
MODULE 3
STATEMENTS, EXPRESSIONS

AND OPERATORS

My Training Period: hours

Abilities

Able to understand and use:

▪ Statements.
▪ Expressions.
▪ Operators.
▪ The Unary Mathematical Operators.
▪ The Binary Mathematical Operators.
▪ Precedence and Parentheses.
▪ Relational Operator.
▪ Expression and if Statement.
▪ Relational Expressions.
▪ Precedence of Relational Operators.
▪ Logical Operators.
▪ True and False Values.
▪ Precedence of Logical Operators.
▪ Compound Assignment Operators.
▪ The Conditional Operator (Ternary).
▪ The Bitwise operators.
▪ The Comma Operator.

3.1 Statements

- A statement is a complete instruction asking the computer to carry out some tasks.
- Normally written one per line, although some statements span multiple lines.
- Always end with a semicolon (;), except for preprocessor directive such as #define and #include.
- For example:

←←←

Evaluation direction
x = 2 + 3;

- This statement instructs the computer to add 2 to 3 and assign the result to the variable x.
- C/C++ compiler is not sensitive to white spaces such as spaces, tabs and blank lines in the source code,

within the statements.
- Compiler read a statement in the source code it looks for the characters and for the terminating semicolon

and ignores the white space. For example, three of the following examples are same.

x = 2 + 3; or

x=2+3; or

x =
2
+
3;

- You can try compiling the following program example; the ‘not so readable’ codes, then see whether it is

valid or not.

//Demonstrate unary operators prefix and postfix modes
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
int main(){int a, b; a = b = 5; printf("postfix mode and prefix mode example\n");
printf("initial value, a = b = 5\n"); printf("\npostfix mode, a-- = %d prefix mode, --b
= %d", a--, --b);
//Some comment here

Page 1 of 28 www.tenouk.com

printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);printf("\npostfix
mode, a-- = %d prefix mode, --b = %d", a--, --b);printf("\npostfix mode, a-- = %d
prefix mode, --b = %d", a--, --b);printf("\npostfix mode, a-- = %d prefix mode, --b =
%d", a--, --b);printf("\n");system("pause");return 0;}

- Or something like this:

//Demonstrate unary operators prefix and postfix modes

#include <stdlib.h>
#include <stdio.h>

#include <iostream.h>
int main(){int a, b; a = b = 5; printf("postfix mode and prefix mode example\n");

printf("initial value, a = b = 5\n"); printf("\npostfix mode, a-- = %d prefix mode, --b
= %d", a--, --b);/*Another comment here*/

//Some comment here
printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b); /*Another comment

here*/printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);printf("\npostfix mode,
a-- = %d prefix mode, --b = %d", a--, --b);printf("\npostfix mode, a-- = %d prefix mode, --b =

%d", a--, --b);printf("\n");system("pause");return 0;}

Output:

- The most important thing here is the semicolon that defines a statement and codes such as preprocessor
directive and comments that cannot be in the same line with other codes. See also how the white spaces
have been ignored and how the compiler read the codes.

- But there is an exception: For Literal string constants, white space such as tabs and spaces are
considered part of the string.

- A string is a series of characters or combination of more than one character.
- Literal string constants are strings that are enclosed within double quotes and interpreted literally by the

compiler, space by space.

- Is legal but:

- To break a literal string constant line, use the backslash character (\) just before the break, like this:

printf("Hello, \
 World");

- For C++ you can use the double quotation pair, " " for each literal string for each line, so can break

more than one line easily.
- For example:

Page 2 of 28 www.tenouk.com

cout<<"\nNow I'm in FunctTwo()!\nmay do some work here..."
 <<"\nReceives nothing but return something"
 <<"\nto the calling function..."<<endl;

- For a character, we use single quotation mark (''). So, you can see that for one character only, the using

"" and '' should provide the same result isn’t it? For example:

"A" and 'a' both are same.

3.2 A Block of Code Structure

- Is a group of more than one C/C++ statements enclosed in curly braces. For example:

- Same as:

 {printf("Hello, ");
 printf("world! ");}

Note:
Bracket / square bracket - []
Parentheses - ()
Curly braces - { }
Angled brackets - < >

3.3 Expressions

- Is anything whose evaluation yields a numerical value is called expression.
- For example:

PI //a symbolic constant defined in the program
 Evaluates to the value it was given when it was created with the #define directive.

20 //a literal constant
 Evaluates to its own value.

yield //a variable
 Evaluates to the value assigned to it by the program.

- More complex expression use operators (combining the simple expressions).
- For example:

1.25 / 8 + 5 * rate + rate * rate / cost;

x = 2 + 8;

x = a + 10;

- The last one evaluates the expression a + 10 and assigns the result to variable x.
- So, the general form of expression and variables, evaluated from the right to left, is:

variable = any_expression;

- E.g.

y = x = a + 10;

Page 3 of 28 www.tenouk.com

x = 6 + (y = 4 + 5);

3.4 Operators

- Is a symbol that instructs C/C++ to perform some operation, or action, on one or more operands.
- Operand is something that an operator acts on.
- For example:

x = 2 + 3;

 + and = are operators.
2 and 3 are operands.
x is variable.

- In C/C++, all operands are expressions; and operators fall into several categories as follow:

1. The assignment operator (=).
2. Mathematical operators (+, -, /, *, %).
3. Relational operators (>, <, >=, <=, ==, !=).
4. Logical operators (AND, OR, NOT, &&, ||).

- An example of the assignment operator:

x = y;

▪ Assign the value of y to variable x and this is called assignment statement.
▪ Left side (lvalue) must be a variable name.
▪ Right side (rvalue) can be any expression.
▪ The evaluation from right to left.

3.4.1 The Unary Mathematical Operators

- Mathematical operators perform mathematical operation such as +, -, *, % and /.
- C/C++ has:

1. 2 unary mathematical operators (++ and --) and
2. 5 binary mathematical operators (discussed later).

- Called unary because they take a single operand as shown in table 3.1.

Operator Symbol Action Examples

Increment ++ Increment operand by
one ++x, x++

Decrement -- Decrement operand by
one --x, x--

Table 3.1

- These operators can be used only with variables not with constants.
- To add 1 or to subtract 1 from the operand.

++x same as x = x + 1
--y same as y = y + 1

- ++x and --y are called prefix mode, that means the increment or decrement operators modify their

operand before it is used.
- x++ and y-- are called postfix mode, the increment or decrement operators modify their operand after it

is used. Remember the before used and after used words.
- For example:

Postfix mode:

Page 4 of 28 www.tenouk.com

x = 10;
y = x++;

After these statements are executed, x = 11, y has the value of 10, the value of x was assigned
to y, and then x was incremented.

Prefix mode:

y = 10;
y = ++x;

Both y and x having the value of 11, x is incremented, and then its value is assigned to y.

- Try the following program and study the output and the source code.

//Demonstrates unary operators prefix and postfix modes
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>

int main()
{
 int a, b;
 //set a and b both equal to 5
 a = b = 5;
 //print them, decrementing each time
 //use prefix mode for b, postfix mode for a

 printf("postfix mode and prefix mode example\n");
 printf("initial value, a = b = 5\n");

 printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);
 printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);
 printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);
 printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);
 printf("\npostfix mode, a-- = %d prefix mode, --b = %d", a--, --b);
 printf("\n");
 system("pause");
 return 0;
 }

Output:

- Change all the -- operator to ++ operator and re run the program, notice the different.

3.4.2 Format specifiers

- Is used with printf() and scanf() function and other input/output functions to determine the
format of the standard output (screen) and standard input (keyboard).

- The frequently used format specifiers are listed in Table 3.2. Other format specifiers and their usage will
be discussed in formatted input/output Module in more detail.

Format specifier Description
%d Is to print decimal integers.
%s Is to print character strings.
%c Is to print character.

Page 5 of 28 www.tenouk.com

%f Is to print floating-point number.
%.2f Prints numbers with fractions with up to two decimal places.
%u Prints unsigned integer

Table 3.2

- Try the following program example and study the output and the source code.

//Format specifier example
#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("My name is %s and I am %d years old.\n", "John", 25);
 printf("Examples of the decimal points %f\t%.3f\t%.2f\t\n",1.7885,1.7885,1.7885);
 printf("Examples of characters\n");
 printf(" %c \n %c \n %c\n", 'A', 'B', 'a');
 system("pause");
 return 0;
}

Output:

3.4.3 The Binary Mathematical Operators

- C/C++ binary mathematical operators take two operands as listed in Table 3.3.

Operator Symbol Action Example
Addition + Adds its two operands x + y

Subtraction -
Subtracts the second
operand from the first
operand

x - y

Multiplication * Multiplies its two
operands x * y

Division / Divides the first operand
by the second operand x / y

Modulus %

Gives the remainder when
the first operand is
divided by the second
operand

x % y

Table 3.3

- Modulus example:

Page 6 of 28 www.tenouk.com

- Try the following program example and study the output and the source code.

//Modulus operator example in C version.
//Inputs a number of seconds, and converts to hours, minutes
//and seconds.
#include <stdio.h>
#include <stdlib.h>

//#define preprocessor directive, define constants,
//every occurrence of the SEC_PER_MIN token
//in the program will be replaced with 60
#define SECS_PER_MIN 60
#define SECS_PER_HOUR 3600

int main()
{
unsigned seconds, minutes, hours, secs_left, mins_left;

//Prompting user to input the number of seconds
printf("Enter number of seconds < 65000 : ");

//Read and store the data input by user
scanf("%d", &seconds);

//Do the modulus operation
hours = seconds / SECS_PER_HOUR;
minutes = seconds / SECS_PER_MIN;
mins_left = minutes % SECS_PER_MIN;
secs_left = seconds % SECS_PER_MIN;

//Display the result
printf("%u seconds is equal to ", seconds);
printf("%u hours, %u minutes, and %u seconds\n", hours, mins_left, secs_left);
system("pause");
return 0;
}

Output:

- C++ version program example:

//Modulus operator example.
//Inputs a number of seconds, and converts to hours,
//minutes and seconds.

#include <iostream.h>

Page 7 of 28 www.tenouk.com

#include <stdlib.h>
//For VC++ .Net use the following processor directives
//comment out the previous #include…
//#include <iostream >
//#include <cstdlib>
//using namespace std;

//Define constants
#define SECS_PER_MIN 60
#define SECS_PER_HOUR 3600

void main()
{
 unsigned int seconds, minutes, hours, secs_left, mins_left;

 //Prompting user to input the number of seconds
 cout<<"Enter number of seconds < 65000 : ";
 cin>>seconds;

 hours = seconds / SECS_PER_HOUR;
 minutes = seconds / SECS_PER_MIN;
 mins_left = minutes % SECS_PER_MIN;
 secs_left = seconds % SECS_PER_MIN;
 cout<<seconds<<" seconds is equal to "<<hours<<" hours, "<<mins_left<<" minutes,
 "<<secs_left<<" seconds"<<endl;
 system("pause");
}

Output:

3.5 Precedence And Parentheses

- Expression that contains more than one operator, the order in which operation are performed can be
confusing.

- For example:

x = 4 + 5 * 3;

If the addition is performed first, x is assigned the value 27 as follow:

x = 9 * 3;

If the multiplication is performed first, x is assigned the value of 19 as follows:

x = 4 + 15;

- So, need some rules to define the order in which operations are performed. This is called operator
precedence.

- Operator with higher precedence is performed first.
- Precedence examples:

Operators Relative precedence Rank

++, -- 1
*, /, % 2
+, - 3

Highest
 ↓
Lowest

Highest → Lowest

Table 3.4 : Operator precedence

- If the operators are in the same level, then, the operators are performed from left to right order, referring
to table 3.4.

- For example:

Page 8 of 28 www.tenouk.com

- But a sub expression enclosed in the parentheses, (), is evaluated first, without regard to the operator
precedence because parentheses have the highest precedence.

- For example:

x = (4 + 5) * 3
 = 9 * 3
 = 27

- For nested parentheses (more than one parentheses), evaluation proceeds from the innermost expression

outward.
- For example:

1. The innermost, 8 / 2 is evaluated first.

8 / 2 = 4

25 – (2 * (10 + 4))

2. Moving outward, 10 + 4 = 14

25 – (2 * 14)

3. The outer most, 2 * 14 = 28

25 – 28

4. The final expression, 25 – 28

25 – 28 = -3

- Use parentheses in expressions for clarity and readability, and must always be in pairs.

3.6 Relational Operators

- Used to compare expressions, asking questions such as, “is x greater than 200?” or “is y equal to 10”.
- An expression containing a relational operator evaluates as either TRUE (1) or FALSE (0).
- C/C++ has six relational operators as shown in Table 3.5:

 Operator Symbol Means Example

Equal == Is operand 1 equal to
operand 2? x == y

Greater
than > Is operand 1 greater

than operand 2? x > y

Less than < Is operand 1 less than
operand 2? x < y

Greater
than >=

Is operand 1 greater
than or equal to operand
2?

x >= y

Less than <= Is operand 1 less than
or equal to operand 2? x <= y

Not equal != Is operand 1 not equal x != y

Page 9 of 28 www.tenouk.com

to operand 2?

Table 3.5: Relational operators

- Simple examples:

Expression Evaluates As Read As
5 == 1 0 (false) Is 5 equal to 1?
5 > 1 1 (true) Is 5 greater than 1?
5 != 1 1 (true) Is 5 not equal to 1?
(5 + 10) ==
(3 * 5)

1 (true) Is (5 + 10) equal to (3 * 5)?

3.6.1 Expressions And The if Statement

- Relational operators are used mainly to construct the relational expressions used in if and while
statements.

- This is the introduction of the basic if statement, used to create program control statements. Till now
we only deal with the top down approach or line by line code but that is not the limitation.

- We will learn more detail about program control in program control Module. Assume this part as an
introduction.

3.6.2 The Program Control Statement: An Introduction

- Modifies the order of the statement execution.
- Can cause other program statements to execute multiple times or not to execute at all, depending on the

circumstances, condition imposed.
- Other type of program control includes do, for and while that will be explained in detail in another

Module.
- This section introduced because many relational and logical operators are used in the expression of the

program control statements.
- The most basic if statement form is:

if (expression)
 statement(s);
next_statement;

1. Evaluate an expression and directs program execution depending on the result of that

evaluation.
2. If the expression evaluate as TRUE, statement(s) is executed, if FALSE,

statement(s) is not executed, execution then passed to the code follows the if
statement, that is the next_statement.

3. So, the execution of the statement(s) depends on the result of expression.

- if statement also can control the execution of multiple statements through the use of a compound
statement or a block of code. A block is a group of two or more statements enclosed in curly braces, { }.

- Typically, if statements are used with relational expressions, in other words, "execute the following
statement(s) only if a certain condition is true".

- For example:

if (expression)
{
 statement1;
 statement2;
 ...
 ...
 statement-n;
}
next_statement;

- Program example:

Page 10 of 28 www.tenouk.com

//Demonstrate the use of the if statements
#include <stdio.h>
#include <stdlib.h>

int main ()
{
 int x, y;
 //Input the two values to be tested
 printf("\nInput an integer value for x: ");
 scanf("%d", &x);
 printf("Input an integer value for y: ");
 scanf("%d", &y);

 //Test values and print result
 if (x == y)
 {
 printf("\nx is equal to y");
 }

 if (x > y)
 {
 printf("\nx is greater than y");
 }

 if (x < y)
 {
 printf("\nx is smaller than y");
 }
 printf("\n\n");
 system("pause");
 return 0;
}

Possible outputs:

- We can see that this procedure is not efficient. Better solution is to use if–else statement as shown
below:

Page 11 of 28 www.tenouk.com

if (expression)
statement1;

else
statement2;

next_statement;

- The expression can be evaluated to TRUE or FALSE. The statement1 and statement2 can be
compound or a block statement.

- This is called a nested if statement. Nesting means to place one or more C/C++ statements inside
another C/C++ statement.

- Program example:

//Demonstrates the use of if-else statement
#include <stdio.h>
#include <stdlib.h>

int main()
{
 int x, y;

 //Input two values to be tested
 printf("\nInput an integer value for x: ");
 scanf("%d", &x);
 printf("Input an integer value for y: ");
 scanf("%d", &y);

 //Test values and print result
 if (x == y)
 {

 printf("\nx is equal to y");
 }
 else
 if (x > y)
 {
 printf("\nx is greater than y ");
 }
 else
 {
 printf("\nx is smaller than y ");
 }
 printf("\n\n");
 system("pause");
 return 0;
}

Possible outputs:

Page 12 of 28 www.tenouk.com

- Keep in mind that we will learn if–else statements more detail in program controls Module. As a pre
conclusion, there are 3 form of if statements.

Form 1:

if (expression)

statement1;
next_statement;

Form 2:

if (expression)

statement1;
else

statement2;
next_statement;

Form 3:

if (expression)
 statement1;
else if (expression)

statement2;
else if (…)

statement3;
…
…
…
else
 statementN;
next_statement;

3.7 Relational Expressions

- Expression using relational operators evaluate, by definition, to a value of either FALSE (0) or TRUE
(1).

- Normally used in if statements and other conditional constructions.
- Also can be used to produce purely numeric values.
- Program example:

//Demonstrate the evaluation of relational expression
#include <stdio.h>
#include <stdlib.h>

int main()
{
 int a;

 a = (5 == 5);
 //Evaluates to 1, TRUE
 printf ("\na = (5 == 5)\n Then a = %d\n", a);

 a = (5 != 5);
 //Evaluates to 0, FALSE
 printf ("\na = (5 != 5)\n Then a = %d\n", a);

 a = (12 == 12) + (5 != 1);

Page 13 of 28 www.tenouk.com

 //Evaluates to 1 + 1, TRUE
 printf("\na = (12 == 12) + (5 != 1)\n Then a = %d\n", a);
 system("pause");
 return 0;
}

Output:

- x = 5, evaluates as 5 and assigns the value 5 to x. This is an assignment expression.
- x == 5, evaluates as either 0 or 1 (depending on whether x is equal to 5 or not) and does not change the

value of x. This is comparison expression.
- Consider this, the wrong usage of the assignment operator (=),

if(x = 5)
printf("x is equal to 5");

- The message always prints because the expression being tested by the if statement always evaluates as

TRUE, no matter what the original value of x happens to be.
- Referring to the above example, the value 5 does equal 5, and true (1) is assigned to 'a'. "5 does not

equal 5" is FALSE, so 0 is assigned to 'a'.
- As conclusion, relational operators are used to create relational expression that asked questions about

relationship between expressions. The answer returned by a relational expression is a numeric value 1 or
0.

3.7.1 Precedence of Relational Operators

- Similar to mathematical operators, in case when there is multiple operator expression.
- Parentheses can be used to modify precedence in expression that uses relational operators.
- All relational operators have a lower precedence than all mathematical operators.
- For example:

(x + 2 > y)

- Better written like this:

((x + 2) > y)

Operators Relative precedence

< <= > >= 1
!= == 2

Table 3.6: Precedence of the relational operators

- For example:

x == y > z equivalent to x == (y > z)

- Avoid using the “not equal to” operator (!=) in an if statement containing an else, use “equal to” (==)

for clarity.
- For example:

Page 14 of 28 www.tenouk.com

if(x != 5)
 statement1;
else
 statement2;

- So, better written as:

if(x == 5)
 statement1;
else
 statement2;

3.8 Logical Operators

- C/C++ logical operators enable the programmer to combine 2 or more relational expressions into a single
expression that evaluate as either TRUE (1) or FALSE (0).

Operator Symbol Example

AND && expression1 && expression2
OR || expression1 || expression2
NOT ! !expression1

Table 3.7: Logical operators

Expression Evaluates As
(expression1
&&
expression2)

True (1) only if both expression1 and
expression2 are true; false (0) otherwise.

(expression1 ||
expression2)

True (1) if either expression1 or expression2 is
true; false (0) only if both are FALSE.

(! expression1) False (0) if expression1 is true; true (1) if expression1 is true.

Table 3.8: Evaluation of the logical expressions

- These expressions use the logical operators to evaluate as either TRUE or FALSE depending on the

TRUE/FALSE value of their operand(s).
- For example:

Expressions Evaluates As

(5 == 5) && (6 != 2) True (1) because both operands are
true

(5 > 1) || (6 < 1) True (1) because one operand is
true

(2 == 1) && (5 == 5) False (0) because one operand is
false

 ! (5 == 4) True (1) because the operand is
false

NOT (FALSE) = TRUE

Table 3.9: Examples of logical expressions

- For AND and OR operator:

Operand1 Operand2 Output
0 0 0 (F)
0 1 0 (F)
1 0 0 (F)
1 1 1 (T)

Page 15 of 28 www.tenouk.com

Table 3.10: Logical AND Operation

Operand1 Operand2 Output
0 0 0 (F)

0 1 1 (T)

1 0 1 (T)

1 1 1 (T)

Table 3.11: Logical OR Operation

3.8.1 TRUE And FALSE Values

- For relational expression, 0 is FALSE, 1 is TRUE
- Any numeric value is interpreted as either TRUE or FALSE when it is used in a C / C++ expression or

statement that is expecting a logical (true or false) value.
- The rules:

▪ A value of 0, represents FALSE.
▪ Any non zero (including negative numbers) value represents TRUE.

- For example:

x = 125;
if(x)
printf("%d", x)

3.8.2 Precedence of Logical Operators

- C / C++ logical operators also have a precedence order.
- ! is same level with unary mathematical operators ++ and -- and it has higher precedence than all

relational operators and all binary mathematical operators.
- && and || operators lower than all mathematical and relational operators.
- Parentheses also can be used to modify evaluation order when using the logical operators.
- When the parentheses are absent, the results are determined by operator precedence then the result may

not be desired.
- When parentheses are present, the order in which the expressions are evaluated changes.
- Try the following program example and study the output and the source code.

#include <stdio.h>
#include <stdlib.h>

//Initialize variables and note that c is not less than d,
//which is one of the conditions to test for
//therefore the entire expression should be evaluated as false

int main()
{
 int a = 5, b = 6, c = 5, d = 1;
 int x;

 //Evaluate the expression without parentheses
 x = a < b || a < c && c < d; //Form 1
 printf("Given expression:\n");
 printf("x = a < b || a < c && c < d\n");
 printf("Without parentheses the expression evaluates as %d", x);

 //Evaluate the expression with parentheses
 x = (a < b || a < c) && (c < d); //Form 2
 printf("\n\nWith parentheses:\n");
 printf("x = (a < b || a < c) && (c < d)\n");
 printf("With parentheses the expression evaluates as %d\n", x);
 system("pause");
 return 0;
}

Page 16 of 28 www.tenouk.com

Output:

- From the above example, we are given 3 conditions:

1. Is a less than b? , a < b
2. Is a less than c? , a < c
3. Is c less than d? , c < d

- Condition 1 logical expression that evaluate as true if condition 3 is true and if either condition 1 or

condition 2 is true. But this do not fulfill the specification because the && operator has higher
precedence than ||, the expression is equivalent to a < b || (a < c && c < d) and evaluates as true if (a < b)
is true, regardless of whether the relationships (a < c) and (c < d) are true.

3.9 Compound Assignment Operators

- For combining a binary mathematical operation with an assignment operation.
- There is shorthand method.
- For example:

x = x + 5;
⇒ x += 5;

- The general notation is:

expression1 operator = expression2

- The shorthand method is:

 expression1 = expression1 operator expression2

- The examples:

Expression Equivalent

x * = y x = x * y
y -= z + 1 y = y – z + 1
a / = b a = a / b
x += y / 8 x = x + y / 8
y %= 3 y = y % 3

Table 3.12: Examples of compound assignment operator

- Another example:

If x = 12;
Then,

z = x += 2;
z = x = x + 2
 = 12 + 2
 = 14

- Program example:

Page 17 of 28 www.tenouk.com

#include <stdio.h>
#include <stdlib.h>

int main()
{
int a = 3, b = 4;

printf("Initially: a = 3, b = 4\n");
printf("\na += b ---> a = a + b = %d\n", a+=b);
printf("a last value = %d\n", a);
printf("\na *= b ---> a = a * b = %d\n", a*=b);
printf("a last value = %d\n", a);
printf("\na -= b ---> a = a - b = %d\n", a-=b);
printf("a last value = %d\n", a);
printf("\na/=b ---> a = a / b = %d\n", a/=b);
printf("a last value = %d\n", a);
printf("\na-=(b+1)---> a = a - (b + 1) = %d\n", a-=(b+1));
printf("a last value = %d\n", a);
system("pause");
return 0;
}

Output:

3.10 The Conditional Operators

- The C/C++ only ternary operator, it takes 3 operands.
- The syntax:

Expression1 ? expression2 : expression3;

- If expression1 evaluates as true (non zero), the entire expression evaluated to the value of

expression2. If expression1 evaluates as false (zero), the entire expression evaluated to the
value of expression3.

- For example:

x = y ? 1 : 100;

 Assign value 1 to x if y is true.
 Assign value 100 to x if y is false.

- It also can be used in places an if statement cannot be used, such as inside a single printf()

statement. For example:

z = (x > y)? x : y;

- Can be written as:

 if(x > y)

Page 18 of 28 www.tenouk.com

 z = x;
 else
 z = y;

- Program example.

#include <stdio.h>
#include <stdlib.h>

int main()
{
int a, b = 4, c= 50;

//here b is less than c, so the statement
//(b>c) is false, then 200 should be assigned
//to a, reflected through the output
a = (b>c) ? 100 : 200;
printf("Given: b = 4, c= 50\n");
printf("The statement:a = (b>c) ? 100 : 200\n");
printf("will be evaluated to a = %d\n", a);
system("pause");
return 0;
}

Output:

- Change the (b>c) to (b<c), then recompile and rerun. Notice the output difference.

3.11 The Bitwise Operators

- All data represented internally by computers as sequence of binary digit (bit).
- Each bit can assume value 0 or 1. 8 bits equal to 1 byte.
- Bitwise operators used to manipulate the bits of integral operands, to modify the individual bits (bit by

bit) rather than the number itself. Both operands in a bitwise expression must be of an integral type.
- Table 3.13 is the list of the bitwise operators.

Operator Description

& (bitwise AND) The bit in the result are set to 1 if the corresponding bits in the two
operands are both 1, otherwise it returns 0.

| (bitwise inclusive OR) The bit in the result is set to 1 if at least one (either or both) of the
corresponding bits in the two operands is 1, otherwise it returns 0.

^ (bitwise exclusive OR) The bit in the result is set to 1 if exactly one of the corresponding bits in
the two operands is 1.

~ (bitwise complement) Negation. 0 bit set to 1, and 1 bit set to 0. Also used to create destructors.

<< (bitwise shift left)
Moves the bit of the first operand to the left by the number of bits
specified by the second operand; it discards the far left bit ; fill from the
right with 0 bits.

>> (bitwise shift right)
Moves the bit of the first operand to the right by the number of bits
specified by the second operand; discards the far right bit; fill from the
right with 0 bits.

Table 3.13: Bitwise Operators

- Bitwise AND, bitwise inclusive OR, bitwise exclusive OR operators compare their two operands bit by

bit.
- &, >>, << are context sensitive. & can also be the pointer reference operator. >> can also be the input

operator in I/O expressions. << can also be the output operator in I/O expressions. You will learn this in
another Module.

Page 19 of 28 www.tenouk.com

- Example of the &, | and ^ operators.

Operand1, OP1 Operand2, OP2 OP1 & OP2 OP1 | OP2 OP1 ^ OP2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 1 0

Table 3.14: Bitwise Operation

- Program example:

//bitwise operators
#include <stdlib.h>
#include <stdio.h>

int main()
{
 unsigned p;
 //function prototype…

void DisplayBits(unsigned);

 printf("Enter an unsigned integer: ");
 scanf("%u", &p);
 DisplayBits(p);
 return 0;
}

//function definition…
void DisplayBits(unsigned number)
{
 unsigned q;
 //2 byte, 16 bits position
 //operated bit by bit and hide/mask other bits
 //using left shift operator
 //start with 10000000 00000000
 unsigned DisplayMask = 1<<15;

 printf("%7u = ", number);
 for(q = 1; q < 16; q++)
 {
 //combining variable number with variable DisplayMask
 putchar(number & DisplayMask ? '1':'0');
 //number variable is left shifted one bit
 number<<= 1;
 //separate by 8 bits position (1 byte)
 if(q % 8 == 0)
 putchar(' ');
 }
 putchar('\n');
 system("pause");
}

Output:

- Change DisplayMask = 0<<15 and & to | for inclusive OR operation and rerun the program.
- The shift general syntax:

bits to be left shifted << shift count
bits to be right shifted >> shift count

- The shift count must be non-negative and less than the number of bits required to represent the data type

of the left operand.
- For example, let say the variable declaration is:

Page 20 of 28 www.tenouk.com

unsigned int p = 5

In binary, p = 00000000 00000101

For p<<1 in binary,

00000000 00000101 << 1 = 00000000 00001010 = 10 decimal

For p<<15 in binary,

00000000 00000101 << 15 = 10000000 00000000 = 32768 decimal

- For right shift, while bits are shifted toward low-order position, 0 bits enter the high-order positions, if

the data is unsigned. If the data is signed and the sign bit is 0, then 0 bits also enter the high-order
positions.

- If the sign bit is 1, the bits entering high-order positions are implementation dependent, on some
machines (processor architecture) 1s, and on others 0s, are shifted in.

- The former type of operation is known as the arithmetic right shift, and the latter type is the logical
right shift. So, for portability issue, these operators should only be used on unsigned operands.

- For example:

unsigned int p = 40960, for 16 bits,

In binary, p = 10100000 00000000

For p >> 1 in binary,

10100000 00000000 >> 1 = 01010000 00000000 = 20480 decimal

For p>>15 in binary,

10100000 00000000 >> 15 = 00000000 00000001 = 1 decimal

- Program example:

//bitwise operators
#include <stdlib.h>
#include <stdio.h>

//function prototype, you will learn later
void BitwiseOp(unsigned int);

int main()
{
 unsigned int num1, num2, num3, mask, SetBit;

 num1 = 7535;
 mask = 1;

 printf("The result of ANDing the following numbers\n");
 printf("using the bitwise AND, & is\n");
 //Display in normal and binary representation
 BitwiseOp(num1);
 BitwiseOp(mask);
 printf(" ------------------------\n");
 //Bitwise AND operation
 BitwiseOp(num1 & mask);

 num1 = 15;
 SetBit = 241;
 printf("\nThe result of inclusive ORing the following numbers\n");
 printf("using the bitwise inclusive OR, | is\n");
 BitwiseOp(num1);
 BitwiseOp(SetBit);
 printf(" ------------------------\n");
 //Bitwise inclusive OR operation
 BitwiseOp(num1 | SetBit);

Page 21 of 28 www.tenouk.com

 num1 = 249;
 num2 = 299;
 printf("\nThe result of exclusive ORing the following numbers\n");
 printf("using the bitwise exclusive OR, ^ is\n");
 BitwiseOp(num1);
 BitwiseOp(num2);
 //Bitwise exclusive OR operation
 printf(" ------------------------\n");
 BitwiseOp(num1 ^ num2);

 num3 = 21321;
 printf("\nThe One's complement of\n");
 BitwiseOp(num3);
 printf(" |||||||| ||||||||\n");
 //One's complement operation
 BitwiseOp(~num3);
 system("pause");
 return 0;
}

//function definition…
void BitwiseOp(unsigned int value)
{
 unsigned int p;
 //Two 8 bits, 16 position, shift to left
 unsigned int DisplayMask = 1 << 15;

 printf("%7u = ", value);
 //Loop for all bit...
 for(p=1; p<=16; p++)
 {
 //if TRUE set to '1', otherwise set to '0'
 putchar(value & DisplayMask ? '1':'0');
 //shift to left bit by bit
 //equal to: value << + 1 statement
 value <<= 1;
 if(p % 8 == 0)
 //put a space…
 putchar(' ');
 }
 putchar('\n');
 }

Output:

- For C++, the following is a list of the binary operators’ categories that can be used in C++ expressions.

1 (Compound) Assignment operators:

Page 22 of 28 www.tenouk.com

 Assignment (=)
 Addition assignment (+=)
 Subtraction assignment (–=)
 Multiplication assignment (*=)
 Division assignment (/=)
 Modulus assignment (%=)
 Left shift assignment (<<=)
 Right shift assignment (>>=)
 Bitwise AND assignment (&=)
 Bitwise exclusive OR assignment (^=)
 Bitwise inclusive OR assignment (|=)

2 Additive operators:
 Addition (+)
 Subtraction (–)

3 Multiplicative operators:
 Multiplication (*)
 Division (/)
 Modulus (%)

4 Shift operators:
 Right shift (>>)
 Left shift (<<)

5 Relational and equality operators:
 Less than (<)
 Greater than (>)
 Less than or equal to (<=)
 Greater than or equal to (>=)
 Equal to (==)
 Not equal to (!=)

6 Bitwise operators:
 Bitwise AND (&)
 Bitwise exclusive OR (^)
 Bitwise inclusive OR (|)

7 Logical operators:
 Logical AND (&&)
 Logical OR (||)

8 Comma Operator (,)

- Furthermore in C++ the <bitset> header defines the template class bitset and two supporting template

functions for representing and manipulating fixed-size sequences of bits.

3.12 The Comma Operator

- Frequently used as a simple punctuation mark.
- Used to separate variable declarations, functions’ arguments, etc.
- Also can acts as an operator.
- Separating two sub expressions with a comma can form an expression.
- Then, both expressions are evaluated, left evaluated first. The entire expression evaluates as the value of

the right expression.
- For example:

x = (a ++, b++);

- Assigns the value of b to x, then increments a, and then increments b.
- As conclusion, table 3.15 is the summary of the operators’ precedence.

Operators Associativity

() [] → . Left to right
! ~ ++ -- + - * & (type)
sizeof() Right to left

Page 23 of 28 www.tenouk.com

* / % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
== != Left to right
& Left to right
^ Left to right
| Left to right
&& Left to right
|| Left to right
?: Right to left
= += -= *= /= %= &=
^= |= <<= >>= , Right to left
 Left to right
The operators are shown in decreasing order of precedence from
top to bottom

Table 3.15: Summary of the operators precedence

- For this Table it is read from top (the highest) to bottom (the lowest). Then if they are at the same level,

we read it from left (the highest) to right (the lowest).

Program Examples and Experiments

//program copying from standard input,
//keyboard to standard output, console
//using pre defined functions
//getchar() and putchar(), defined in
//stdio.h header file
#include <stdio.h>
#include <stdlib.h>

int main()
{
int count;

//gives some prompt...
printf("Enter a line of text:\n");
printf("Press \'S\' to stop.\n");

//get character from standard input
//store in variable count
count = getchar();

//while the S is not encountered...
while(count != 'S')
{
//put character on the standard output
putchar(count);
//carry on getting character from the standard input
count = getchar();
}
system("pause");
return 0;
}

Output:

//copying from standard input,
//keyboard to standard output, console

Page 24 of 28 www.tenouk.com

//using pre defined functions
//getchar() and putchar() with End Of File, EOF
//EOF is system dependent
#include <stdio.h>
#include <stdlib.h>

int main()
{
int count;

//gives some prompt...
printf("Enter a line of text:\n");
printf("EOF to stop.\n");

//get character from standard input
//store in variable count
count = getchar();

//while the End Of File is not encountered...
while(count != EOF)
{
//put character on the standard output
putchar(count);
//carry on getting character from the standard input
count = getchar();
}
system("pause");
return 0;
}

Output:

//creating the working program
//skeleton…
#include <stdio.h>
#include <stdlib.h>

int main()
{
//printf("Some prompt here...\n");

int count, charnum = 0;
while ((count = getchar()) != EOF)
{
if(count != ' ')
++charnum;
}
printf("test the output here...\n");
system("pause");
return 0;
}

Output:

//Add other functionalities by following the

Page 25 of 28 www.tenouk.com

//simple steps in program development…
#include <stdio.h>
#include <stdlib.h>

int main()
{
//printf("Some prompt here...\n");

//-----In the process: declare and initialize ----------
//-----each variable used------------------------
//-----Third: compile and run----------------
//-----Fourth: If there are errors, recompile and rerun----
//-----Finally, if there is no error, complete other part of-----
//-----the program, such as comments etc-------------
int count, charnum = 0, linenum = 0;

printf("Enter several line of texts.\n");
printf("Press Carriage Return then EOF to end.\n\n");

//-------------First: build the loop-----------
//while storing the character process
//not equal to the End Of File...
while((count = getchar()) != EOF)
{
//do the character count
if(count != ' ')
++charnum;
//and the line count...
if(count == '\n')
{
++linenum;
charnum = charnum -1;
}
}
//----------Second: test the output---------------
printf("The number of line = %d\n", linenum);
printf("The number of char = %d\n", charnum);
system("pause");
return 0;
}

Output:

- Program example compiled using VC++/ VC++ .Net.

//Add other functionalities by following the
//simple steps in program development…
#include <cstdio>

int main()
{
//printf("Some prompt here...\n");

//-----In the process: declare and initialize ----------
//-----each variable used------------------------
//-----Third: compile and run----------------
//-----Fourth: If there are errors, recompile and rerun----
//-----Finally, if there is no error, complete other part of-----
//-----the program, such as comments etc-------------
int count, charnum = 0, linenum = 0;

printf("Enter several line of texts.\n");
printf("Press Carriage Return then EOF to end.\n\n");

Page 26 of 28 www.tenouk.com

http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html

//-------------First: build the loop-----------
//while storing the character process
//not equal to the End Of File...
while((count = getchar()) != EOF)
{
//do the character count
if(count != ' ')
++charnum;
//and the line count...
if(count == '\n')
{
++linenum;
charnum = charnum -1;
}
}
//----------Second: test the output---------------
printf("The number of line = %d\n", linenum);
printf("The number of char = %d\n", charnum);
return 0;
}

Output:

- Program examples compiled using gcc.

/******-cpoundassig.c-*******/
#include <stdio.h>

int main()
{
int a = 10, b = 20;

printf("Initially: a = 3, b = 4\n");
printf("\na += b ---> a = a + b = %d\n", a+=b);
printf("a last value = %d\n", a);
printf("\na *= b ---> a = a * b = %d\n", a*=b);
printf("a last value = %d\n", a);
printf("\na -= b ---> a = a - b = %d\n", a-=b);
printf("a last value = %d\n", a);
printf("\na/=b ---> a = a / b = %d\n", a/=b);
printf("a last value = %d\n", a);
printf("\na-=(b+1)---> a = a - (b + 1) = %d\n", a-=(b+1));
printf("a last value = %d\n", a);
return 0;
}

[bodo@bakawali ~]$ gcc cpoundassig.c -o cpoundassig
[bodo@bakawali ~]$./cpoundassig
Initially: a = 3, b = 4

a += b ---> a = a + b = 30
a last value = 30

a *= b ---> a = a * b = 600
a last value = 600

a -= b ---> a = a - b = 580
a last value = 580

a/=b ---> a = a / b = 29

Page 27 of 28 www.tenouk.com

http://www.tenouk.com/Module000.html

a last value = 29

a-=(b+1)---> a = a - (b + 1) = 8
a last value = 8

- Another example.

/*bitwise operators*/
/******--bitwise.c--******/
#include <stdio.h>

int main()
{
 unsigned p;

 /*function prototype.*/
 void DisplayBits(unsigned);

 printf("Enter an unsigned integer: ");
 scanf("%u", &p);
 DisplayBits(p);
 return 0;
}

/*function definition.*/
void DisplayBits(unsigned number)
{
 unsigned q;
 /*2 byte, 16 bits position*/
 /*operated bit by bit and hide/mask other bits*/
 /*using left shift operator*/
 /*start with 10000000 00000000*/
 unsigned DisplayMask = 1<<15;

 printf("%7u = ", number);
 for(q = 1; q < 16; q++)
 {
 /*combining variable number with variable DisplayMask*/
 putchar(number & DisplayMask ? '1':'0');
 /*number variable is left shifted one bit*/
 number<<= 1;
 /*separate by 8 bits position (1 byte)*/
 if(q % 8 == 0)
 putchar(' ');
 }
 putchar('\n');
}

[bodo@bakawali ~]$ gcc bitwise.c -o hahahahaha
[bodo@bakawali ~]$./hahahahaha

Enter an unsigned integer: 10
 10 = 00000000 0000101

[bodo@bakawali ~]$./hahahahaha

Enter an unsigned integer: 200
 200 = 00000000 1100100

--o0o--

Further reading and digging:

1. Check the best selling books at Amazon.comC/C++ .

Page 28 of 28 www.tenouk.com

http://www.tenouk.com/cplusbook.html

