
MODULE 36 
--THE STL-- 

ALGORITHM PART IV 
  
My Training Period:        hours 
  
Note: Compiled using Microsoft Visual C++ .Net, win32 empty console mode application. g++ compilation 
examples given at the end of this Module. 
  
Abilities 
  

▪         Able to understand and use the member functions of the algorithm. 
▪         Appreciate how the usage of the template classes and functions. 
▪         Able to use containers, iterators and algorithm all together. 

  
36.1  Continuation from previous Module… 
  
push_heap() 
  

- Adds an element that is at the end of a range to an existing heap consisting of the prior elements in the 
range. 

  
template<class RandomAccessIterator> 
   void push_heap( 
      RandomAccessIterator _First  , 
      RandomAccessIterator _Last 
   ); 
template<class RandomAccessIterator, class BinaryPredicate> 
   void push_heap( 
      RandomAccessIterator _First  , 
      RandomAccessIterator _Last, 
      BinaryPredicate _Comp 
   ); 

  
Parameters 
  

Parameter Description 
_First  A random-access iterator addressing the position of the first element in the heap.  

_Last  A random-access iterator addressing the position one past the final element in the 
range to be converted into a heap.  

_Comp  
User-defined predicate function object that defines sense in which one element is 
less than another. A binary predicate takes two arguments and returns true when 
satisfied and false when not satisfied.  

  
Table 36.1 

  
- The element must first be pushed back to the end of an existing heap and then the algorithm is used to 

add this element to the existing heap.  Repeat again, heaps have two properties:  
  

▪         The first element is always the largest.  
▪         Elements may be added or removed in logarithmic time.  

  
- Heaps are an ideal way to implement priority queues and they are used in the implementation of the 

STL container adaptor priority_queue Class. 
- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 

last position is reachable from the first by incrementation. 
- The range excluding the newly added element at the end must be a heap. 
- The complexity is logarithmic, requiring at most log (_Last – _First) comparisons. 

  
//algorithm, push_heap() 
//make_heap() 
#include <vector> 
#include <algorithm> 
#include <functional> 
#include <iostream> 
using namespace std; 
  

Page 1 of 32 www.tenouk.com

http://www.tenouk.com/Module000.html


int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 1; i <= 10; i++) 
     vec1.push_back(i); 
    
   random_shuffle(vec1.begin(), vec1.end()); 
  
   cout<<"Given vector vec1 data: "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Make vec1 a heap with default less than ordering 
   cout<<"\nmake_heap()..."<<endl; 
   make_heap(vec1.begin(), vec1.end()); 
   cout<<"The default heaped version of vector vec1:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Add elements to the heap 
   cout<<"\npush_back() some data...\n"; 
   vec1.push_back(11); 
   vec1.push_back(12); 
   cout<<"The new heap vec1 with data pushed back:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   cout<<"\npush_heap()...."<<endl; 
   push_heap(vec1.begin(), vec1.end()); 
   cout<<"The default reheaped vec1 with data added is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Make vec1 a heap with greater than ordering 
   cout<<"\nmake_heap()..."<<endl; 
   make_heap(vec1.begin(), vec1.end(), greater<int>()); 
   cout<<"The greater than heaped version of vec1 data:\n "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
    
   cout<<"\npush_back()..."<<endl; 
   vec1.push_back(0); 
   cout<<"The greater than heap vec1 with 13 pushed back is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
    
   cout<<"\npush_heap()...."<<endl; 
   push_heap(vec1.begin(), vec1.end(), greater<int>()); 
   cout<<"The greater than reheaped vec1 with 13 added is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

Page 2 of 32 www.tenouk.com



 
  
random_shuffle() 
  

- Rearranges a sequence of N elements in a range into one of N! possible arrangements selected at 
random. 

  
template<class RandomAccessIterator> 
   void random_shuffle( 
      RandomAccessIterator _First  , 
      RandomAccessIterator _Last 
   ); 
template<class RandomAccessIterator, class RandomNumberGenerator> 
   void random_shuffle( 
      RandomAccessIterator _First,  
      RandomAccessIterator _Last,  
      RandomNumberGenerator& _Rand 
   ); 

  
Parameters 
  

Parameter Description 

_First  A random-access iterator addressing the position of the first element in the range to 
be rearranged.  

_Last  A random-access iterator addressing the position one past the final element in the 
range to be rearranged. 

_Rand  A special function object called a random number generator.  
  

Table 36.2 
  

- The two versions (refer to the templates) of the function differ in how they generate random numbers. 
- The first version uses an internal random number generator and the second a random number generator 

function object that is explicitly passed and can accept a seed value. 
  

//algorithm, random_shuffle() 
#include <vector> 
#include <algorithm> 
#include <functional> 
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1; 

Page 3 of 32 www.tenouk.com



   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 1; i <= 10; i++) 
     vec1.push_back(i); 
   cout<<"The original of vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
    
   //random shuffle… 
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original of vector vec1 random shuffle data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Shuffled once 
   random_shuffle(vec1.begin(), vec1.end()); 
   push_heap(vec1.begin(), vec1.end()); 
   cout<<"Vector vec1 after reshuffle is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Shuffled again 
   random_shuffle(vec1.begin(), vec1.end()); 
   push_heap(vec1.begin(), vec1.end()); 
   cout<<"Vector vec1 after another reshuffle is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
remove() 
  

- Eliminates a specified value from a given range without disturbing the order of the remaining elements 
and returning the end of a new range free of the specified value. 

  
template<class ForwardIterator, class Type> 
   ForwardIterator remove( 
      ForwardIterator _First,  
      ForwardIterator _Last,  
      const Type& _Val 
   ); 

  
Parameters 
  

Parameter Description 

_First A forward iterator addressing the position of the first element in the range from 
which elements are being removed.  

_Last A forward iterator addressing the position one past the final element in the range 
from which elements are being removed.  

_Val  The value that is to be removed from the range.  
  

Table 36.3 
  

Page 4 of 32 www.tenouk.com



- The return value is a forward iterator addressing the new end position of the modified range, one past 
the final element of the remnant sequence free of the specified value. 

- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 
last position is reachable from the first by incrementation. 

- The order of the elements not removed remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear; there are (_Last – _First) comparisons for equality. 
- The list Class class has a more efficient member function version of remove(), which also re-links 

pointers. 
  

//algorithm, remove() 
#include <vector> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1, new_end; 
  
   int i; 
   for(i = 1; i <= 10; i++) 
   vec1.push_back(i); 
    
   int j; 
   for(j = 0; j <= 2; j++) 
     vec1.push_back(8); 
  
   cout<<"Vector vec1 original data: is\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"Vector vec1 random shuffle data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Remove elements with a value of 8 
   new_end = remove(vec1.begin(), vec1.end(), 8); 
  
   cout<<"Vector vec1 data with value 8 removed is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //using erase, to change the sequence size 
   vec1.erase(new_end, vec1.end()); 
  
   cout<<"Vector vec1 resized data with value 8 removed is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
remove_copy() 

Page 5 of 32 www.tenouk.com



  
- Copies elements from a source range to a destination range, except that elements of a specified value 

are not copied, without disturbing the order of the remaining elements and returning the end of a new 
destination range. 

  
template<class InputIterator, class OutputIterator, class Type> 
   OutputIterator remove_copy( 
      InputIterator _First,  
      InputIterator _Last,  
      OutputIterator _Result, 
      const Type& _Val 
   ); 

  
Parameters 
  

Parameter Description 

_First  An input iterator addressing the position of the first element in the range from 
which elements are being removed.  

_Last  An input iterator addressing the position one past the final element in the range 
from which elements are being removed.  

_Result  An output iterator addressing the position of the first element in the destination 
range to which elements are being removed.  

_Val  The value that is to be removed from the range. 
  

Table 36.4 
  

- The return value is a forward iterator addressing the new end position of the destination range, one past 
the final element of the copy of the remnant sequence free of the specified value. 

- The source and destination ranges referenced must be valid; all pointers must be de-referenceable and 
within the sequence the last position is reachable from the first by incrementation. 

- There must be enough space in the destination range to contain the remnant elements that will be 
copied after elements of the specified value are removed. 

- The order of the elements not removed remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear; there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments. 
  

//algorithm, remove_copy() 
#include <vector> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1, vec2(10); 
   vector <int>::iterator Iter1, Iter2, new_end; 
  
   int i; 
   for(i = 0; i <= 10; i++) 
     vec1.push_back(i); 
    
   int j; 
   for(j = 0; j <= 2; j++) 
     vec1.push_back(5); 
  
   cout<<"The original vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original random shuffle vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Remove elements with a value of 5 
   new_end = remove_copy(vec1.begin(), vec1.end(), vec2.begin(), 5); 
  

Page 6 of 32 www.tenouk.com



   cout<<"Vector vec1 is left unchanged as:\n";  
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   cout<<"Vector vec2 is a copy of vec1 with the value 5 removed:\n"; 
   for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++) 
      cout<<*Iter2<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
remove_copy_if() 
  

- Copies elements from a source range to a destination range, except that satisfying a predicate are not 
copied, without disturbing the order of the remaining elements and returning the end of a new 
destination range. 

  
template<class InputIterator, class OutputIterator, class Predicate> 
   OutputIterator remove_copy_if( 
      InputIterator _First,  
      InputIterator _Last,  
      OutputIterator _Result, 
      Predicate _Pred 
   ); 

  
Parameters 
  

Parameter Description 

_First  An input iterator addressing the position of the first element in the range 
from which elements are being removed.  

_Last  An input iterator addressing the position one past the final element in the 
range from which elements are being removed.  

_Result  An output iterator addressing the position of the first element in the 
destination range to which elements are being removed.  

_Pred  The unary predicate that must be satisfied is the value of an element is to be 
replaced.  

  
Table 36.5 

  
- The return value is a forward iterator addressing the new end position of the destination range, one past 

the final element of the remnant sequence free of the elements satisfying the predicate. 
- The source range referenced must be valid; all pointers must be de-referenceable and within the 

sequence the last position is reachable from the first by incrementation. 
- There must be enough space in the destination range to contain the remnant elements that will be 

copied after elements of the specified value are removed. 
- The order of the elements not removed remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear: there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments. 
  

//algorithm, remove_copy_if() 
#include <vector> 

Page 7 of 32 www.tenouk.com



#include <algorithm  >
#include <iostream> 
using namespace std; 
  
bool greathan(int value) 
{ return value >7;} 
  
int main() 
{ 
   vector <int> vec1, vec2(14); 
   vector <int>::iterator Iter1, Iter2, new_end; 
  
   int i; 
   for(i = 0; i <= 10; i++) 
    vec1.push_back(i); 
    
   int j; 
   for(j = 0; j <= 2; j++) 
    vec1.push_back(5); 
    
   cout<<"The original vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original random shuffle vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Remove elements with a value greater than 7 
   new_end = remove_copy_if(vec1.begin(), vec1.end(),  
      vec2.begin(), greathan); 
  
   cout<<"After the remove_copy_if() the vector,\n" 
        <<" vec1 is left unchanged as "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   cout<<"Vector vec2 is a copy of vec1 with values greater " 
        <<"than 7 removed:\n"; 
   for(Iter2 = vec2.begin(); Iter2 != new_end; Iter2++) 
      cout<<*Iter2<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
remove_if() 
  

- Eliminates elements that satisfy a predicate from a given range without disturbing the order of the 
remaining elements and returning the end of a new range free of the specified value. 

  
template<class ForwardIterator, class Predicate> 
   ForwardIterator remove( 
      ForwardIterator _First  , 
      ForwardIterator _Last,  
      Predicate _Pred 
   ); 

  
Parameters 

Page 8 of 32 www.tenouk.com



  
Parameter Description 

_First  A forward iterator pointing to the position of the first element in the range 
from which elements are being removed.  

_Last  A forward iterator pointing to the position one past the final element in the 
range from which elements are being removed.  

_Pred  The unary predicate that must be satisfied is the value of an element is to 
be replaced.  

  
Table 36.6 

  
- The return value is a forward iterator addressing the new end position of the modified range, one past 

the final element of the remnant sequence free of the specified value. 
- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 

last position is reachable from the first by incrementation. 
- The order of the elements not removed remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear: there are (_Last – _First) comparisons for equality. 
- List has a more efficient member function version of remove which re-links pointers. 

  
//algorithm, remove_if() 
#include <vector> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
bool greathan(int value) 
{return value >5;} 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1, new_end; 
  
   int i; 
   for(i = 0; i <= 9; i++) 
     vec1.push_back(i); 
    
   int j; 
   for(j = 0; j <= 2; j++) 
     vec1.push_back(4); 
  
   cout<<"Original vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
    
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"Random shuffle vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Remove elements satisfying predicate greater than 
   new_end = remove_if(vec1.begin(), vec1.end(), greathan); 
  
   cout<<"Vector vec1 with elements greater than 5 removed is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //using erase, to change the sequence size, 
   vec1.erase(new_end, vec1.end()); 
  
   cout<<"Vector vec1 resized elements greater than 5 removed is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

Page 9 of 32 www.tenouk.com



 
  
replace() 
  

- Examines each element in a range and replaces it if it matches a specified value. 
  

template<class ForwardIterator, class Type> 
   void replace( 
      ForwardIterator _First,  
      ForwardIterator _Last, 
      const Type& _OldVal  , 
      const Type& _NewVal 
   ); 

  
Parameters 
  

Parameter Description 

_First  A forward iterator pointing to the position of the first element in the range from 
which elements are being replaced.  

_Last  A forward iterator pointing to the position one past the final element in the range 
from which elements are being replaced.  

_OldVal  The old value of the elements being replaced.  
_NewVal  The new value being assigned to the elements with the old value.  

  
Table 36.7 

  
- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 

last position is reachable from the first by incrementation. 
- The order of the elements not replaced remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear; there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments of new values. 
  

//algorithm, replace() 
#include <vector> 
#include <algorithm> 
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 0; i <= 9; i++) 
   vec1.push_back(i); 
    
   int j; 
   for(j = 0; j <= 2; j++) 
   vec1.push_back(5); 
       
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original random shuffle vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements with other values… 

Page 10 of 32 www.tenouk.com



   replace (vec1.begin( ), vec1.end( ), 3, 23); 
   replace (vec1.begin( ), vec1.end( ), 7, 77); 
   replace (vec1.begin( ), vec1.end( ), 0, 21); 
  
   cout<<"The vector vec1 data with values replacement of 0, 3, 7 is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
replace_copy() 
  

- Examines each element in a source range and replaces it if it matches a specified value while copying 
the result into a new destination range. 

  
template<class InputIterator, class OutputIterator, class Type> 
   OutputIterator replace_copy( 
      InputIterator _First,   
      InputIterator _Last,  
      OutputIterator _Result  ,
      const Type& _OldVal  , 
      const Type& _NewVal 
   ); 

  
Parameters 
  

Parameter Description 

_First  An input iterator pointing to the position of the first element in the range from which 
elements are being replaced.  

_Last  An input iterator pointing to the position one past the final element in the range from 
which elements are being replaced. 

_Result  An output iterator pointing to the first element in the destination range to where the 
altered sequence of elements is being copied.  

_OldVal  The old value of the elements being replaced.  
_NewVal  The new value being assigned to the elements with the old value.  

  
Table 36.8 

  
- The value return is an output iterator pointing to the position one past the final element in the 

destination range to where the altered sequence of elements is being copied. 
- The source and destination ranges referenced must not overlap and must both be valid: all pointers 

must be de-referenceable and within the sequences the last position is reachable from the first by 
incrementation. 

- The order of the elements not replaced remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear: there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments of new values. 
  

//algorithm, replace_copy() 
#include <vector> 
#include <list> 
#include <algorithm> 
#include <iostream> 
using namespace std; 
  
int main() 

Page 11 of 32 www.tenouk.com



{ 
   vector <int> vec1; 
   list <int> lst1 (15); 
   vector <int>::iterator Iter1; 
   list <int>::iterator lstIter; 
  
   int i; 
   for (i = 0; i <= 9; i++) 
     vec1.push_back(i); 
    
   int j; 
   for (j = 0; j <= 3; j++) 
     vec1.push_back(7); 
      
   cout<<"The original vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   random_shuffle(vec1.begin(), vec1.end()); 
   int k; 
   for (k = 0; k <= 15; k++) 
     vec1.push_back(1); 
    
   cout<<"The original random shuffle vector vec1 with appended data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements in one part of a vector with a value of 7 
   //with a value of 70 and copy into another part of the vector 
   replace_copy(vec1.begin(), vec1.begin() + 14, vec1.end( )-15, 7, 70); 
  
   cout<<"The vector vec1 data with a replacement value of 7 is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements in a vector of a value 70 
   //with a value of 1 and copy into a list 
   replace_copy(vec1.begin(), vec1.begin() + 14, lst1.begin(), 70, 1); 
  
   cout<<"The list copy lst1 of vec1 with the value 0 replacing the 7 is:\n"; 
   for(lstIter = lst1.begin(); lstIter != lst1.end(); lstIter++) 
      cout<<*lstIter<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
replace_copy_if() 
  

- Examines each element in a source range and replaces it if it satisfies a specified predicate while 
copying the result into a new destination range. 

  
template<class InputIterator, class OutputIterator, class Predicate, class Type> 
   OutputIterator replace_copy_if( 
      InputIterator _First,  
      InputIterator _Last,  
      OutputIterator _Result,  
      Predicate _Pred,  
      const Type& _Val 
   ); 

Page 12 of 32 www.tenouk.com



  
Parameters 
  

Parameter Description 

_First An input iterator pointing to the position of the first element in the range 
from which elements are being replaced.  

_Last  An input iterator pointing to the position one past the final element in the 
range from which elements are being replaced.  

_Result An output iterator pointing to the position of the first element in the 
destination range to which elements are being copied.  

_Pred  The unary predicate that must be satisfied is the value of an element is to 
be replaced.  

_Val  The new value being assigned to the elements whose old value satisfies 
the predicate.  

  
Table 36.9 

  
- The source and destination ranges referenced must not overlap and must both be valid: all pointers 

must be de-referenceable and within the sequences the last position is reachable from the first by 
incrementation. 

- The order of the elements not replaced remains stable. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear; there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments of new values. 
  

//algorithm, replace_copy_if() 
#include <vector> 
#include <list> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
bool greaterthan(int value) 
{return value > 5;} 
  
int main() 
{ 
   vector <int> vec1; 
   list <int> lst1 (13); 
   vector <int>::iterator Iter1; 
   list <int>::iterator lstIter1; 
  
   int i; 
   for (i = 0; i <= 9; i++) 
     vec1.push_back(i); 
      int j; 
   for (j = 0; j <= 3; j++) 
     vec1.push_back(7); 
    
   cout<<"The original vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   random_shuffle(vec1.begin(), vec1.end()); 
  
   int k; 
   for(k = 0; k <= 13; k++) 
     vec1.push_back(3); 
  
   cout<<"The original random shuffle vector vec1 data with appended data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements with a value of 7 in the 1st half of a vector 
   //with a value of 72 and copy it into the 2nd half of the vector 
   replace_copy_if(vec1.begin(), vec1.begin() + 14, vec1.end() -14, greaterthan, 72); 
  
   cout<<"The vector vec1 with values of 72 replacing those greater" 
       <<"\n than 5 in the 1st half & copied into the 2nd half is:\n"; 

Page 13 of 32 www.tenouk.com



   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements in a vector with a value of 72 
   //with a value of -8 and copy into a list 
   replace_copy_if(vec1.begin(), vec1.begin() + 13, lst1.begin(), greaterthan, -8); 
  
   cout<<"A list copy of vector vec1 with the value -8\n replacing " 
        <<"those greater than 5 is:\n"; 
   for(lstIter1 = lst1.begin(); lstIter1 != lst1.end(); lstIter1++) 
      cout<<*lstIter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
replace_if() 
  

- Examines each element in a range and replaces it if it satisfies a specified predicate. 
  

template<class ForwardIterator, class Predicate, class Type> 
   void replace_if( 
      ForwardIterator _First  , 
      ForwardIterator _Last, 
      Predicate _Pred,   
      const Type& _Val 
   ); 

  
Parameters 
  

Parameter Description 

_First  A forward iterator pointing to the position of the first element in the range from 
which elements are being replaced.  

_Last  An iterator pointing to the position one past the final element in the range from 
which elements are being replaced.  

_Pred  The unary predicate that must be satisfied is the value of an element is to be 
replaced.  

_Val  The new value being assigned to the elements whose old value satisfies the 
predicate.  

  
Table 36.10 

  
- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 

last position is reachable from the first by incrementation. 
- The order of the elements not replaced remains stable. 
- The algorithm replace_if() is a generalization of the algorithm replace(), allowing any 

predicate to be specified, rather than equality to a specified constant value. 
- The operator== used to determine the equality between elements must impose an equivalence 

relation between its operands. 
- The complexity is linear: there are (_Last – _First) comparisons for equality and at most 

(_Last – _First) assignments of new values. 
  

//algorithm, replace_if() 

Page 14 of 32 www.tenouk.com



#include <vector> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
bool greaterthan(int value) 
{return value > 4;} 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for (i = 1; i <= 10; i++) 
     vec1.push_back(i); 
    
   int j; 
   for (j = 0; j <= 2; j++) 
      vec1.push_back(8); 
       
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original random shuffle vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Replace elements satisfying the predicate greaterthan 
   //with a value of 21 
   replace_if(vec1.begin(), vec1.end(), greaterthan, 21); 
  
   cout<<"The vector vec1 with a value 21 replacing those\n " 
       <<"elements satisfying the greater than 4 predicate is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
reverse() 
  

- Reverses the order of the elements within a range. 
  

template<class BidirectionalIterator> 
   void reverse( 
      BidirectionalIterator _First  , 
      BidirectionalIterator _Last 
   ); 

  
Parameters 
  

Parameter Description 

_First  A bidirectional iterator pointing to the position of the first element in the range 
within which the elements are being permuted.  

_Last  A bidirectional iterator pointing to the position one past the final element in the 
range within which the elements are being permuted.  

  
Table 36.11 

  
- The source range referenced must be valid; all pointers must be de-referenceable and within the 

sequence the last position is reachable from the first by incrementation. 
  

Page 15 of 32 www.tenouk.com



//algorithm, reverse() 
#include <vector> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 11; i <= 20; i++) 
      vec1.push_back(i); 
    
   cout<<"The original vector vec1 is:\n "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Reverse the elements in the vector  
   reverse(vec1.begin(), vec1.end()); 
  
   cout<<"The vector vec1 data with values reversed is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
reverse_copy() 
  

- Reverses the order of the elements within a source range while copying them into a destination range 
  

template<class BidirectionalIterator, class OutputIterator> 
   OutputIterator reverse_copy( 
      BidirectionalIterator _First,  
      BidirectionalIterator _Last,  
      OutputIterator _Result 
   ); 

  
Parameters 
  

Parameter Description 

_First  A bidirectional iterator pointing to the position of the first element in the source 
range within which the elements are being permuted.  

_Last  A bidirectional iterator pointing to the position one past the final element in the 
source range within which the elements are being permuted.  

_Result  An output iterator pointing to the position of the first element in the destination 
range to which elements are being copied.  

  
Table 36.12 

  
- The return value is an output iterator pointing to the position one past the final element in the 

destination range to where the altered sequence of elements is being copied. 
- The source and destination ranges referenced must be valid; all pointers must be de-referenceable and 

within the sequence the last position is reachable from the first by incrementation. 
  

//algorithm, reverse_copy() 
#include <vector> 
#include <algorithm> 

Page 16 of 32 www.tenouk.com



#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1, vec2(11); 
   vector <int>::iterator Iter1, Iter2; 
  
   int i; 
   for(i = 10; i <= 20; i++) 
      vec1.push_back(i); 
    
   cout<<"The original vector vec1 data is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Reverse the elements in the vector  
   reverse_copy(vec1.begin(), vec1.end(), vec2.begin()); 
  
   cout<<"The copy vec2 data of the reversed vector vec1 is:\n"; 
   for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++) 
      cout<<*Iter2<<" "; 
   cout<<endl; 
  
   cout<<"The original vector vec1 unmodified as:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
} 

  
Output: 

  

 
  
rotate() 
  

- Exchanges the elements in two adjacent ranges. 
  

template<class ForwardIterator> 
   void rotate( 
      ForwardIterator _First,  
      ForwardIterator _Middle,  
      ForwardIterator _Last 
   ); 

  
Parameters 
  

Parameter Description 

_First  A forward iterator addressing the position of the first element in the range to be 
rotated. 

_Middle  
A forward iterator defining the boundary within the range that addresses the position 
of the first element in the second part of the range whose elements are to be 
exchanged with those in the first part of the range.  

_Last  A forward iterator addressing the position one past the final element in the range to 
be rotated. 

  
Table 36.13 

  
- The ranges referenced must be valid; all pointers must be de-referenceable and within the sequence the 

last position is reachable from the first by incrementation. 
- The complexity is linear with at most (_Last – _First) swaps. 

Page 17 of 32 www.tenouk.com



  
//algorithm, rotate() 
#include <vector> 
#include <deque> 
#include <algorithm> 
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1  ;
   deque <int> deq1; 
   vector <int>::iterator vec1Iter1; 
   deque<int>::iterator deq1Iter1; 
  
   int i; 
   for(i = -4; i <= 4; i++) 
      vec1.push_back(i); 
    
   int j; 
   for(j = -3; j <= 3; j++) 
     deq1.push_back(j); 
    
   cout<<"Vector vec1 data is: "; 
   for(vec1Iter1 = vec1.begin(); vec1Iter1 != vec1.end(); vec1Iter1++) 
      cout<<*vec1Iter1 <<" "; 
   cout<<endl; 
  
   //Let rotates... 
   rotate(vec1.begin(), vec1.begin() + 3, vec1.end()); 
   cout<<"After rotating, vector vec1 data is: "; 
   for(vec1Iter1 = vec1.begin(); vec1Iter1 != vec1.end(); vec1Iter1++) 
      cout<<*vec1Iter1<<" "; 
   cout<<endl; 
  
   cout<<"\nThe original deque deq1 is: "; 
   for(deq1Iter1 = deq1.begin(); deq1Iter1 != deq1.end(); deq1Iter1++) 
      cout<<*deq1Iter1<<" "; 
   cout<<endl; 
  
   //Let rotates… 
   int k = 1; 
   while(k <= deq1.end() - deq1.begin()) 
   { 
      rotate(deq1.begin(), deq1.begin() + 1, deq1.end()); 
  cout<<"Rotation of a single deque element to the back,\n deq1 is: "; 
      for(deq1Iter1 = deq1.begin(); deq1Iter1 != deq1.end(); deq1Iter1++) 
         cout<<*deq1Iter1<<" "; 
      cout<<endl; 
      k++; 
   } 
} 

  
Output: 

  

 

Page 18 of 32 www.tenouk.com



  
rotate_copy() 
  

- Exchanges the elements in two adjacent ranges within a source range and copies the result to a 
destination range. 

  
template<class ForwardIterator, class OutputIterator> 
   OutputIterator rotate_copy( 
      ForwardIterator _First,  
      ForwardIterator _Middle  ,
      ForwardIterator _Last,   
      OutputIterator _Result 
   ); 

  
Parameters 
  

Parameter Description 

_First A forward iterator addressing the position of the first element in the range to be 
rotated. 

_Middle 
A forward iterator defining the boundary within the range that addresses the position 
of the first element in the second part of the range whose elements are to be 
exchanged with those in the first part of the range.  

_Last A forward iterator addressing the position one past the final element in the range to be 
rotated. 

_Result An output iterator addressing the position of the first element in the destination range.  
  

Table 36.14 
  

- The return value is an output iterator addressing the position one past the final element in the 
destination range. 

- The ranges referenced must be valid; all pointers must be dereferenceable and within the sequence the 
last position is reachable from the first by incrementation. 

- The complexity is linear with at most (_Last – _First) swaps. 
  

//algorithm, rotate_copy() 
#include <vector  >
#include <deque> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1, vec2(9); 
   deque <int> deq1, deq2(6); 
   vector <int>::iterator vec1Iter, vec2Iter; 
   deque<int>::iterator deq1Iter, deq2Iter; 
  
   int i; 
   for(i = -3; i <= 5; i++) 
     vec1.push_back(i); 
    
   int j; 
   for(j =0; j <= 5; j++) 
     deq1.push_back(j); 
    
   cout<<"Vector vec1 data is: "; 
   for(vec1Iter = vec1.begin(); vec1Iter != vec1.end(); vec1Iter++) 
      cout<<*vec1Iter<<" "; 
   cout<<endl; 
  
   rotate_copy(vec1.begin(), vec1.begin() + 3, vec1.end(), vec2.begin()); 
   cout<<"\nAfter rotating, the vector vec1 data remains unchanged as:\n"; 
   for(vec1Iter = vec1.begin(); vec1Iter != vec1.end(); vec1Iter++) 
      cout<<*vec1Iter<<" "; 
   cout<<endl; 
  
   cout<<"\nAfter rotating, the copy of vector vec1 in vec2 is,\n vec2:"; 
   for(vec2Iter = vec2.begin(); vec2Iter != vec2.end(); vec2Iter++) 
      cout<<*vec2Iter<<" "; 
   cout<<endl; 
  

Page 19 of 32 www.tenouk.com



   cout<<"\nThe original deque deq1 is: "; 
   for(deq1Iter = deq1.begin(); deq1Iter != deq1.end(); deq1Iter++) 
      cout<<*deq1Iter<<" "; 
   cout<<endl; 
  
   int k = 1; 
   while(k <= deq1.end() - deq1.begin()) 
   { 
      rotate_copy(deq1.begin(), deq1.begin() + 1, deq1.end(), deq2.begin()); 
  cout<<"Rotation of a single deque element to the back,\n a deque copy, deq2 is: "; 
      for(deq2Iter = deq2.begin(); deq2Iter != deq2.end(); deq2Iter++) 
         cout<<*deq2Iter<<" "; 
      cout<<endl; 
      k++; 
   } 
} 

  
Output: 

  

 
  
search() 
  

- Searches for the first occurrence of a sequence within a target range whose elements are equal to those 
in a given sequence of elements or whose elements are equivalent in a sense specified by a binary 
predicate to the elements in the given sequence. 

  
template<class ForwardIterator1, class ForwardIterator2> 
   ForwardIterator1 search( 
      ForwardIterator1 _First1  , 
      ForwardIterator1 _Last1, 
      ForwardIterator2 _First2  , 
      ForwardIterator2 _Last2 
   ); 
template<class ForwardIterator1, class ForwardIterator2, class Pr> 
   ForwardIterator1 search( 
      ForwardIterator1 _First1  , 
      ForwardIterator1 _Last1, 
      ForwardIterator2 _First2  , 
      ForwardIterator2 _Last2 
      BinaryPredicate _Comp 
   ); 

  
Parameters 
  

Parameter Description 

_First1  A forward iterator addressing the position of the first element in the range to 
be searched.  

_Last1  A forward iterator addressing the position one past the final element in the 
range to be searched.  

Page 20 of 32 www.tenouk.com



_First2  A forward iterator addressing the position of the first element in the range to 
be matched.  

_Last2  A forward iterator addressing the position one past the final element in the 
range to be matched.  

_Comp  
User-defined predicate function object that defines the condition to be satisfied 
if two elements are to be taken as equivalent. A binary predicate takes two 
arguments and returns true when satisfied and false when not satisfied.  

  
Table 36.15 

  
- The return value is a forward iterator addressing the position of the first element of the first 

subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary 
predicate. 

- The operator== used to determine the match between an element and the specified value must 
impose an equivalence relation between its operands. 

- The ranges referenced must be valid; all pointers must be de-referenceable and within each sequence 
the last position is reachable from the first by incrementation. 

- Average complexity is linear with respect to the size of the searched range, and worst case complexity 
is also linear with respect to the size of the sequence being searched for. 

  
//algorithm, search() 
//compiled with some type conversion 
//warning… 
#include <vector> 
#include <list> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
//Return whether second element is twice the first 
bool twice(int elem1, int elem2) 
{return (2 * elem1 == elem2);} 
  
int main() 
{ 
   vector <int> vec1, vec2; 
   list <int> lst1; 
   vector <int>::iterator Iter1, Iter2; 
   list <int>::iterator lst1_Iter, lst1_inIter; 
  
   int i; 
   for(i = 0; i <= 5; i++) 
      vec1.push_back(5*i); 
    
   for(i = 0; i <= 5; i++) 
      vec1.push_back(5*i); 
   
   int j; 
   for(j = 4; j <= 5; j++) 
      lst1.push_back(5*j); 
    
   int k; 
   for(k = 2; k <= 4; k++) 
      vec2.push_back(10*k); 
    
   cout<<"Vector vec1 data: "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   cout<<"List lst1 data: "; 
   for(lst1_Iter = lst1.begin(); lst1_Iter!= lst1.end(); lst1_Iter++) 
      cout<<*lst1_Iter<<" "; 
   cout<<endl; 
  
   cout<<"Vector vec2 data: "; 
   for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++) 
      cout<<*Iter2<<" "; 
      cout<<endl<<endl; 
  
   //Searching vec1 for first match to lst1 under identity 
   vector <int>::iterator result1; 
   result1 = search (vec1.begin(), vec1.end(), lst1.begin(), lst1.end()); 
  

Page 21 of 32 www.tenouk.com



   if(result1 == vec1.end()) 
      cout<<"There is no match of lst1 in vec1."<<endl; 
   else 
      cout<<"There is at least one match of lst1 in vec1" 
           <<"\nand the first one begins at " 
           <<"position "<< result1 - vec1.begin( )<<endl; 
  
   //Searching vec1 for a match to lst1 under the binary predicate twice 
   vector <int>::iterator result2; 
   result2 = search(vec1.begin(), vec1.end(), vec2.begin(), vec2.end(), twice); 
  
   if(result2 == vec1.end()) 
      cout<<"\nThere is no match of lst1 in vec1."<<endl; 
   else 
      cout<<"\nThere is a sequence of elements in vec1 that " 
          <<"are equivalent\nto those in vec2 under the binary " 
          <<"predicate twice\nand the first one begins at position " 
          <<result2 - vec1.begin()<<endl; 
} 

  
Output: 

  

 
  
search_n() 
  

- Searches for the first subsequence in a range that of a specified number of elements having a particular 
value or a relation to that value as specified by a binary predicate. 

  
template<class ForwardIterator1, class Diff2, class Type> 
   ForwardIterator1 search_n( 
      ForwardIterator1 _First1,  
      ForwardIterator1 _Last1, 
      Size2 _Count,  
      const Type& _Val 
   ); 
template<class ForwardIterator1, class Size2, class Type, class BinaryPredicate> 
   ForwardIterator1 search_n( 
      ForwardIterator1 _First1  , 
      ForwardIterator1 _Last1, 
      Size2 _Count,  
      const Type& _Val, 
      BinaryPredicate _Comp 
   ); 

  
Parameters 
  

Parameter Description 

_First1 A forward iterator addressing the position of the first element in the range to be 
searched.  

_Last1 A forward iterator addressing the position one past the final element in the range to 
be searched.  

_Count The size of the subsequence being searched for.  
_Val The value of the elements in the sequence being searched for.  

_Comp 
User-defined predicate function object that defines the condition to be satisfied if 
two elements are to be taken as equivalent. A binary predicate takes two 
arguments and returns true when satisfied and false when not satisfied.  

  
Table 36.16 

Page 22 of 32 www.tenouk.com



  
- The return value is a forward iterator addressing the position of the first element of the first 

subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary 
predicate. 

- The operator== used to determine the match between an element and the specified value must 
impose an equivalence relation between its operands. 

- The range referenced must be valid; all pointers must be de-referenceable and within the sequence the 
last position is reachable from the first by incrementation. 

- Complexity is linear with respect to the size of the searched. 
  

//algorithm, search_n() 
//some type conversion warning 
#include <vector> 
#include <list> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
//Return whether second element is twice the first 
bool twice(int elem1, int elem2) 
{return 2 * elem1 == elem2;} 
  
int main()  
{ 
   vector <int> vec1, vec2; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 0; i <= 5; i++  )
     vec1.push_back(5*i); 
    
   for(i = 0; i <= 2; i++) 
     vec1.push_back(5); 
    
   for(i = 0; i <= 5; i++  )
     vec1.push_back(5*i); 
    
  
   for(i = 0; i <= 2; i++) 
     vec1.push_back(5); 
    
   cout<<"Vector vec1 data: "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Searching vec1 for first match to (5 5 5) under identity 
   vector <int>::iterator result1; 
   result1 = search_n(vec1.begin(), vec1.end(), 3, 5); 
  
   if(result1 == vec1.end()) 
      cout<<"\nThere is no match for a sequence (5 5 5) in vec1."<<endl; 
   else 
      cout<<"\nThere is at least one match of a sequence (5 5 5)" 
          <<"\nin vec1 and the first one begins at " 
          <<"position "<<result1 - vec1.begin()<<endl; 
  
   //Searching vec1 for first match to (5 5 5) under twice 
   vector <int>::iterator result2; 
   result2 = search_n(vec1.begin(), vec1.end(), 3, 5); 
  
   if(result2 == vec1.end()) 
      cout<<"\nThere is no match for a sequence (5 5 5) in vec1" 
          <<" under the equivalence predicate twice."<<endl; 
   else 
      cout<<"\nThere is a match of a sequence (5 5 5) " 
          <<"under the equivalence\npredicate twice  "
          <<" in vec1 and the first one begins at " 
          <<"position "<<result1 - vec1.begin()<<endl; 
} 

  
Output: 

  

Page 23 of 32 www.tenouk.com



 
  
set_difference() 
  

- Unites all of the elements that belong to one sorted source range, but not to a second sorted source 
range, into a single, sorted destination range, where the ordering criterion may be specified by a binary 
predicate. 

  
template<class InputIterator1, class InputIterator2, class OutputIterator> 
   OutputIterator set_difference( 
      InputIterator1 _First1,  
      InputIterator1 _Last1, 
      InputIterator2 _First2,   
      InputIterator2 _Last2,   
      OutputIterator _Result 
   ); 
template<class InputIterator1, class InputIterator2, class OutputIterator, class 
BinaryPredicate> 
   OutputIterator set_difference( 
      InputIterator1 _First1  , 
      InputIterator1 _Last1, 
      InputIterator2 _First2,  
      InputIterator2 _Last2,  
      OutputIterator _Result  ,
      BinaryPredicate _Comp 
   ); 

  
Parameters 
  

Parameter Description 

_First1 
An input iterator addressing the position of the first element in the first 
of two sorted source ranges to be united and sorted into a single range 
representing the difference of the two source ranges.  

_Last1  
An input iterator addressing the position one past the last element in the 
first of two sorted source ranges to be united and sorted into a single 
range representing the difference of the two source ranges.  

_First2 
An input iterator addressing the position of the first element in second 
of two consecutive sorted source ranges to be united and sorted into a 
single range representing the difference of the two source ranges.  

_Last2  
An input iterator addressing the position one past the last element in 
second of two consecutive sorted source ranges to be united and sorted 
into a single range representing the difference of the two source ranges.  

_Result 
An output iterator addressing the position of the first element in the 
destination range where the two source ranges are to be united into a 
single sorted range representing the difference of the two source 
ranges.  

_Comp  

User-defined predicate function object that defines the sense in which 
one element is greater than another. The binary predicate takes two 
arguments and should return true when the first element is less than the 
second element and false otherwise.  

  
Table 36.17 

  
- The return value is an output iterator addressing the position one past the last element in the sorted 

destination range representing the difference of the two source ranges. 
- The sorted source ranges referenced must be valid; all pointers must be de-referenceable and within 

each sequence the last position must be reachable from the first by incrementation. 

Page 24 of 32 www.tenouk.com



- The destination range should not overlap either of the source ranges and should be large enough to 
contain the destination range. 

- The sorted source ranges must each be arranged as a precondition to the application of the 
set_difference() algorithm in accordance with the same ordering as is to be used by the 
algorithm to sort the combined ranges. 

- The operation is stable as the relative order of elements within each range is preserved in the 
destination range. The source ranges are not modified by the algorithm merge. 

- The value types of the input iterators need be less-than-comparable to be ordered, so that, given two 
elements, it may be determined either that they are equivalent, in the sense that neither is less than the 
other or that one is less than the other. This results in an ordering between the nonequivalent elements. 

- When there are equivalent elements in both source ranges, the elements in the first range precede the 
elements from the second source range in the destination range. 

- If the source ranges contain duplicates of an element such that there are more in the first source range 
than in the second, then the destination range will contain the number by which the occurrences of 
those elements in the first source range exceed the occurrences of those elements in the second source 
range. 

- The complexity of the algorithm is linear with at most 2*((_Last1 – _First1)–(_Last2 – 
_First2))–1 comparisons for nonempty source ranges. 

  
//algorithm, set_difference() 
#include <vector> 
#include <algorithm> 
//For greater<int>() 
#include <functional> 
#include <iostream> 
using namespace std; 
  
//Return whether modulus of elem1 is less than modulus of elem2 
bool mod_lesser(int elem1, int elem2) 
{ 
   if (elem1 < 0)  
      elem1 = - elem1; 
   if (elem2 < 0)  
      elem2 = - elem2; 
   return (elem1 < elem2); 
} 
  
int main() 
{ 
   vector <int> vec1a, vec1b, vec1(12); 
   vector <int>::iterator Iter1a, Iter1b, Iter1, Result1; 
  
   //Constructing vectors vec1a & vec1b with default less-than ordering 
   int i; 
   for(i = -2; i <= 3; i++) 
      vec1a.push_back(i); 
    
   int j; 
   for(j =-2; j <= 1; j++  )
      vec1b.push_back(j); 
    
   cout<<"Original vector vec1a with range sorted by the\n" 
   <<"binary predicate less than is: "; 
   for(Iter1a = vec1a.begin(); Iter1a != vec1a.end(); Iter1a++) 
      cout<<*Iter1a<<" "; 
   cout<<endl; 
  
   cout<<"\nOriginal vector vec1b with range sorted by the\n" 
   <<"binary predicate less than is: "; 
   for(Iter1b = vec1b.begin(); Iter1b != vec1b.end(); Iter1b++) 
      cout<<*Iter1b<<" "; 
   cout<<endl; 
    
   //Constructing vectors vec2a & vec2b with ranges sorted by greater 
   vector <int> vec2a(vec1a), vec2b(vec1b), vec2(vec1); 
   vector <int>::iterator Iter2a, Iter2b, Iter2, Result2; 
   sort(vec2a.begin(), vec2a.end(), greater<int>()); 
   sort(vec2b.begin(), vec2b.end(), greater<int>()); 
  
   cout<<"\nOriginal vector vec2a with range sorted by the\n" 
   <<"binary predicate greater is: "; 
   for(Iter2a = vec2a.begin(); Iter2a != vec2a.end(); Iter2a++) 
      cout<<*Iter2a<<" "; 
   cout<<endl; 
  

Page 25 of 32 www.tenouk.com



   cout<<"\nOriginal vector vec2b with range sorted by the\n" 
   <<"binary predicate greater is: "; 
   for(Iter2b = vec2b.begin(); Iter2b != vec2b.end(); Iter2b++) 
      cout<<*Iter2b<<" "; 
   cout<<endl; 
  
   //Constructing vectors vec3a & vec3b with ranges sorted by mod_lesser 
   vector <int> vec3a(vec1a), vec3b(vec1b), vec3(vec1); 
   vector <int>::iterator Iter3a, Iter3b, Iter3, Result3; 
   sort(vec3a.begin(), vec3a.end(), mod_lesser); 
   sort(vec3b.begin(), vec3b.end(), mod_lesser); 
  
   cout<<"\nOriginal vector vec3a with range sorted by the\n" 
   <<"binary predicate mod_lesser() is: "; 
   for(Iter3a = vec3a.begin(); Iter3a != vec3a.end(); Iter3a++) 
      cout<<*Iter3a<<" "; 
   cout<<endl; 
  
   cout<<"\nOriginal vector vec3b with range sorted by the\n" 
   <<"binary predicate mod_lesser() is: "; 
   for(Iter3b = vec3b.begin(); Iter3b != vec3b.end(); Iter3b++) 
      cout<<*Iter3b<<" "; 
   cout<<endl; 
  
   //To combine into a difference in ascending 
   //order with the default binary predicate less <int>() 
   Result1 = set_difference(vec1a.begin(), vec1a.end(), 
      vec1b.begin(), vec1b.end(), vec1.begin()); 
   cout<<"\nset_difference() of source ranges with default order," 
       <<"\nvector vec1mod = "; 
   for(Iter1 = vec1.begin(); Iter1 != Result1; Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //To combine into a difference in descending 
   //order specify binary predicate greater<int>() 
   Result2 = set_difference(vec2a.begin(), vec2a.end(), 
      vec2b.begin(), vec2b.end(), vec2.begin(), greater <int>()); 
   cout<<"\nset_difference() of source ranges with binary" 
   <<" predicate\ngreater specified, vector vec2mod: "; 
   for(Iter2 = vec2.begin(); Iter2 != Result2; Iter2++) 
      cout<<*Iter2<<" "; 
   cout<<endl; 
  
   //To combine into a difference applying a user 
   //defined binary predicate mod_lesser() 
   Result3 = set_difference(vec3a.begin(), vec3a.end(), 
      vec3b.begin(), vec3b.end(), vec3.begin(), mod_lesser)  ;
   cout<<"\nset_difference() of source ranges with binary " 
   <<"predicate\nmod_lesser() specified, vector vec3mod: "; 
   for(Iter3 = vec3.begin(); Iter3 != Result3; Iter3++) 
      cout<<*Iter3<<" "; 
   cout<<endl; 
} 

  
Output 

  

Page 26 of 32 www.tenouk.com



 
  
set_intersection() 
  

- Unites all of the elements that belong to both sorted source ranges into a single, sorted destination 
range, where the ordering criterion may be specified by a binary predicate. 

  
template<class InputIterator1, class InputIterator2, class OutputIterator> 
   OutputIterator set_intersection( 
      InputIterator1 _First1  , 
      InputIterator1 _Last1, 
      InputIterator2 _First2,  
      InputIterator2 _Last2,  
      OutputIterator _Result 
   ); 
template<class InputIterator1, class InputIterator2, class OutputIterator, class 
BinaryPredicate> 
   OutputIterator set_intersection( 
      InputIterator1 _First1,  
      InputIterator1 _Last1, 
      InputIterator2 _First2,   
      InputIterator2 _Last2,  
      OutputIterator _Result  ,
      BinaryPredicate _Comp 
   ); 

  
Parameters 
  

Parameter Description 

_First1  
An input iterator addressing the position of the first element in the first of two 
sorted source ranges to be united and sorted into a single range representing the 
intersection of the two source ranges.  

_Last1  
An input iterator addressing the position one past the last element in the first of 
two sorted source ranges to be united and sorted into a single range representing 
the intersection of the two source ranges.  

_First2  
An input iterator addressing the position of the first element in second of two 
consecutive sorted source ranges to be united and sorted into a single range 
representing the intersection of the two source ranges.  

_Last2  
An input iterator addressing the position one past the last element in second of 
two consecutive sorted source ranges to be united and sorted into a single range 
representing the intersection of the two source ranges.  

_Result  An output iterator addressing the position of the first element in the destination 
range where the two source ranges are to be united into a single sorted range 

Page 27 of 32 www.tenouk.com



representing the intersection of the two source ranges. 

_Comp  

User-defined predicate function object that defines the sense in which one 
element is greater than another. The binary predicate takes two arguments and 
should return true when the first element is less than the second element and false 
otherwise.  

  
Table 36.18 

  
- The return value is an output iterator addressing the position one past the last element in the sorted 

destination range representing the intersection of the two source ranges. 
- The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within 

each sequence the last position must be reachable from the first by incrementation. 
- The destination range should not overlap either of the source ranges and should be large enough to 

contain the destination range. 
- The sorted source ranges must each be arranged as a precondition to the application of the merge 

algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined 
ranges. 

- The operation is stable as the relative order of elements within each range is preserved in the 
destination range. The source ranges are not modified by the algorithm. 

- The value types of the input iterators need be less-than comparable to be ordered, so that, given two 
elements, it may be determined either that they are equivalent (in the sense that neither is less than the 
other) or that one is less than the other. 

- This results in an ordering between the nonequivalent elements. 
- When there are equivalent elements in both source ranges, the elements in the first range precede the 

elements from the second source range in the destination range. 
- If the source ranges contain duplicates of an element, then the destination range will contain the 

maximum number of those elements that occur in both source ranges. 
- The complexity of the algorithm is linear with at most 2*((_Last1 – _First1)–(_Last2 – 

_First2))–1 comparisons for nonempty source ranges. 
  

//algorithm, set_intersection() 
#include <vector> 
#include <algorithm> 
//For greater<int>() 
#include <functional> 
#include <iostream> 
using namespace std; 
  
//Return whether modulus of elem1 is less than modulus of elem2 
bool mod_lesser(int elem1, int elem2) 
{ 
   if(elem1 < 0)  
      elem1 = - elem1; 
   if(elem2 < 0)  
      elem2 = - elem2; 
   return (elem1 < elem2); 
} 
  
int main() 
{ 
   vector <int> vec1a, vec1b, vec1(12); 
   vector <int>::iterator Iter1a, Iter1b, Iter1, Result1; 
  
   //Constructing vectors vec1a & vec1b with default less than ordering 
   int i; 
   for(i = -2; i <= 2; i++) 
     vec1a.push_back(i); 
    
   int j; 
   for(j = -4; j <= 0; j++) 
     vec1b.push_back(j); 
    
   cout<<"Original vector vec1a with range sorted by the\n" 
   <<"binary predicate less than is: "; 
   for(Iter1a = vec1a.begin(); Iter1a != vec1a.end(); Iter1a++) 
      cout<<*Iter1a<<" "; 
   cout<<endl; 
  
   cout<<"\nOriginal vector vec1b with range sorted by the\n" 
   <<"binary predicate less than is: "; 
   for(Iter1b = vec1b.begin(); Iter1b != vec1b.end(); Iter1b++) 
      cout<<*Iter1b<<" "; 

Page 28 of 32 www.tenouk.com



   cout<<endl; 
    
   //Constructing vectors vec2a & vec2b with ranges sorted by greater 
   vector <int> vec2a(vec1a), vec2b(vec1b), vec2(vec1); 
   vector <int>::iterator Iter2a, Iter2b, Iter2, Result2; 
   sort(vec2a.begin(), vec2a.end(), greater<int>()); 
   sort(vec2b.begin(), vec2b.end(), greater<int>()); 
  
   cout<<"\nOriginal vector vec2a with range sorted by the\n" 
   <<"binary predicate greater is: "; 
   for(Iter2a = vec2a.begin(); Iter2a != vec2a.end(); Iter2a++) 
      cout<<*Iter2a<<" "; 
   cout<<endl; 
  
   cout<<"\nOriginal vector vec2b with range sorted by the\n" 
   <<"binary predicate greater is: "; 
   for(Iter2b = vec2b.begin(); Iter2b != vec2b.end(); Iter2b++) 
      cout<<*Iter2b<<" "; 
   cout<<endl; 
  
   //Constructing vectors vec3a & vec3b with ranges sorted by mod_lesser 
   vector<int>vec3a(vec1a), vec3b(vec1b), vec3(vec1); 
   vector<int>::iterator Iter3a, Iter3b, Iter3, Result3; 
   sort(vec3a.begin(), vec3a.end(), mod_lesser); 
   sort(vec3b.begin(), vec3b.end(), mod_lesser); 
  
   cout<<"\nOriginal vector vec3a with range sorted by the\n" 
   <<"binary predicate mod_lesser() is: "; 
   for(Iter3a = vec3a.begin(); Iter3a != vec3a.end(); Iter3a++) 
      cout<<*Iter3a<<" "; 
   cout<<endl; 
  
   cout<<"\nOriginal vector vec3b with range sorted by the\n" 
   <<"binary predicate mod_lesser() is: "; 
   for(Iter3b = vec3b.begin(); Iter3b != vec3b.end(); Iter3b++) 
      cout<<*Iter3b<<" "; 
   cout<<endl; 
  
   //To combine into an intersection in ascending order with the default  
   //binary predicate less <int>() 
   Result1 = set_intersection(vec1a.begin(), vec1a.end(), 
      vec1b.begin(), vec1b.end(), vec1.begin()); 
   cout<<"\nset_intersection() of source ranges with default order,\nvector vec1mod: "; 
   for(Iter1 = vec1.begin(); Iter1 != Result1; Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //To combine into an intersection in descending order, specify binary  
   //predicate greater<int>() 
   Result2 = set_intersection(vec2a.begin(), vec2a.end(), 
      vec2b.begin(), vec2b.end(), vec2.begin(), greater<int>()); 
   cout<<"\nset_intersection() of source ranges with binary predicate\ngreater " 
   <<"specified, vector vec2mod: "; 
   for(Iter2 = vec2.begin(); Iter2 != Result2; Iter2++) 
      cout<<*Iter2<<" "; 
   cout<<endl; 
  
   //To combine into an intersection applying a user-defined 
   //binary predicate mod_lesser 
   Result3 = set_intersection(vec3a.begin(), vec3a.end(), 
      vec3b.begin(), vec3b.end(), vec3.begin(), mod_lesser); 
   cout<<"\nset_intersection() of source ranges with binary predicate\n" 
   <<"mod_lesser() specified, vector vec3mod: "; 
   for(Iter3 = vec3.begin(); Iter3 != Result3; Iter3++) 
      cout<<*Iter3<<" "; 
   cout<<endl; 
} 

  
Output: 

  

Page 29 of 32 www.tenouk.com



 
  

- Program example compiled using g++. 
  

//******algorandshuffle.cpp******** 
//algorithm, random_shuffle() 
#include <vector> 
#include <algorithm> 
#include <functional> 
#include <iostream> 
using namespace std; 
  
int main() 
{ 
   vector <int> vec1; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 1; i <= 10; i++) 
     vec1.push_back(i); 
   cout<<"The original of vector vec1 data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
    
   //random shuffle… 
   random_shuffle(vec1.begin(), vec1.end()); 
   cout<<"The original of vector vec1 random shuffle data:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Shuffled once 
   random_shuffle(vec1.begin(), vec1.end()); 
   push_heap(vec1.begin(), vec1.end()); 
   cout<<"Vector vec1 after reshuffle is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Shuffled again 
   random_shuffle(vec1.begin(), vec1.end()); 
   push_heap(vec1.begin(), vec1.end()); 
   cout<<"Vector vec1 after another reshuffle is:\n"; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
   cout<<*Iter1<<" "; 
   cout<<endl; 
} 

Page 30 of 32 www.tenouk.com

http://www.tenouk.com/Module000.html


  
[bodo@bakawali ~]$ g++ algorandshuffle.cpp -o algorandshuffle 
[bodo@bakawali ~]$ ./algorandshuffle 
  
The original of vector vec1 data: 
1 2 3 4 5 6 7 8 9 10 
The original of vector vec1 random shuffle data: 
5 4 8 9 1 6 3 2 7 10 
Vector vec1 after reshuffle is: 
7 1 8 9 6 4 10 3 2 5 
Vector vec1 after another reshuffle is: 
10 1 5 4 8 6 3 7 2 9 

  
//*******algosearchn.cpp********* 
//algorithm, search_n() 
//some type conversion warning 
#include <vector> 
#include <list> 
#include <algorithm  >
#include <iostream> 
using namespace std; 
  
//Return whether second element is twice the first 
bool twice(int elem1, int elem2) 
{return 2 * elem1 == elem2;} 
  
int main()  
{ 
   vector <int> vec1, vec2; 
   vector <int>::iterator Iter1; 
  
   int i; 
   for(i = 0; i <= 5; i++  )
     vec1.push_back(5*i); 
    
   for(i = 0; i <= 2; i++) 
     vec1.push_back(5); 
    
   for(i = 0; i <= 5; i++) 
     vec1.push_back(5*i); 
    
  
   for(i = 0; i <= 2; i++) 
     vec1.push_back(5); 
    
   cout<<"Vector vec1 data: "; 
   for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++) 
      cout<<*Iter1<<" "; 
   cout<<endl; 
  
   //Searching vec1 for first match to (5 5 5) under identity 
   vector <int>::iterator result1; 
   result1 = search_n(vec1.begin(), vec1.end(), 3, 5); 
  
   if(result1 == vec1.end()) 
      cout<<"\nThere is no match for a sequence (5 5 5) in vec1."<<endl; 
   else 
      cout<<"\nThere is at least one match of a sequence (5 5 5)" 
          <<"\nin vec1 and the first one begins at " 
          <<"position "<<result1 - vec1.begin()<<endl; 
  
   //Searching vec1 for first match to (5 5 5) under twice 
   vector <int>::iterator result2; 
   result2 = search_n(vec1.begin(), vec1.end(), 3, 5); 
  
   if(result2 == vec1.end()) 
      cout<<"\nThere is no match for a sequence (5 5 5) in vec1" 
          <<" under the equivalence predicate twice."<<endl; 
   else 
      cout<<"\nThere is a match of a sequence (5 5 5) " 
          <<"under the equivalence\npredicate twice" 
          <<" in vec1 and the first one begins at " 
          <<"position "<<result1 - vec1.begin()<<endl; 
} 

  
[bodo@bakawali ~]$ g++ algosearchn.cpp -o algosearchn 
[bodo@bakawali ~]$ ./algosearchn 

Page 31 of 32 www.tenouk.com



  
Vector vec1 data: 0 5 10 15 20 25 5 5 5 0 5 10 15 20 25 5 5 5 
  
There is at least one match of a sequence (5 5 5) 
in vec1 and the first one begins at position 6 
  
There is a match of a sequence (5 5 5) under the equivalence 
predicate twice in vec1 and the first one begins at position 6 

  
---------------------------------------End of Algorithm Part IV------------------------------- 

---www.tenouk.com--- 
  
Further reading and digging: 
  

1. Check the best selling C / C++ and STL books at Amazon.com. 

Page 32 of 32 www.tenouk.com

http://www.tenouk.com/cplusbook.html

