
MODULE 34
--THE STL--

ALGORITHM PART II

My Training Period: hours

Note: Compiled using Microsoft Visual C++/.Net, win32 empty console mode application. g++ compilation
examples given at the end of this Module.

Abilities

▪ Able to understand and use the member functions of the algorithm.
▪ Appreciate how the usage of the template classes and functions.
▪ Able to use containers, iterators and algorithm all together.

34.1 <algorithm> Header File

- Defines Standard Template Library (STL) container template functions that perform algorithms. The
following header must be included in your program.

#include <algorithm>

- The STL algorithms are generic because they can operate on a variety of data structures. The data

structures that they can operate on included not only the STL container classes such as vector and list,
but also program-defined data structures and arrays of elements that satisfy the requirements of a
particular algorithm.

- STL algorithms achieve this level of generality by accessing and traversing the elements of a container
indirectly through iterators.

- STL algorithms process iterator ranges that are typically specified by their beginning or ending
positions.

- The ranges referred to must be valid in the sense that all pointers in the ranges must be de-referenceable
and within the sequences of each range, the last position must be reachable from the first by
incrementation.

- The STL algorithms extend the actions supported by the operations and member functions of each STL
container and allow working, for example, with different types of container objects at the same time.
Two suffixes have been used to convey information about the purpose of the algorithms.

▪ The _if suffix indicates that the algorithm is used with function objects operating on the values

of the elements rather than on the values of the elements themselves. The find_if() algorithm
looks for elements whose values satisfy the criterion specified by a function object, and the
find() algorithm searches for a particular value.

▪ The copy suffix indicates that the algorithm not only manipulates the values of the elements but
also copies the modified values into a destination range. For example, the reverse() algorithm
reverses the order of the elements within a range, and the reverse_copy() algorithm also
copies the result into a destination range.

- STL algorithms are often classified into groups that indicate something about their purpose or

requirements.
- These include modifying algorithms that change the value of elements as compared with non-

modifying algorithms that do not. Mutating algorithms change the order of elements, but not the
values of their elements.

- Removing algorithms can eliminate elements from a range or a copy of a range.
- Sorting algorithms reorder the elements in a range in various ways and sorted range algorithms only

act on algorithms whose elements have been sorted in a particular way.
- The STL numeric algorithms that are provided for numerical processing have their own header file

<numeric>, and function objects and adaptors are defined in the header <functional>.
- Function objects that return Boolean values are known as predicates. The default binary predicate

is the comparison operator<.
- In general, the elements being ordered need to be less than comparable so that, given any two

elements, it can be determined either that they are equivalent, in the sense that neither is less than the
other or that one is less than the other.

- This results in an ordering among the nonequivalent elements.

Page 1 of 35 www.tenouk.com

http://www.tenouk.com/Module000.html

34.2 <algorithm> Member Functions

- The following table is a list of the member functions available in <algorithm>. So many huh!

Member functions

Member function Description
adjacent_find() Searches for two adjacent elements that are either equal or satisfy a

specified condition.

binary_search()
Tests whether there is an element in a sorted range that is equal to a
specified value or that is equivalent to it in a sense specified by a
binary predicate.

copy()
Assigns the values of elements from a source range to a destination
range, iterating through the source sequence of elements and
assigning them new positions in a forward direction.

copy_backward()
Assigns the values of elements from a source range to a destination
range, iterating through the source sequence of elements and
assigning them new positions in a backward direction.

count() Returns the number of elements in a range whose values match a
specified value.

count_if() Returns the number of elements in a range whose values match a
specified condition.

equal() Compares two ranges element by element either for equality or
equivalence in a sense specified by a binary predicate.

equal_range()

Finds a pair of positions in an ordered range, the first less than or
equivalent to the position of a specified element and the second
greater than the element's position, where the sense of equivalence or
ordering used to establish the positions in the sequence may be
specified by a binary predicate.

fill() Assigns the same new value to every element in a specified range.
fill_n() Assigns a new value to a specified number of elements in a range

beginning with a particular element.
find() Locates the position of the first occurrence of an element in a range

that has a specified value.

find_end()
Looks in a range for the last subsequence that is identical to a
specified sequence or that is equivalent in a sense specified by a
binary predicate.

find_first_of()
Searches for the first occurrence of any of several values within a
target range or for the first occurrence of any of several elements that
are equivalent in a sense specified by a binary predicate to a specified
set of the elements.

find_if() Locates the position of the first occurrence of an element in a range
that satisfies a specified condition.

for_each() Applies a specified function object to each element in a forward order
within a range and returns the function object.

generate() Assigns the values generated by a function object to each element in a
range.

generate_n()
Assigns the values generated by a function object to a specified
number of element is a range and returns to the position one past the
last assigned value.

includes()
Tests whether one sorted range contains all the elements contained in
a second sorted range, where the ordering or equivalence criterion
between elements may be specified by a binary predicate.

inplace_merge()
Combines the elements from two consecutive sorted ranges into a
single sorted range, where the ordering criterion may be specified by a
binary predicate.

iter_swap() Exchanges two values referred to by a pair of specified iterators.
lexicographical_compare() Compares element by element between two sequences to determine

which is lesser of the two.

lower_bound()
Finds the position where the first element in an ordered range is or
would be if it had a value that is less than or equivalent to a specified
value, where the sense of equivalence may be specified by a binary
predicate.

make_heap()
Converts elements from a specified range into a heap in which the
first element is the largest and for which a sorting criterion may be
specified with a binary predicate.

Page 2 of 35 www.tenouk.com

max() Compares two objects and returns the larger of the two, where the
ordering criterion may be specified by a binary predicate.

max_element() Finds the first occurrence of largest element in a specified range
where the ordering criterion may be specified by a binary predicate.

merge()
Combines all the elements from two sorted source ranges into a
single, sorted destination range, where the ordering criterion may be
specified by a binary predicate.

min() Compares two objects and returns the lesser of the two, where the
ordering criterion may be specified by a binary predicate.

min_element() Finds the first occurrence of smallest element in a specified range
where the ordering criterion may be specified by a binary predicate.

mismatch()
Compares two ranges element by element either for equality or
equivalent in a sense specified by a binary predicate and locates the
first position where a difference occurs.

next_permutation()
Reorders the elements in a range so that the original ordering is
replaced by the lexicographically next greater permutation if it exists,
where the sense of next may be specified with a binary predicate.

nth_element()
Partitions a range of elements, correctly locating the nth element of
the sequence in the range so that all the elements in front of it are less
than or equal to it and all the elements that follow it in the sequence
are greater than or equal to it.

partial_sort()
Arranges a specified number of the smaller elements in a range into a
non-descending order or according to an ordering criterion specified
by a binary predicate.

partial_sort_copy()
Copies elements from a source range into a destination range where
the source elements are ordered by either less than or another
specified binary predicate.

partition()
Classifies elements in a range into two disjoint sets, with those
elements satisfying a unary predicate preceding those that fail to
satisfy it.

pop_heap()
Removes the largest element from the front of a heap to the next-to-
last position in the range and then forms a new heap from the
remaining elements.

prev_permutation()
Reorders the elements in a range so that the original ordering is
replaced by the lexicographically next greater permutation if it exists,
where the sense of next may be specified with a binary predicate.

push_heap() Adds an element that is at the end of a range to an existing heap
consisting of the prior elements in the range.

random_shuffle() Rearranges a sequence of N elements in a range into one of N!
possible arrangements selected at random.

remove()
Eliminates a specified value from a given range without disturbing the
order of the remaining elements and returning the end of a new range
free of the specified value.

remove_copy()
Copies elements from a source range to a destination range, except
that elements of a specified value are not copied, without disturbing
the order of the remaining elements and returning the end of a new
destination range.

remove_copy_if()
Copies elements from a source range to a destination range, except
that satisfying a predicate are not copied, without disturbing the order
of the remaining elements and returning the end of a new destination
range.

remove_if()
Eliminates elements that satisfy a predicate from a given range
without disturbing the order of the remaining elements and returning
the end of a new range free of the specified value.

replace() Examines each element in a range and replaces it if it matches a
specified value.

replace_copy()
Examines each element in a source range and replaces it if it matches
a specified value while copying the result into a new destination
range.

replace_copy_if()
Examines each element in a source range and replaces it if it satisfies
a specified predicate while copying the result into a new destination
range.

replace_if() Examines each element in a range and replaces it if it satisfies a
specified predicate.

reverse() Reverses the order of the elements within a range.
reverse_copy() Reverses the order of the elements within a source range while

copying them into a destination range

Page 3 of 35 www.tenouk.com

rotate() Exchanges the elements in two adjacent ranges.
rotate_copy() Exchanges the elements in two adjacent ranges within a source range

and copy the result to a destination range.

search()
Searches for the first occurrence of a sequence within a target range
whose elements are equal to those in a given sequence of elements or
whose elements are equivalent in a sense specified by a binary
predicate to the elements in the given sequence.

search_n()
Searches for the first subsequence in a range that of a specified
number of elements having a particular value or a relation to that
value as specified by a binary predicate.

set_difference()
Unites all of the elements that belong to one sorted source range, but
not to a second sorted source range, into a single, sorted destination
range, where the ordering criterion may be specified by a binary
predicate.

set_intersection()
Unites all of the elements that belong to both sorted source ranges into
a single, sorted destination range, where the ordering criterion may be
specified by a binary predicate.

set_symmetric_difference()
Unites all of the elements that belong to one, but not both, of the
sorted source ranges into a single, sorted destination range, where the
ordering criterion may be specified by a binary predicate.

set_union()
Unites all of the elements that belong to at least one of two sorted
source ranges into a single, sorted destination range, where the
ordering criterion may be specified by a binary predicate.

sort() Arranges the elements in a specified range into a nondescending order
or according to an ordering criterion specified by a binary predicate.

sort_heap() Converts a heap into a sorted range.

stable_partition()
Classifies elements in a range into two disjoint sets, with those
elements satisfying a unary predicate preceding those that fail to
satisfy it, preserving the relative order of equivalent elements.

stable_sort()
Arranges the elements in a specified range into a non-descending
order or according to an ordering criterion specified by a binary
predicate and preserves the relative ordering of equivalent elements.

swap()
Exchanges the values of the elements between two types of objects,
assigning the contents of the first object to the second object and the
contents of the second to the first.

swap_ranges() Exchanges the elements of one range with the elements of another,
equal sized range.

transform()
Applies a specified function object to each element in a source range
or to a pair of elements from two source ranges and copies the return
values of the function object into a destination range.

unique() Removes duplicate elements that are adjacent to each other in a
specified range.

unique_copy() Copies elements from a source range into a destination range except
for the duplicate elements that are adjacent to each other.

upper_bound()
Finds the position of the first element in an ordered range that has a
value that is greater than a specified value, where the ordering
criterion may be specified by a binary predicate.

Table 34.1

- The following section presents some of the program examples using the member functions. Notice the

using of the containers and iterators in the program examples and in the function and class templates.

adjacent_find()

- Searches for two adjacent elements that are either equal or satisfy a specified condition.

template<class ForwardIterator>
 ForwardIterator adjacent_find(ForwardIterator _First ForwardIterator _Last); ,
template<class ForwardIterator , class BinaryPredicate>
 ForwardIterator adjacent_find(
 ForwardIterator _First,
 ForwardIterator _Last,
 _Comp BinaryPredicate
);

Parameters

Page 4 of 35 www.tenouk.com

Parameter Description
_First A forward iterator addressing the position of the first element in the range to be

searched.
_Last A forward iterator addressing the position one past the final element in the range to be

searched
_Comp The binary predicate giving the condition to be satisfied by the values of the adjacent

elements in the range being searched.

Table 34.2

- The return value is a forward iterator to the first element of the adjacent pair that are either equal to
each other (in the first version) or that satisfy the condition given by the binary predicate (in the second
version), provided that such a pair of elements is found. Otherwise, an iterator pointing to _Last is
returned.

- The adjacent_find() algorithm is a non-mutating sequence algorithm. The range to be searched
must be valid; all pointers must be de-referenceable and the last position is reachable from the first by
incrementation. The time complexity of the algorithm is linear in the number of elements contained in
the range.

- The operator== used to determine the match between elements must impose an equivalence relation
between its operands.

//algorithm, adjacent_find()
#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

//Returns whether second element is twice the first
bool twice(int elem1, int elem2)
{return (elem1 * 2 == elem2);}

int main()
{
list<int> lst;
list<int>::iterator Iter;
list<int>::iterator result1, result2;
lst.push_back(14);
lst.push_back(17);
lst.push_back(31);
lst.push_back(31);
lst.push_back(10);
lst.push_back(20);

cout << "List lst data: ";
for(Iter = lst.begin(); Iter != lst.end(); Iter++)
cout<<*Iter<< " " ;
cout<<endl<<endl;

result1 = adjacent_find(lst.begin(), lst.end());
if(result1 == lst.end())
cout<<"There are not two adjacent elements that are equal."<<endl;
else
cout<<"There are two adjacent elements that are equal."

<<"\nThey have a value of "<<*(result1)<<endl;

result2 = adjacent_find(lst.begin(), lst.end(), twice);
if(result2 == lst.end())
cout<<"\nThere are no two adjacent elements where the "

<<"second is twice the first."<<endl;
else
{cout<<"\nThere are two adjacent elements\nwhere "

<<"the second is twice the first."
<<"\nThey have values of "<<*(result2++);

cout<<" & "<<*result2<<endl;}
return 0;
}

Output:

Page 5 of 35 www.tenouk.com

binary_search()

- Tests whether there is an element in a sorted range that is equal to a specified value or that is equivalent
to it in a sense specified by a binary predicate.

template<class ForwardIterator, class Type>
 bool binary_search(
 ForwardIterator _First ,
 ForwardIterator _Last,
 const Type& _Val
);
template<class ForwardIterator, class Type, class BinaryPredicate>
 bool binary_search(
 ForwardIterator _First,
 ForwardIterator _Last,
 const Type& _Val,
 BinaryPredicate _Comp
);

Parameters

Parameter Description
_First A forward iterator addressing the position of the first element in the range to be searched.

_Last A forward iterator addressing the position one past the final element in the range to be
searched.

_Val The value required to be matched by the value of the element or that must satisfy the
condition with the element value specified by the binary predicate.

_Comp
User-defined predicate function object that defines sense in which one element is less than
another. A binary predicate takes two arguments and returns true when satisfied and false
when not satisfied.

Table 34.3

- The return value is true if an element is found in the range that is equal or equivalent to the specified

value; otherwise, false.
- The sorted source range referenced must be valid; all pointers must be dereferenceable and, within the

sequence, the last position must be reachable from the first by incrementation.
- The sorted range must each be arranged as a precondition to the application of the

binary_search() algorithm in accordance with the same ordering as is to be used by the algorithm
to sort the combined ranges.

- The source ranges are not modified by binary_search().
- The value types of the forward iterators need to be less-than comparable to be ordered, so that, given

two elements, it may be determined either that they are equivalent (in the sense that neither is less than
the other) or that one is less than the other. This results in an ordering between the nonequivalent
elements

- The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with
the number of steps proportional to (_Last1–_First1).

//algorithm, binary_search()
#include <list>
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

Page 6 of 35 www.tenouk.com

//Return whether modulus of elem1 is less than modulus of elem2
bool mod_lesser(int elem1, int elem2)
{
 if(elem1 < 0)
 elem1 = - elem1;
 if(elem2 < 0)
 elem2 = - elem2;
 return (elem1 < elem2);
}

int main()
{
list<int> lst;
list<int>::iterator Iter;
bool b1, b2;

lst.push_back(13);
lst.push_back(23);
lst.push_back(10);
lst.push_back(33);
lst.push_back(35) ;
lst.push_back(9);

lst.sort();
cout<<"List lst data: ";
for(Iter = lst.begin(); Iter != lst.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;

b1 = binary_search(lst.begin(), lst.end(), 10);
if(b1)
cout<<"\nThere is an element in list lst with\na value equal to 10."<<endl;
else
cout<<"\nThere is no element in list lst with\na value equal to 10."<<endl;

b2 = binary_search(lst.begin(), lst.end(), 13, greater<int>());
if(b2)
cout<<"\nThere is an element in list lst with a\nvalue equivalent to 13 "
<<"under greater than."<<endl;
else
cout<<"\nNo element in list lst with a\nvalue equivalent to 13 "
<<"under greater than."<<endl;

//a binary_search under the user-defined binary predicate mod_lesser
vector <int> vec;
vector <int>::iterator Iter1;
int i;
for(i = -3; i <= 5; i++)
 vec.push_back(i);

sort(vec.begin(), vec.end(), mod_lesser);

cout<<"\nOrdered under mod_lesser, vector vec data:\n";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

bool b3 = binary_search(vec.begin(), vec.end(), -2, mod_lesser);
if(b3)
cout<<"\nThere is an element with a value\nequivalent to -2 "
<<"under mod_lesser()."<<endl;
else
cout<<"\nThere is no element with a value\nequivalent to -2 "
<<"under mod_lesser()."<<endl;
return 0;
}

Output:

Page 7 of 35 www.tenouk.com

copy()

- Assigns the values of elements from a source range to a destination range, iterating through the source
sequence of elements and assigning them new positions in a forward direction.

template<class InputIterator, class OutputIterator>
 OutputIterator copy
(
 InputIterator _First,
 InputIterator _Last,
 OutputIterator _DestBeg
);

Parameters

Parameter Description
_First An input iterator addressing the position of the first element in the source range.

_Last An input iterator addressing the position that is one past the final element in the
source range.

_DestBeg An output iterator addressing the position of the first element in the destination
range.

Table 34.4

- The return value is an output iterator addressing the position that is one past the final element in the

destination range, that is, the iterator addresses _Result + (_Last – _First).
- The source range must be valid and there must be sufficient space at the destination to hold all the

elements being copied.
- Because the algorithm copies the source elements in order beginning with the first element, the

destination range can overlap with the source range provided the _First position of the source range
is not contained in the destination range.

- copy() can be used to shift elements to the left but not the right, unless there is no overlap between
the source and destination ranges. To shift to the right any number of positions, use the
copy_backward() algorithm.

- The copy() algorithm only modifies values pointed to by the iterators, assigning new values to
elements in the destination range. It cannot be used to create new elements and cannot insert elements
into an empty container directly.

//algorithm, copy()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1, vec2;
vector <int>::iterator Iter1, Iter2;

int i;
for(i = 0; i <= 5; i++)

Page 8 of 35 www.tenouk.com

vec1.push_back(i);

int j;
for(j = 10; j <= 20; j++)
vec2.push_back(j);

cout<<"vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To copy the first 4 elements of vec1 into the middle of vec2
copy(vec1.begin(), vec1.begin() + 4, vec2.begin() + 5);

cout<<"vec2 with vec1 insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To shift the elements inserted into vec2 two positions
//to the left
copy(vec2.begin()+4, vec2.begin() + 7, vec2.begin() + 2);

cout<<"vec2 with shifted insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;
return 0;
}

Output:

copy_backward()

- Assigns the values of elements from a source range to a destination range, iterating through the source
sequence of elements and assigning them new positions in a backward direction.

template<class BidirectionalIterator1, class BidirectionalIterator2>
 BidirectionalIterator2 copy_backward
 (
 BidirectionalIterator1 _First,
 BidirectionalIterator1 _Last,
 BidirectionalIterator2 _DestEnd
);

Parameters

Parameter Description
_First A bidirectional iterator addressing the position of the first element in the source range.

_Last A bidirectional iterator addressing the position that is one past the final element in the
source range.

_DestEnd A bidirectional iterator addressing the position of the one past the final element in the
destination range.

Table 34.5

- The return value is an output iterator addressing the position that is one past the final element in the

destination range, that is, the iterator addresses _DestEnd – (_Last – _First).

Page 9 of 35 www.tenouk.com

- The source range must be valid and there must be sufficient space at the destination to hold all the
elements being copied.

- The copy_backward() algorithm imposes more stringent requirements than that the copy
algorithm. Both its input and output iterators must be bidirectional.

- The copy_backward() algorithm is the only STL algorithm designating the output range with an
iterator pointing to the end of the destination range.

- Because the algorithm copies the source elements in order beginning with the last element, the
destination range can overlap with the source range provided the _Last position of the source range is
not contained in the destination range.

- copy() can be used to shift elements to the right but not the left, unless there is no overlap between
the source and destination ranges. To shift to the left any number of positions, use the copy()
algorithm.

- The copy_backward() algorithm only modifies values pointed to by the iterators, assigning new
values to elements in the destination range. It cannot be used to create new elements and cannot insert
elements into an empty container directly.

//algorithm, copy_backward()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1, vec2;
vector <int>::iterator Iter1, Iter2;

int i;
for(i = 10; i <= 15; i++)
vec1.push_back(i);

int j;
for(j = 0; j <= 10; j++)
vec2.push_back(j);

cout<<"vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To copy_backward the first 4 elements of vec1 into the middle of vec2
copy_backward(vec1.begin(), vec1.begin() + 4, vec2.begin() + 8);

cout<<"vec2 with vec1 insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To shift the elements inserted into vec2 two positions
//to the right
copy_backward(vec2.begin()+4, vec2.begin()+7, vec2.begin()+9);

cout<<"vec2 with shifted insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;
return 0;
}

Output:

Page 10 of 35 www.tenouk.com

count()

- Returns the number of elements in a range whose values match a specified value.

template<class InputIterator, class Type>
 typename iterator_traits<InputIterator>::difference_type count(
 InputIterator _First,
 InputIterator _Last,
 const Type& _Val
);

Parameters

Parameter Description

_First An input iterator addressing the position of the first element in the range to be
traversed.

_Last An input iterator addressing the position one past the final element in the range to
be traversed.

_Val The value of the elements to be counted.

Table 34.6

- The return value is the difference type of the InputIterator that counts the number of elements in
the range [_First, _Last) that have value _Val.

- The operator== used to determine the match between an element and the specified value must
impose an equivalence relation between its operands.

- This algorithm is generalized to count elements that satisfy any predicate with the template function
count_if().

//algorithm, count()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
vector <int> vec;
vector <int>::iterator Iter;

vec.push_back(12);
vec.push_back(22);
vec.push_back(12);
vec.push_back(31);
vec.push_back(12);
vec.push_back(33);

cout<<"vec data: ";
for(Iter = vec.begin(); Iter != vec.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;

int result;
cout<<"\nOperation: count(vec.begin(), vec.end(), 12)\n";
result = count(vec.begin(), vec.end(), 12);
cout<<"The number of 12s in vec is: "<<result<<endl;
return 0;
}

Output:

Page 11 of 35 www.tenouk.com

count_if()

- Returns the number of elements in a range whose values satisfy a specified condition.

template<class InputIterator, class Predicate>
 typename iterator_traits<InputIterator>::difference_typecount_if(
 InputIterator _First,
 InputIterator _Last,
 Predicate _Pred
);

Parameters

Parameter Description

_First An input iterator addressing the position of the first element in the range to be
searched.

_Last An input iterator addressing the position one past the final element in the range to be
searched.

_Pred User-defined predicate function object that defines the condition to be satisfied if an
element is to be counted. A predicate takes single argument and returns true or false.

Table 34.7

- The return value is the number of elements that satisfy the condition specified by the predicate.
- This template function is a generalization of the algorithm count(), replacing the predicate "equals a

specific value" with any predicate.

//algorithm, count_if()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

bool isgreat(int value)
{return value >8;}

int main()
{
vector <int> vec;
vector <int>::iterator Iter;
vec.push_back(13);
vec.push_back(21);
vec.push_back(9);
vec.push_back(31);
vec.push_back(8);
vec.push_back(10);

cout<<"vec data: ";
for(Iter = vec.begin(); Iter != vec.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;

int result1;
cout<<"\nOperation: count_if(vec.begin(), vec.end(), isgreat)\n";
result1 = count_if(vec.begin(), vec.end(), isgreat);
cout<<"The number of elements in vec greater than 8 is: "<<result1<<endl;
return 0;
}

Output:

Page 12 of 35 www.tenouk.com

count_if()

- The following example is to show how to use the count_if() STL function in Microsoft Visual
C++ as an implementation dependent.

template<class InputIterator, class Predicate> inline
 size_t count_if(
 InputIterator First ,
 InputIterator Last,
 Predicate P
)

- The class/parameter names in the prototype do not match the version in the header file. Some have

been modified to improve readability.
- The count_if() algorithm counts the number of elements in the range [First, Last) that

cause the predicate to return true and returns the number of elements for which the predicate was true.

// countif()
//
// Functions:
// count_if - Count items in a range that satisfy a predicate.
// begin - Returns an iterator that points to the first element in
// a sequence.
// end - Returns an iterator that points one past the end of a
// sequence.
#include <iostream>
#include <algorithm>
#include <functional>
#include <string>
#include <vector>

using namespace std;

//Return true if string str starts with letter 'C'
int MatchFirstChar(const string& str)
{
 string s("C");
 return s == str.substr(0, 1);
}

int main()
{
 const int VECTOR_SIZE = 110;

 //Define a template class vector of strings
 typedef vector<string > StringVector;

 //Define an iterator for template class vector of strings
 typedef StringVector::iterator StringVectorIt;

 //vector containing names
 StringVector NamesVect(VECTOR_SIZE);
 StringVectorIt start, end, it;
 //stores count of elements that match value.
 ptrdiff_t result = 0;
 //Initialize vector NamesVect
 NamesVect[0] = "Learn";
 NamesVect[1] = "C";
 NamesVect[2] = "and";
 NamesVect[3] = "C++";
 NamesVect[4] = "also";
 NamesVect[5] = "Visual";
 NamesVect[6] = "C++";
 NamesVect[7] = "and";
 NamesVect[8] = "C++";
 NamesVect[9] = ".Net";

Page 13 of 35 www.tenouk.com

 //location of first element of NamesVect
 start = NamesVect.begin();
 //one past the location last element of NamesVect
 end = NamesVect.end();
 //print content of NamesVect
 cout<<"NamesVect: ";
 for(it = start; it != end; it++)
 cout<<*it<<" ";
 cout<<endl;

 //Count the number of elements in the range [first, last +1)
 //that start with letter 'C'
 result = count_if(start, end, MatchFirstChar);

 //print the count of elements that start with letter 'S'
 cout<<"Number of elements that start with letter \"C\" = "<<result<<endl;
}

Output:

equal()

- Compares two ranges element by element either for equality or equivalence in a sense specified by a
binary predicate.

template<class InputIterator1, class InputIterator2>
 bool equal(
 InputIterator1 _First1,
 InputIterator1 _Last1,
 InputIterator2 _First2
);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>
 bool equal(
 InputIterator1 _First1,
 InputIterator1 _Last1,
 InputIterator2 _First2 ,
 BinaryPredicate _Comp
);

Parameters

Parameter Description

_First1 An input iterator addressing the position of the first element in the first range to be
tested.

_Last1 An input iterator addressing the position one past the final element in the first range to
be tested.

_First2 An input iterator addressing the position of the first element in the second range to be
tested.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two
elements are to be taken as equivalent. A binary predicate takes two arguments and
returns true when satisfied and false when not satisfied.

Table 34.8

- The return value is true if and only if the ranges are identical or equivalent under the binary predicate

when compared element by element; otherwise, false.
- The range to be searched must be valid; all pointers must be de-referenceable and the last position is

reachable from the first by incrementation.
- The time complexity of the algorithm is linear in the number of elements contained in the range.
- The operator== used to determine the equality between elements must impose an equivalence

relation between its operands.

Page 14 of 35 www.tenouk.com

//algorithm, equal()
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

//Return whether second element is twice of the first
bool twice(int elem1, int elem2)
{ return elem1 * 2 == elem2;}

int main()
{
vector <int> vec1, vec2, vec3;
vector <int>::iterator Iter1, Iter2, Iter3;

int i;
for(i = 10; i <= 15; i++)
vec1.push_back(i);

int j;
for(j = 0; j <= 5; j++)
vec2.push_back(j);

int k;
for(k = 10; k <= 15; k++)
vec3.push_back(k);

cout<<"vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

cout<<"vec3 data: ";
for(Iter3 = vec3.begin(); Iter3 != vec3.end(); Iter3++)
cout<<*Iter3<<" ";
cout<<endl;

//Testing vec1 and vec2 for equality based on equality
bool b;
b = equal(vec1.begin(), vec1.end(), vec2.begin());

if(b)
cout<<"The vectors vec1 and vec2 are equal based on equality."<<endl;
else
cout<<"The vectors vec1 and vec2 are not equal based on equality."<<endl;

//Testing vec1 and vec3 for equality based on equality
bool c;
c = equal(vec1.begin(), vec1.end(), vec3.begin());

if(c)
cout<<"The vectors vec1 and vec3 are equal based on equality."<<endl;
else
cout<<"The vectors vec1 and vec3 are not equal based on equality."<<endl;

//Testing vec1 and vec3 for equality based on twice
bool d;
d = equal(vec1.begin(), vec1.end(), vec3.begin(), twice);

if(d)
cout<<"The vectors vec1 and vec3 are equal based on twice."<<endl;
else
cout<<"The vectors vec1 and vec3 are not equal based on twice."<<endl;
 return 0;
}

Output:

Page 15 of 35 www.tenouk.com

equal_range()

- Finds a pair of positions in an ordered range, the first less than or equivalent to the position of a
specified element and the second greater than the element's position, where the sense of equivalence or
ordering used to establish the positions in the sequence may be specified by a binary predicate.

template<class ForwardIterator, class Type>
 pair<ForwardIterator, ForwardIterator> equal_range(
 ForwardIterator _First,
 ForwardIterator _Last,
 const Type& _Val
);
template<class ForwardIterator, class Type, class Pr>
 pair<ForwardIterator, ForwardIterator> equal_range(
 ForwardIterator _First,
 ForwardIterator _Last,
 const Type& _Val,
 BinaryPredicate _Comp
);

Parameters

Parameter Description

_First A forward iterator addressing the position of the first element in the range to be
searched.

_Last A forward iterator addressing the position one past the final element in the range
to be searched.

_Val

The value in the ordered range that needs to be equivalent to the value of the
element addressed by the first component of the pair returned and that needs to
be less than the value of the element addressed by the second component of that
pair returns.

_Comp
User-defined predicate function object that is true when the left-hand argument
is less than the right-hand argument. The user-defined predicate function should
return false when its arguments are equivalent.

Table 34.9

- The return value is a pair of forward iterators addressing two positions in an ordered range in which the

first component of the pair refers to the position where an element is or would be if it had a value that is
less than or equivalent to a specified value and the second component of the pair refers to the first
position where an element has a value that is greater than the value specified, where the sense of
equivalence or ordering may be specified by a binary predicate.

- Alternatively, the pair of forward iterators may be described as specify a subrange, contained within the
range searched, in which all of the elements are equivalent to the specified value in the sense defined
by the binary predicate used.

- The first component of the pair of the algorithm returns lower_bound(), and the second component
returns upper_bound().

- The subrange defined by the pair of iterators returned by the equal_range() algorithm contains the
equivalence class, in the standard set-theoretic sense, of the element whose value is specified as a
parameter.

- The sorted source range referenced must be valid; all pointers must be de-referenceable and within the
sequence the last position must be reachable from the first by incrementation.

- The sorted range must each be arranged as a precondition to the application of the equal_range()
algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined
ranges.

- The range is not modified by the algorithm merge().

Page 16 of 35 www.tenouk.com

- The value types of the forward iterators need be less-than comparable to be ordered, so that, given two
elements, it may be determined either that they are equivalent (in the sense that neither is less than the
other) or that one is less than the other. This results in an ordering between the nonequivalent elements

- The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with
the number of steps proportional to (_Last1 – _First1).

//algorithm, equal_range()
#include <vector>
#include <algorithm>
//For greater<int>()
#include <functional>
#include <iostream>
using namespace std;

//Return whether modulus of elem1 is less than modulus of elem2
bool mod_lesser(int elem1, int elem2)
{
 if(elem1 < 0)
 elem1 = - elem1;
 if(elem2 < 0)
 elem2 = - elem2;
 return (elem1 < elem2);
}

int main()
{
vector <int> vec1;
vector <int>::iterator Iter1;
pair < vector <int>::iterator, vector <int>::iterator > Result1, Result2, Result3;

//Constructing vectors vec1 with default less than ordering
int i;
for(i = -2; i <= 4; i++)
vec1.push_back(i);

int j;
for(j =1; j <= 5; j++)
vec1.push_back(j);

sort(vec1.begin(), vec1.end());
cout<<"vec1 data with range sorted by the binary predicate less than is:\n";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//Constructing vectors vec2 with range sorted by greater
vector <int> vec2(vec1);
vector <int>::iterator Iter2;
sort(vec2.begin(), vec2.end(), greater<int>());

cout<<"\nvec2 data with range sorted by the binary predicate greater than is:\n";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//Constructing vectors vec3 with range sorted by mod_lesser
vector <int> vec3(vec1);
vector <int>::iterator Iter3;
sort(vec3.begin(), vec3.end(), mod_lesser);

cout<<"\nvec3 data with range sorted by the binary predicate mod_lesser is:\n";
for(Iter3 = vec3.begin(); Iter3 != vec3.end(); Iter3++)
cout<<*Iter3<<" ";
cout<<"\n\n";

//equal_range of 4 in vec1 with default binary predicate less <int>()
Result1 = equal_range(vec1.begin(), vec1.end(), 4);
cout<<"lower_bound in vec1 for the element with a value of 4 is:
"<<*Result1.first<<endl;
cout<<"upper_bound in vec1 for the element with a value of 4 is:
"<<*Result1.second<<endl;
cout<<"The equivalence class for the element with a value of 4 in \nvec1 includes
the elements: ";
for(Iter1 = Result1.first; Iter1 != Result1.second; Iter1++)
cout<<*Iter1<<" " ;
cout<<endl<<endl;

//equal_range of 4 in vec2 with the binary predicate greater <int>()

Page 17 of 35 www.tenouk.com

Result2 = equal_range(vec2.begin(), vec2.end(), 4, greater <int>());
cout<<"lower_bound in vec2 for the element with a value of 4 is:
"<<*Result2.first<<endl;
cout<<"upper_bound in vec2 for the element with a value of 4 is:
"<<*Result2.second<<endl;
cout<<"The equivalence class for the element with a value of 4 in"

<<"\n vec2 includes the elements: ";
for(Iter2 = Result2.first; Iter2 != Result2.second; Iter2++)
cout<<*Iter2<<" ";
cout<<endl<<endl;

//equal_range of 4 in vec3 with the binary predicate mod_lesser
Result3 = equal_range(vec3.begin(), vec3.end(), 4, mod_lesser);
cout<<"lower_bound in vec3 for the element with a value of 4 is:
"<<*Result3.first<<endl;
cout<<"upper_bound in vec3 for the element with a value of 4 is:
"<<*Result3.second<<endl;
cout<<"equivalence class for the element with a value of 4 in \nvec3 includes the
elements: ";
for(Iter3 = Result3.first; Iter3 != Result3.second; Iter3++)
cout<<*Iter3<<" " ;
cout<<endl<<endl;
return 0;
}

Output:

fill()

- Assigns the same new value to every element in a specified range.

template<class ForwardIterator, class Type>
 void fill(
 ForwardIterator _First,
 ForwardIterator _Last,
 const Type& _Val
);

Parameters

Parameter Description

_First A forward iterator addressing the position of the first element in the range to be
traversed.

_Last A forward iterator addressing the position one past the final element in the range to be
traversed.

Page 18 of 35 www.tenouk.com

_Val The value to be assigned to elements in the range [_First, _Last).

Table 34.10

- The destination range must be valid; all pointers must be de-referenceable, and the last position is
reachable from the first by incrementation. The complexity is linear with the size of the range.

//algorithm, fill()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
vector <int> vec;
vector <int>::iterator Iter1;

int i;
for(i = 10; i <= 20; i++)
vec.push_back(i);

cout<<"Vector vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//Fill the last 4 positions with a value of 9
cout<<"\nOperation: fill(vec.begin() + 4, vec.end(), 9)\n";
fill(vec.begin() + 4, vec.end(), 9);
cout<<"Modified vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;
return 0;
}

Output:

fill_n()

- Assigns a new value to a specified number of elements in a range beginning with a particular element.

template<class OutputIterator, class Size, class Type>
 void fill_n(
 OutputIterator _First,
 Size _Count,
 const Type& _Val
);

Parameters

Parameter Description

_First An output iterator addressing the position of the first element in the range to be
assigned the value _Val.

_Count A signed or unsigned integer type specifying the number of elements to be assigned the
value.

_Val The value to be assigned to elements in the range [_First, _First + _Count).

Table 34.11

Page 19 of 35 www.tenouk.com

- The destination range must be valid; all pointers must be de-referenceable, and the last position is
reachable from the first by incrementation. The complexity is linear with the size of the range.

//algorithm, fill_n()
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec;
vector <int>::iterator Iter1;

int i;
for(i = 10; i <= 20; i++)
vec.push_back(i);

cout<<"Vector vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//Fill the last 3 positions for 6 position with a value of 9
cout<<"\nOperation: fill_n(vec.begin() + 3, 6, 9)\n";
fill_n(vec.begin() + 3, 6, 9);
cout<<"Modified vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;
return 0;
}

Output:

find()

- Locates the position of the first occurrence of an element in a range that has a specified value.

template<class InputIterator, class Type>
 InputIterator find(
 InputIterator _First,
 InputIterator _Last,
 const Type& _Val
);

Parameters

Parameter Description

_First An input iterator addressing the position of the first element in the range to be
searched for the specified value.

_Last An input iterator addressing the position one past the final element in the range to be
searched for the specified value.

_Val The value to be searched for.

Table 34.12

- The return value is an input iterator addressing the first occurrence of the specified value in the range
being searched. If no such value exists in the range, the iterator returned addresses the last position of
the range, one past the final element.

- The operator== used to determine the match between an element and the specified value must
impose an equivalence relation between its operands.

Page 20 of 35 www.tenouk.com

//algorithm, find()
#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
list <int> lst;
list <int>::iterator Iter;
list <int>::iterator result;
lst.push_back(9);
lst.push_back(21);
lst.push_back(14);
lst.push_back(10);
lst.push_back(16);
lst.push_back(31);

cout<<"List lst data: ";
for(Iter = lst.begin(); Iter != lst.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;

cout<<"\nOperation: find(lst.begin(), lst.end(), 14)\n";
result = find(lst.begin(), lst.end(), 14);
if(result == lst.end())
cout<<"There is no 14 in list lst."<<endl;
else
result++;
cout<<"There is a 14 in list lst and it is"<<" followed by a "<<*(result)<<endl;
return 0;
}

Output:

find_end()

- Looks in a range for the last subsequence that is identical to a specified sequence or that is equivalent in
a sense specified by a binary predicate.

template<class ForwardIterator1, class ForwardIterator2>
 ForwardIterator1 find_end(
 ForwardIterator1 _First1 ,
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2 ,
 ForwardIterator2 _Last2
);
template<class ForwardIterator1, class ForwardIterator2, class Pr>
 ForwardIterator1 find_end(
 ForwardIterator1 _First1 ,
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2,
 ForwardIterator2 _Last2,
 BinaryPredicate _Comp
);

Parameters

Parameter Description

_First1 A forward iterator addressing the position of the first element in the range to be
searched.

_Last1 A forward iterator addressing the position one past the final element in the range to be
searched.

_First2 A forward iterator addressing the position of the first element in the range to be

Page 21 of 35 www.tenouk.com

searched.

_Last2 A forward iterator addressing the position one past the final element in the range to be
searched.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two
elements are to be taken as equivalent. A binary predicate takes two arguments and
returns true when satisfied and false when not satisfied.

Table 34.13

- The return value is a forward iterator addressing the position of the first element of the last subsequence

that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.
- The operator== used to determine the match between an element and the specified value must

impose an equivalence relation between its operands.
- The ranges referenced must be valid; all pointers must be de-referenceable and, within each sequence,

the last position is reachable from the first by incrementation.

//algorithm, find_end()
//some type conversion warning
#include <vector>
#include <list>
#include <algorithm >
#include <iostream>
using namespace std;

//Return whether second element is twice the first
bool twice(int elem1, int elem2)
{ return 2 * elem1 == elem2;}

int main()
{
vector <int> vec1, vec2;
list <int> lst;
vector <int>::iterator Iter1, Iter2;
list <int>::iterator lst_Iter, lst_inIter;

int i;
for(i = 10; i <= 15; i++)
vec1.push_back(i);

int j;
for(j = 11; j <= 14; j++)
lst.push_back(j);

int k;
for(k = 12; k <= 14; k++)
vec2.push_back(2*k);

cout<<"Vector vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"List lst data: ";
for(lst_Iter = lst.begin(); lst_Iter != lst.end(); lst_Iter++)
cout<<*lst_Iter<<" ";
cout<<endl;

cout<<"Vector vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" " ;
cout<<endl<<endl;

//Searching vec1 for a match to lst under identity
vector <int>::iterator result1;
result1 = find_end(vec1.begin(), vec1.end(), lst.begin(), lst.end());

if(result1 == vec1.end())
cout<<"There is no match of lst in vec1."<<endl;
else
cout<<"There is a match of lst in vec1 that begins at "

<<"position "<<result1 - vec1.begin()<<endl;

//Searching vec1 for a match to lst under the binary predicate twice
vector <int>::iterator result2;
result2 = find_end(vec1.begin(), vec1.end(), vec2.begin(), vec2.end(), twice);

Page 22 of 35 www.tenouk.com

if(result2 == vec1.end())
cout<<"\nThere is no match of lst in vec1."<<endl;
else
cout<<"\nThere is a sequence of elements in vec1 that "
<<"are\nequivalent to those in vec2 under the binary "
<<"predicate\ntwice and that begins at position "
<<result2 - vec1.begin()<<endl;
return 0;
}

Output:

find_first_of()

- Searches for the first occurrence of any of several values within a target range or for the first
occurrence of any of several elements that are equivalent in a sense specified by a binary predicate to a
specified set of the elements.

template<class ForwardIterator1, class ForwardIterator2>
 ForwardIterator1 find_first_of(
 ForwardIterator1 _First1,
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2 ,
 ForwardIterator2 _Last2
);
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
 ForwardIterator1 find_first_of(
 ForwardIterator1 _First1 ,
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2 ,
 ForwardIterator2 _Last2,
 BinaryPredicate _Comp
);

Parameters

Parameter Description

_First1 A forward iterator addressing the position of the first element in the range to be
searched.

_Last1 A forward iterator addressing the position one past the final element in the range to
be searched.

_First2 A forward iterator addressing the position of the first element in the range to be
matched.

_Last2 A forward iterator addressing the position one past the final element in the range to
be matched.

_Comp
User-defined predicate function object that defines the condition to be satisfied if
two elements are to be taken as equivalent. A binary predicate takes two arguments
and returns true when satisfied and false when not satisfied.

Table 34.14

- The return value is a forward iterator addressing the position of the first element of the first

subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary
predicate.

Page 23 of 35 www.tenouk.com

- The operator== used to determine the match between an element and the specified value must
impose an equivalence relation between its operands.

- The ranges referenced must be valid; all pointers must be de-referenceable and, within each sequence,
the last position is reachable from the first by incrementation.

//algorithm, find_first_of()
#include <vector>
#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

//Return whether second element is twice the first
bool twice(int elem1, int elem2)
{return (2 * elem1 == elem2);}

int main()
{
vector <int> vec1, vec2;
list <int> lst;
vector <int>::iterator Iter1, Iter2;
list <int>::iterator lst_Iter, lst_inIter;

int i;
for(i = 0; i <= 5; i++)
vec1.push_back(5*i);

int j;
for(j = 3; j <= 4; j++)
lst.push_back(5*j);

int k;
for(k = 2; k <= 4; k++)
vec2.push_back(10*k);

cout<<"Vector vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"List lst data: ";
for(lst_Iter = lst.begin(); lst_Iter!= lst.end(); lst_Iter++)
cout<<*lst_Iter<<" ";
cout<<endl;

cout<<"Vector vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//Searching vec1 for first match to lst under identity
vector <int>::iterator result1;
result1 = find_first_of(vec1.begin(), vec1.end(), lst.begin(), lst.end());

if(result1 == vec1.end())
cout<<"\nThere is no match of lst in vec1."<<endl;
else
cout<<"\nThere is at least one match of lst in vec1"
<<"\nand the first one begins at "
<<"position "<<result1 - vec1.begin()<<endl;

//Searching vec1 for a match to lst under the binary predicate twice
vector <int>::iterator result2;
result2 = find_first_of(vec1.begin(), vec1.end(), vec2.begin(), vec2.end(), twice);

if(result2 == vec1.end())
cout<<"\nThere is no match of lst in vec1."<<endl;
else
cout<<"\nThere is a sequence of elements in vec1 that "
<<"are\nequivalent to those in vec2 under the binary\n"
<<"predicate twice and the first one begins at position "
<<result2 - vec1.begin()<<endl;
return 0;
}

Output:

Page 24 of 35 www.tenouk.com

find_if()

- Locates the position of the first occurrence of an element in a range that satisfies a specified condition.

template<class InputIterator, class Predicate>
 InputIterator find_if(
 InputIterator _First,
 InputIterator _Last,
 Predicate _Pred
);

Parameters

Parameter Description
_First An input iterator addressing the position of the first element in the range to be searched.

_Last An input iterator addressing the position one past the final element in the range to be
searched.

_Pred User-defined predicate function object that defines the condition to be satisfied by the
element being searched for. A predicate takes single argument and returns true or false.

Table 34.15

- The return value is an input iterator that addresses the first element in the range that satisfies the

condition specified by the predicate.
- This template function is a generalization of the algorithm find(), replacing the predicate "equals a

specific value" with any predicate.

//algorithm, find_if()
#include <list>
#include <algorithm >
#include <iostream>
using namespace std;

bool great(int value)
{return value>13;}

int main()
{
list <int> lst;
list <int>::iterator Iter;
list <int>::iterator result;

lst.push_back(13);
lst.push_back(9);
lst.push_back(10);
lst.push_back(22);
lst.push_back(31);
lst.push_back(17);

cout<<"List lst data: ";
for(Iter = lst.begin(); Iter != lst.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;

cout<<"\nOperation: find_if(lst.begin(), lst.end(), great)\n";
result = find_if(lst.begin(), lst.end(), great);
if(result == lst.end())
cout<<"There is no element greater than 13 in list lst."<<endl;

Page 25 of 35 www.tenouk.com

else
result++;
cout<<"There is an element greater than 13\nin list lst,"
<<" and it is followed by a "
<<*(result)<<endl;
return 0;
}

Output:

for_each()

- Applies a specified function object to each element in a forward order within a range and returns the
function object.

template<class InputIterator, class Function>
 Function for_each(
 InputIterator _First,
 InputIterator _Last,
 Function _Func
);

Parameters

Parameter Description

_First An input iterator addressing the position of the first element in the range to be
operated on.

_Last An input iterator addressing the position one past the final element in the range
operated on.

_Func User-defined function object that is applied to each element in the range.

Table 34.16

- The return value is a copy of the function object after it has been applied to all of the elements in the
range.

- The algorithm for_each() is very flexible, allowing the modification of each element within a range
in different, user-specified ways.

- Templatized functions may be reused in a modified form by passing different parameters. User-defined
functions may accumulate information within an internal state that the algorithm may return after
processing all of the elements in the range.

- The range referenced must be valid; all pointers must be de-referenceable and, within the sequence, the
last position must be reachable from the first by incrementation.

- The complexity is linear with at most (_Last – _First) comparisons.

//algorithm, for_each()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

//The function object multiplies an element by a Factor
template <class Type>
class MultValue
{
private:
//The value to multiply by
Type Factor;
public:
//Constructor initializes the value to multiply by
MultValue(const Type& _Val) : Factor(_Val) {}

Page 26 of 35 www.tenouk.com

//The function call for the element to be multiplied
void operator()(Type& elem) const
{elem *= Factor;}
} ;

//The function object to determine the average
class Average
{
private:
//The number of elements
long num;
//The sum of the elements
long sum;
public:
//Constructor initializes the value to multiply by
Average() : num(0), sum(0){}

//The function call to process the next element
void operator()(int elem) \
{
//Increment the element count
num++;
//Add the value to the partial sum
sum += elem;
}
//return Average
operator double()
{
return (static_cast <double> (sum))/(static_cast <double> (num));
}
} ;

int main()
{
vector <int> vec;
vector <int>::iterator Iter1;

//Constructing vector vec
int i;
for(i = -3; i <= 4; i++)
vec.push_back(i);

cout<<"vector vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//Using for_each to multiply each element by a Factor
for_each(vec.begin(), vec.end(), MultValue<int>(-2));

cout<<"\nMultiplying the elements of the vector vec\n"
<<"by the factor -2 gives:\nvecmult1 data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//The function object is templatized and so can be
//used again on the elements with a different Factor
for_each(vec.begin(), vec.end(), MultValue<int>(5));

cout<<"\nMultiplying the elements of the vector vecmult1\n"
<<"by the factor 5 gives:\nvecmult2 data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//The local state of a function object can accumulate
//information about a sequence of actions that the
//return value can make available, here the Average
double avemod2 = for_each(vec.begin(), vec.end(), Average());
cout<<"\nThe average of the elements of vec is:\nAverage(vecmult2) = "<<avemod2<<endl;
return 0;
}

Output:

Page 27 of 35 www.tenouk.com

generate()

- Assigns the values generated by a function object to each element in a range.

template<class ForwardIterator, class Generator>
 void generate(
 ForwardIterator _First,
 ForwardIterator _Last,
 Generator _Gen
);

Parameters

Parameter Description

_First A forward iterator addressing the position of the first element in the range to which
values are to be assigned.

_Last A forward iterator addressing the position one past the final element in the range to
which values are to be assigned.

_Gen A function object that is called with no arguments that is used to generate the values to
be assigned to each of the elements in the range.

Table 34.17

- The function object is invoked for each element in the range and does not need to return the same value

each time it is called. It may, for example, read from a file or refer to and modify a local state.
- The generator's result type must be convertible to the value type of the forward iterators for the range.
- The range referenced must be valid; all pointers must be de-referenceable and, within the sequence, the

last position must be reachable from the first by incrementation.
- The complexity is linear, with exactly (_Last – _First) calls to the generator being required.

//algorithm, generate()
#include <vector >
#include <deque>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
//Assigning random values to vector integer elements
vector <int> vec(5);
vector <int>::iterator Iter1;
deque <int> deq(5);
deque <int>::iterator deqIter;

cout<<"\nOperation: generate(vec.begin(), vec.end(), rand)\n";
generate(vec.begin(), vec.end(), rand);
cout<<"Vector vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

//Assigning random values to deque integer elements
cout<<"\nOperation: generate(deq.begin(), deq.end(), rand)\n";
generate(deq.begin(), deq.end(), rand);

Page 28 of 35 www.tenouk.com

cout<<"Deque deq data: ";
for(deqIter = deq.begin(); deqIter != deq.end(); deqIter++)
cout<<*deqIter<<" ";
cout<<endl;
return 0;
}

Output:

generate_n()

- Assigns the values generated by a function object to a specified number of element in a range and
returns to the position one past the last assigned value.

template<class OutputIterator, class Size, class Generator>
 void generate_n(
 OutputIterator _First,
 Size _Count,
 Generator _Gen
);

Parameters

Parameter Description

_First An output iterator addressing the position of first element in the range to which
values are to be assigned.

_Count A signed or unsigned integer type specifying the number of elements to be
assigned a value by the generator function.

_Gen A function object that is called with no arguments that is used to generate the
values to be assigned to each of the elements in the range.

Table 34.18

- The function object is invoked for each element in the range and does not need to return the same value

each time it is called. It may, for example, read from a file or refer to and modify a local state.
- The generator's result type must be convertible to the value type of the forward iterators for the range.
- The range referenced must be valid; all pointers must be dereferenceable and, within the sequence, the

last position must be reachable from the first by incrementation.
- The complexity is linear, with exactly _Count calls to the generator being required.

//algorithm, generate_n()
#include <vector>
#include <deque>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
//Assigning random values to vector integer elements
vector <int> vec(7);
vector <int>::iterator Iter1;
deque <int> deq(7);
deque <int>::iterator deqIter;

cout<<"\nOperation: generate_n(vec.begin(), 7, rand)\n";
generate_n(vec.begin(), 7, rand);
cout<<"Vector vec data: ";
for(Iter1 = vec.begin(); Iter1 != vec.end(); Iter1++)
cout<<*Iter1<<" ";

Page 29 of 35 www.tenouk.com

cout<<endl;

//Assigning random values to deque integer elements
cout<<"\nOperation: generate_n(deq.begin(), 4, rand)\n";
generate_n(deq.begin(), 4, rand);
cout<<"Deque deq data: ";
for(deqIter = deq.begin(); deqIter != deq.end(); deqIter++)
cout<<*deqIter<<" ";
cout<<endl;
return 0;
}

Output:

includes()

- Tests whether one sorted range contains all the elements contained in a second sorted range, where the
ordering or equivalence criterion between elements may be specified by a binary predicate.

template<class InputIterator1, class InputIterator2>
 bool includes(
 InputIterator1 _First1 ,
 InputIterator1 _Last1,
 InputIterator2 _First2 ,
 InputIterator2 _Last1
);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>
 bool includes(
 InputIterator1 _First1,
 InputIterator1 _Last1,
 InputIterator2 _First2 ,
 InputIterator2 _Last1 ,
 BinaryPredicate _Comp
);

Parameters

Parameter Description

_First1
An input iterator addressing the position of the first element in the first of two sorted
source ranges to be tested for whether all the elements of the second are contained in the
first.

_Last1
An input iterator addressing the position one past the last element in the first of two
sorted source ranges to be tested for whether all the elements of the second are contained
in the first.

_First2
An input iterator addressing the position of the first element in second of two
consecutive sorted source ranges to be tested for whether all the elements of the second
are contained in the first.

_Last2
An input iterator addressing the position one past the last element in second of two
consecutive sorted source ranges to be tested for whether all the elements of the second
are contained in the first.

_Comp
User-defined predicate function object that defines sense in which one element is less
than another. A binary predicate takes two arguments and returns true when satisfied
and false when not satisfied.

Table 34.19

- The return value is a true if the first sorted range contains all the elements in the second sorted range;

otherwise, false.

Page 30 of 35 www.tenouk.com

- Another way to think of this test is that it determined whether the second source range is a subset of the
first source range.

- The sorted source ranges referenced must be valid; all pointers must be de-referenceable and, within
each sequence, the last position must be reachable from the first by incrementation.

- The sorted source ranges must each be arranged as a precondition to the application of the algorithm
includes in accordance with the same ordering as is to be used by the algorithm to sort the combined
ranges.

- The source ranges are not modified by the algorithm merge().
- The value types of the input iterators need be less than comparable to be ordered, so that, given two

elements, it may be determined either that they are equivalent, in the sense that neither is less than the
other or that one is less than the other. This results in an ordering between the non equivalent elements.

- More precisely, the algorithm tests whether all the elements in the first sorted range under a specified
binary predicate have equivalent ordering to those in the second sorted range.

- The complexity of the algorithm is linear with at most 2*((_Last1 – _First1)–(_Last2 –
_First2))–1 comparisons for nonempty source ranges.

//algorithm, includes()
#include <vector>
#include <algorithm>
//For greater<int>()
#include <functional>
#include <iostream>
using namespace std;

//Return whether modulus of elem1 is less than modulus of elem2
bool mod_lesser(int elem1, int elem2)
{
if(elem1 < 0)
elem1 = - elem1;
if(elem2 < 0)
elem2 = - elem2;
return (elem1 < elem2);
}

int main()
{
vector <int> vec1, vec2;
vector <int>::iterator Iter1, Iter2;

//Constructing vectors vec1 & vec2 with default less-than ordering
int i;
for(i = -2; i <= 4; i++)
vec1.push_back(i);

int j;
for(j =-2; j <= 3; j++)
vec2.push_back(j);

cout<<"vector vec1 data with range sorted by the "
<<"binary predicate\nless than is: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"\nvector vec2 data with range sorted by the "
<<"binary predicate\nless than is: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//Constructing vectors vec3 & vec4 with ranges sorted by greater
vector <int> vec3(vec1), vec4(vec2);
vector <int>::iterator Iter3, Iter4;
sort(vec3.begin(), vec3.end(), greater<int>());
sort(vec4.begin(), vec4.end(), greater<int>());
vec3.pop_back();

cout<<"\nvector vec3 data with range sorted by the "
<<"binary predicate\ngreater is: ";
for(Iter3 = vec3.begin(); Iter3 != vec3.end(); Iter3++)
cout<<*Iter3<<" ";
cout<<endl;

cout<<"\nvector vec4 data with range sorted by the "
<<"binary predicate\ngreater is: ";

Page 31 of 35 www.tenouk.com

for(Iter4 = vec4.begin(); Iter4 != vec4.end(); Iter4++)
cout<<*Iter4<<" ";
cout<<endl;

//Constructing vectors vec5 & vec6 with ranges sorted by mod_lesser
vector <int> vec5(vec1), vec6(vec2);
vector <int>::iterator Iter5, Iter6;
reverse(vec5.begin(), vec5.end());
vec5.pop_back();
vec5.pop_back();
sort(vec5.begin(), vec5.end(), mod_lesser);
sort(vec6.begin(), vec6.end(), mod_lesser);

cout<<"\nvector vec5 data with range sorted by the "
<<"binary predicate\nmod_lesser is: ";
for(Iter5 = vec5.begin(); Iter5 != vec5.end(); Iter5++)
cout<<*Iter5<<" ";
cout<<endl;

cout<<"\nvector vec6 data with range sorted by the "
<<"binary predicate\nmod_lesser is: ";
for(Iter6 = vec6.begin(); Iter6 != vec6.end(); Iter6++)
cout<<*Iter6<<" ";
cout<<endl;

//To test for inclusion under an asscending order
//with the default binary predicate less <int>()
bool Result1;
Result1 = includes(vec1.begin(), vec1.end(), vec2.begin(), vec2.end());
if(Result1)
cout<<"\nAll the elements in vector vec2 are contained in vector vec1."<<endl;
else
cout<<"\nAt least one of the elements in vector vec2 is not contained in vector
vec1."<<endl;

//To test for inclusion under descending
//order specifies binary predicate greater<int>()
bool Result2;
Result2 = includes(vec3.begin(), vec3.end(), vec4.begin(), vec4.end(),
greater<int>());
if(Result2)
cout<<"\nAll the elements in vector vec4 are contained\nin vector vec3."<<endl;
else
cout<<"\nAt least one of the elements in vector vec4\nis not contained in vector
vec3."<<endl;

//To test for inclusion under a user
//defined binary predicate mod_lesser
bool Result3;
Result3 = includes(vec5.begin(), vec5.end(), vec6.begin(), vec6.end(),
mod_lesser) ;
if(Result3)
cout<<"\nAll the elements in vector vec6 are contained under\nmod_lesser in vector
vec5."<<endl;
else
cout<<"\nAt least one of the elements in vector vec6 is not\ncontained under
mod_lesser in vector vec5."<<endl;
return 0;
}

Output:

Page 32 of 35 www.tenouk.com

- Program example compiled using g++.

//******algocopy.cpp********
//algorithm, copy()
#include <vector>
#include <algorithm >
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1, vec2;
vector <int>::iterator Iter1, Iter2;

int i;
for(i = 0; i <= 5; i++)
vec1.push_back(i);

int j;
for(j = 10; j <= 20; j++)
vec2.push_back(j);

cout<<"vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To copy the first 4 elements of vec1 into the middle of vec2
copy(vec1.begin(), vec1.begin() + 4, vec2.begin() + 5);

cout<<"vec2 with vec1 insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//To shift the elements inserted into vec2 two positions
//to the left
copy(vec2.begin()+4, vec2.begin() + 7, vec2.begin() + 2);

cout<<"vec2 with shifted insert data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;
return 0;

Page 33 of 35 www.tenouk.com

http://www.tenouk.com/Module000.html

}

[bodo@bakawali ~]$ g++ algocopy.cpp -o algocopy
[bodo@bakawali ~]$./algocopy

vec1 data: 0 1 2 3 4 5
vec2 data: 10 11 12 13 14 15 16 17 18 19 20
vec2 with vec1 insert data: 10 11 12 13 14 0 1 2 3 19 20
vec2 with shifted insert data: 10 11 14 0 1 0 1 2 3 19 20

//******algofindfirstof.cpp********
//algorithm, find_first_of()
#include <vector>
#include <list>
#include <algorithm >
#include <iostream>
using namespace std;

//Return whether second element is twice the first
bool twice(int elem1, int elem2)
{return (2 * elem1 == elem2);}

int main()
{
vector <int> vec1, vec2;
list <int> lst;
vector <int>::iterator Iter1, Iter2;
list <int>::iterator lst_Iter, lst_inIter;

int i;
for(i = 0; i <= 5; i++)
vec1.push_back(5*i);

int j;
for(j = 3; j <= 4; j++)
lst.push_back(5*j);

int k;
for(k = 2; k <= 4; k++)
vec2.push_back(10*k);

cout<<"Vector vec1 data: ";
for(Iter1 = vec1.begin(); Iter1 != vec1.end(); Iter1++)
cout<<*Iter1<<" ";
cout<<endl;

cout<<"List lst data: ";
for(lst_Iter = lst.begin(); lst_Iter!= lst.end(); lst_Iter++)
cout<<*lst_Iter<<" ";
cout<<endl;

cout<<"Vector vec2 data: ";
for(Iter2 = vec2.begin(); Iter2 != vec2.end(); Iter2++)
cout<<*Iter2<<" ";
cout<<endl;

//Searching vec1 for first match to lst under identity
vector <int>::iterator result1;
result1 = find_first_of(vec1.begin(), vec1.end(), lst.begin(), lst.end());

if(result1 == vec1.end())
cout<<"\nThere is no match of lst in vec1."<<endl;
else
cout<<"\nThere is at least one match of lst in vec1"
<<"\nand the first one begins at "
<<"position "<<result1 - vec1.begin()<<endl;

//Searching vec1 for a match to lst under the binary predicate twice
vector <int>::iterator result2;
result2 = find_first_of(vec1.begin(), vec1.end(), vec2.begin(), vec2.end(), twice);

if(result2 == vec1.end())
cout<<"\nThere is no match of lst in vec1."<<endl;
else
cout<<"\nThere is a sequence of elements in vec1 that "
<<"are\nequivalent to those in vec2 under the binary\n"
<<"predicate twice and the first one begins at position "
<<result2 - vec1.begin()<<endl;
return 0;

Page 34 of 35 www.tenouk.com

}

[bodo@bakawali ~]$ g++ algofindfirstof.cpp -o algofindfirstof
[bodo@bakawali ~]$./algofindfirstof

Vector vec1 data: 0 5 10 15 20 25
List lst data: 15 20
Vector vec2 data: 20 30 40

There is at least one match of lst in vec1
and the first one begins at position 3

There is a sequence of elements in vec1 that are
equivalent to those in vec2 under the binary
predicate twice and the first one begins at position 2

---End of Algorithm Part II------------------------------------

---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

Page 35 of 35 www.tenouk.com

http://www.tenouk.com/cplusbook.html

