socket to non-blocking, you can effectively 'poll' the socket for information.  If you try to 

read from a non-blocking socket and there’s no data there, it’s not allowed to block, it will return -1 
and errno will be set to EWOULDBLOCK. 

- Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait 
looking for data on the socket, you’ll suck up CPU time. 

- A more elegant solution for checking to see if there’s data waiting to be read comes in the following 
section on select(). 

  
Using select() for I/O multiplexing 
  

- One traditional way to write network servers is to have the main server block on accept(), waiting 
for a connection. Once a connection comes in, the server fork()s, then the child process handles the 
connection and the main server is able to service new incoming requests. 

- With select(), instead of having a process for each request, there is usually only one process that 
multiplexes all requests, servicing each request as much as it can. 

- So one main advantage of using select() is that your server will only require a single process to 
handle all requests.  Thus, your server will not need shared memory or synchronization primitives for 
different tasks to communicate. 

www.tenouk.com



- As discussed before we can use the non-blocking sockets’ functions but it is CPU intensive. 
- One major disadvantage of using select(), is that your server cannot act like there's only one client, 

like with a fork()'ing solution.  For example, with a fork()'ing solution, after the server fork()s, 
the child process works with the client as if there was only one client in the universe, the child does not 
have to worry about new incoming connections or the existence of other sockets. 

- With select(), the programming isn't as transparent.  The prototype is as the following: 
#include <sys/time.h> 
#include <sys/types.h> 
#include <unistd.h> 
  
int select(int numfds, fd_set *readfds, fd_set *writefds, fd_set 
*exceptfds, struct timeval *timeout); 

- The function monitors "sets" of file descriptors; in particular readfds, writefds, and 
exceptfds.  If you want to see if you can read from standard input and some socket descriptor, 
sockfd, just add the file descriptors 0 and sockfd to the set readfds. 

- The parameter numfds should be set to the values of the highest file descriptor plus one.  In this 
example, it should be set to sockfd+1, since it is assuredly higher than standard input that is 0. 

- When select() returns, readfds will be modified to reflect which of the file descriptors you have 
selected which is ready for reading.  You can test them with the macro FD_ISSET() listed below. 

- Let see how to manipulate these sets.  Each set is of the type fd_set.  The following macros operate 
on this type: 

  
▪         FD_ZERO(fd_set *set) – clears a file descriptor set. 
▪         FD_SET(int fd, fd_set *set) – adds fd to the set. 
▪         FD_CLR(int fd, fd_set *set) – removes fd from the set. 
▪         FD_ISSET(int fd, fd_set *set) – tests to see if fd is in the set. 

  
- select() works by blocking until something happens on a file descriptor/socket.  The 'something' is 

the data coming in or being able to write to a file descriptor, you tell select() what you want to be 
woken up by.  How do you tell it? You fill up an fd_set structure with some macros. 

- Most select()based servers look quite similar: 
  

▪         Fill up an fd_set structure with the file descriptors you want to know when data comes in on. 
▪         Fill up an fd_set structure with the file descriptors you want to know when you can write on. 
▪         Call select() and block until something happens. 
▪         Once select() returns, check to see if any of your file descriptors was the reason you woke 

up.  If so, 'service' that file descriptor in whatever particular way your server needs to (i.e. read in 
a request for a Web page). 

▪         Repeat this process forever. 
  

- Sometimes you don’t want to wait forever for someone to send you some data.  Maybe every 60 
seconds you want to print something like "Processing..." to the terminal even though nothing has 
happened. 

- The timeval structure allows you to specify a timeout period.  If the time is exceeded and 
select() still hasn’t found any ready file descriptors, it’ll return, so you can continue processing. 

- The struct timeval has the following fields: 
  

struct timeval 
{ 
int tv_sec; /* seconds */ 
int tv_usec; /* microseconds */ 
}; 

  
- Just set tv_sec to the number of seconds to wait, and set tv_usec to the number of microseconds to 

wait.  There are 1,000,000 microseconds in a second.  Also, when the function returns, timeout 
might be updated to show the time still remaining. 

- Standard UNIX time slice is around 100 milliseconds, so you might have to wait that long no matter 
how small you set your struct timeval. 

- If you set the fields in your struct timeval to 0, select() will timeout immediately, 
effectively polling all the file descriptors in your sets.  If you set the parameter timeout to NULL, it 
will never timeout, and will wait until the first file descriptor is ready. 

- Finally, if you don’t care about waiting for a certain set, you can just set it to NULL in the call to 
select(). 

- The following code snippet waits 5.8 seconds for something to appear on standard input. 

www.tenouk.com



  
/*selectcp.c - a select() demo*/ 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <unistd.h> 
/* file descriptor for standard input */ 
#define STDIN 0 
  
int main(int argc, char *argv[]) 
{ 
struct timeval tval; 
fd_set readfds; 
tval.tv_sec = 5; 
tval.tv_usec = 800000; 
  
FD_ZERO(&readfds); 
FD_SET(STDIN, &readfds); 
/* don’t care about writefds and exceptfds: */ 
select(STDIN+1, &readfds, NULL, NULL, &tval); 
if (FD_ISSET(STDIN, &readfds)) 
  printf("A key was pressed lor!\n"); 
else 
  printf("Timed out lor!...\n"); 
return 0; 
} 

  
- Compile and link the program.  Make sure there is no error :o). 

  
[bodo@bakawali testsocket]$ gcc -g selectcp.c -o selectcp 

  
- Run the program and then press k. 

  
[bodo@bakawali testsocket]$ ./selectcp 
k 
A key was pressed lor! 

  
- Run the program and just leave it. 

  
[bodo@bakawali testsocket]$ ./selectcp 
Timed out lor!... 

  
- If you’re on a line buffered terminal, the key you hit should be RETURN or it will time out anyway. 
- Now, some of you might think this is a great way to wait for data on a datagram socket and you are 

right: it might be.  Some Unices can use select() in this manner, and some can’t. You should see 
what your local man page says on the matter if you want to attempt it. 

- Some Unices update the time in your struct timeval to reflect the amount of time still remaining 
before a timeout.  But others do not. Don’t rely on that occurring if you want to be portable.  Use 
gettimeofday() if you need to track time elapsed. 

- When a socket in the read set closes the connection, select() returns with that socket descriptor 
set as "ready to read".  When you actually do recv() from it, recv() will return 0.  That’s how you 
know the client has closed the connection. 

- If you have a socket that is listen()ing, you can check to see if there is a new connection by putting 
that socket’s file descriptor in the readfds set. 

  
…Continue on next Module…More concept and program examples… 
  

-----------------------------------------End socket Part II----------------------------------------- 
www.tenouk.com

  
Further reading and digging: 
  

1. Check the best selling C/C++, Networking, Linux and Open Source books at Amazon.com. 

www.tenouk.com

http://www.tenouk.com/
http://www.tenouk.com/cplusbook.html

