
MODULE 29
--THE STL--

CONTAINER PART III
map, multimap, hash_map, hash_multimap,

hash_set, hash_multiset

My Training Period: hours

Note:
Compiled using VC++7.0 / .Net, win32 empty console mode application. Be careful with the source codes than
span more than one line. g++ compilation examples are given at the end of this Module.

Abilities

▪ Able to understand and use map associative container.
▪ Able to understand and use multimap associative container.
▪ Able to understand and use hash_map associative container.
▪ Able to understand and use hash_multimap associative container.
▪ Able to understand and use hash_set associative container.
▪ Able to understand and use hash_multiset container.
▪ Remember some useful summary.

29.1 map

- A map contains elements that are key and value pairs. Each element has a key that is the basis for the
sorting criterion and a value.

- Each key may occur only once, thus duplicate keys are not allowed.
- A map can also be used as an associative array, which is an array that has an arbitrary index type. It

can be depicted as follow:

- The binary tree of the map and multimap structure can be depicted as follow:

- The iterator provided by the map class is a bidirectional iterator, but the class member functions
insert() and map() have versions that take as template parameters a weaker input iterator, whose
functionality requirements are more minimal than those guaranteed by the class of bidirectional
iterators.

- The different iterator concepts form a family related by refinements in their functionality. Each iterator
concept has its own set of requirements and the algorithms that work with them must limit their
assumptions to the requirements provided by that type of iterator.

- This type of structure is an ordered list of uniquely occurring key words with associated string
values. If, instead, the words had more than one correct definition, so that keys were not unique, then a
multimap would be the container of choice.

- If, on the other hand, just the list of words were being stored, then a set would be the correct container.
If multiple occurrences of the words were allowed, then a multiset would be the appropriate container
structure.

Page 1 of 33 www.tenouk.com

http://www.tenouk.com/Module000.html

- The map orders the sequence it controls by calling a stored function object of type key_compare.
This stored object is a comparison function that may be accessed by calling the member function
key_comp().

- The general format of the map and multimap operation is shown in the following Table.

Map Operation
map<Key, Element> A map that sorts keys with default, less<>(operator <).
map<Key, Element, Operator> A map that sorts keys with Operator.
multimap<Key, Element> A multimap that sorts keys with less<>(operator <).
multimap<Key, Element, Operator> A multimap that sorts keys with Operator.

Table 29.1

29.2 <map> Header Members

map Operators

Operators Description
operator!= Tests if the map or multimap object on the left side of the operator is not equal to the map

or multimap object on the right side.
operator< Tests if the map or multimap object on the left side of the operator is less than the map or

multimap object on the right side.
operator<= Tests if the map or multimap object on the left side of the operator is less than or equal to

the map or multimap object on the right side.
operator== Tests if the map or multimap object on the left side of the operator is equal to the map or

multimap object on the right side.
operator> Tests if the map or multimap object on the left side of the operator is greater than the map

or multimap object on the right side.
operator>= Tests if the map or multimap object on the left side of the operator is greater than or equal

to the map or multimap object on the right side.

Table 29.2

map Specialized Template Functions

Specialized template
function Description

swap() Exchanges the elements of two maps or
multimaps.

Table 29.3

map Classes

Class Description
value_compare
Class

Provides a function object that can compare the elements of a map by comparing the
values of their keys to determine their relative order in the map.

map Class Used for the storage and retrieval of data from a collection in which the each of the
elements has a unique key with which the data is automatically ordered.

multimap
Class

Used for the storage and retrieval of data from a collection in which the each of the
elements has a key with which the data is automatically ordered and the keys do not
need to have unique values.

Table 29.4

map Template Class Members

Typedefs

Template Class Member Description
allocator_type A type that represents the allocator class for the map object.

const_iterator A type that provides a bidirectional iterator that can read a const element in
the map.

Page 2 of 33 www.tenouk.com

const_pointer A type that provides a pointer to a const element in a map.

const_reference A type that provides a reference to a const element stored in a map for
reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const element
in the map.

difference_type A signed integer type that can be used to represent the number of elements of
a map in a range between elements pointed to by iterators.

iterator A type that provides a bidirectional iterator that can read or modify any
element in a map.

key_compare A type that provides a function object that can compare two sort keys to
determine the relative order of two elements in the map.

key_type A type that describes the sort key object which constitutes each element of
the map.

mapped_type A type that represents the data type stored in a map.
pointer A type that provides a pointer to a const element in a map.
reference A type that provides a reference to an element stored in a map.
reverse_iterator A type that provides a bidirectional iterator that can read or modify an

element in a reversed map.
size_type An unsigned integer type that can represent the number of elements in a map
value_type A type that provides a function object that can compare two elements as sort

keys to determine their relative order in the map.

Table 29.5

map Template Class Member Functions

Template class
member function Description

begin() Returns an iterator addressing the first element in the map.
clear() Erases all the elements of a map.
count() Returns the number of elements in a map whose key matches a parameter-specified

key.
empty() Tests if a map is empty.
end() Returns an iterator that addresses the location succeeding the last element in a map.
equal_range() Returns an iterator that addresses the location succeeding the last element in a map.
erase() Removes an element or a range of elements in a map from specified positions
find() Returns an iterator addressing the location of an element in a map that has a key

equivalent to a specified key.
get_allocator() Returns a copy of the allocator object used to construct the map.
insert() Inserts an element or a range of elements into the map at a specified position.
key_comp() Retrieves a copy of the comparison object used to order keys in a map.
lower_bound() Returns an iterator to the first element in a map that with a key value that is equal to

or greater than that of a specified key.
map() map constructor, constructs a list of a specific size or with elements of a specific

value or with a specific allocator or as a copy of some other map.
max_size() Returns the maximum length of the map.
rbegin() Returns an iterator addressing the first element in a reversed map.
rend() Returns an iterator that addresses the location succeeding the last element in a

reversed map.
size() Specifies a new size for a map.
swap() Exchanges the elements of two maps.
upper_bound() Returns an iterator to the first element in a map that with a key value that is greater

than that of a specified key.
value_comp() Retrieves a copy of the comparison object used to order element values in a map.

Table 29.6

map Template Class Operator

Operator Description
operator[] Inserts an element into a map with a specified key

value.

Table 29.7

Page 3 of 33 www.tenouk.com

- The STL map class is used for the storage and retrieval of data from a collection in which the each
element is a pair that has both a data value and a sort key.

- The value of the key is unique and is used to order the data is automatically. The value of an element
in a map, but not its associated key value, may be changed directly.

- Instead, key values associated with old elements must be deleted and new key values associated with
new elements inserted.

template <
 class Key,
 class Type,
 class Traits = less<Key>,
 class Allocator = allocator<pair <const Key, Type> >
>

Parameters

Parameter Description
Key The key data type to be stored in the map.
Type The element data type to be stored in the map.

Traits

The type that provides a function object that can compare two element values as sort keys to
determine their relative order in the map. This argument is optional and the binary predicate
less<Key> is the default value.

Allocator

The type that represents the stored allocator object that encapsulates details about the map's
allocation and de-allocation of memory. This argument is optional and the default value is
allocator<pair <const Key, Type> >.

Table 29.8

- The STL map class is:

▪ An associative container, which a variable size container that supports the efficient retrieval of

element values based on an associated key value.
▪ Reversible, because it provides bidirectional iterators to access its elements.
▪ Sorted, because its elements are ordered by key values within the container in accordance with a

specified comparison function.
▪ Unique in the sense that each of its elements must have a unique key.
▪ A pair associative container, because its element data values are distinct from its key values.
▪ A template class, because the functionality it provides is generic and so independent of the

specific type of data contained as elements or keys. The data types to be used for elements and
keys are, instead, specified as parameters in the class template along with the comparison function
and allocator.

map Constructor

- Constructs a map that is empty or that is a copy of all or part of some other map.
- All constructors store a type of allocator object that manages memory storage for the map and that can

later be returned by calling get_allocator. The allocator parameter is often omitted in the class
declarations and preprocessing macros used to substitute alternative allocators.

- All constructors initialize their map.
- All constructors store a function object of type Traits that is used to establish an order among the keys

of the map and that can later be returned by calling key_comp().
- The first three constructors specify an empty initial map, the second specifying the type of comparison

function (_Comp) to be used in establishing the order of the elements and the third explicitly
specifying the allocator type (_Al) to be used. The key word explicit suppresses certain kinds
of automatic type conversion.

- The fourth constructor specifies a copy of the map _Right.
- The last three constructors copy the range [_First, _Last) of a map with increasing explicitness

in specifying the type of comparison function of class Traits and allocator.

//map, constructor
//compiled with VC++ 7.0
//or .Net
#include <map>
#include <iostream>
using namespace std;

Page 4 of 33 www.tenouk.com

int main()
{

 typedef pair<int, int> Int_Pair;
 map<int, int>::iterator mp0_Iter, mp1_Iter, mp3_Iter, mp4_Iter, mp5_Iter, mp6_Iter;
 map<int, int, greater<int> >::iterator mp2_Iter;

 //Create an empty map mp0 of key type integer
 map <int, int> mp0;

 //Create an empty map mp1 with the key comparison
 //function of less than, then insert 6 elements
 map <int, int, less<int> > mp1;
 mp1.insert(Int_Pair(1, 13));
 mp1.insert(Int_Pair(3, 23));
 mp1.insert(Int_Pair(3, 31));
 mp1.insert(Int_Pair(2, 23));
 mp1.insert(Int_Pair(6, 15));
 mp1.insert(Int_Pair(9, 25));

 //Create an empty map mp2 with the key comparison
 //function of greater than, then insert 3 elements
 map <int, int, greater<int> > mp2;
 mp2.insert(Int_Pair(3, 12));
 mp2.insert(Int_Pair(1, 31));
 mp2.insert(Int_Pair(2, 21));

 //Create a map mp3 with the
 //allocator of map mp1
 map <int, int>::allocator_type mp1_Alloc;
 mp1_Alloc = mp1.get_allocator();
 map <int, int> mp3(less<int>(), mp1_Alloc);
 mp3.insert(Int_Pair(1, 10));
 mp3.insert(Int_Pair(2, 12));

 //Create a copy, map mp4, of map mp1
 map <int, int> mp4(mp1);

 //Create a map mp5 by copying the range mp1[_First, _Last)
 map <int, int>::const_iterator mp1_PIter, mp1_QIter;
 mp1_PIter = mp1.begin();
 mp1_QIter = mp1.begin();
 mp1_QIter++;
 mp1_QIter++;
 map <int, int> mp5(mp1_PIter, mp1_QIter);

 //Create a map mp6 by copying the range mp4[_First, _Last)
 //and with the allocator of map mp2
 map <int, int>::allocator_type mp2_Alloc;
 mp2_Alloc = mp2.get_allocator();
 map <int, int> mp6(mp4.begin(), ++mp4.begin(), less<int>(), mp2_Alloc);

 //--
 cout<<"Operation: map <int, int> mp0\n";
 cout<<"mp0 data: ";
 for(mp0_Iter = mp0.begin(); mp0_Iter != mp0.end(); mp0_Iter++)
 cout<<" "<<mp0_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int, less<int> > mp1\n";
 cout<<"Operation2: mp1.insert(Int_Pair(1, 13))...\n";
 cout<<"mp1 data: ";
 for(mp1_Iter = mp1.begin(); mp1_Iter != mp1.end(); mp1_Iter++)
 cout<<" "<<mp1_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int, greater<int> > mp2\n";
 cout<<"Operation2: mp2.insert(Int_Pair(3, 12))...\n";
 cout<<"mp2 data: ";
 for(mp2_Iter = mp2.begin(); mp2_Iter != mp2.end(); mp2_Iter++)
 cout<<" "<<mp2_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int> mp3(less<int>(), mp1_Alloc)\n";
 cout<<"Operation2: mp3.insert(Int_Pair(1, 10))...\n";
 cout<<"mp3 data: ";
 for(mp3_Iter = mp3.begin(); mp3_Iter != mp3.end(); mp3_Iter++)
 cout<<" "<<mp3_Iter->second;
 cout<<endl;

Page 5 of 33 www.tenouk.com

 cout<<"\nOperation: map <int, int> mp4(mp1)\n";
 cout<<"mp4 data: ";
 for(mp4_Iter = mp4.begin(); mp4_Iter != mp4.end(); mp4_Iter++)
 cout<<" "<<mp4_Iter->second;
 cout<<endl;

 cout<<"\nOperation: map <int, int> mp5(mp1_PIter, mp1_QIter)\n";
 cout<<"mp5 data: ";
 for(mp5_Iter = mp5.begin(); mp5_Iter != mp5.end(); mp5_Iter++)
 cout<<" "<<mp5_Iter->second;
 cout<<endl;

 cout<<"\nOperation: map <int, int> mp6(mp4.begin(), \n++mp4.begin(), less<int>(),
mp2_Alloc);\n";
 cout<<"mp6 data: ";
 for(mp6_Iter = mp6.begin(); mp6_Iter != mp6.end(); mp6_Iter++)
 cout<<" "<<mp6_Iter->second;
 cout<<endl;
 return 0;
}

Output:

---End of map--
---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

29.3 multimap

- A multimap is the same as a map except that duplicates are allowed. Thus, a multimap may contain
multiple elements that have the same key. A multimap can also be used as dictionary.

- It can be depicted as follows:

Page 6 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

- The iterator provided by the map class is a bidirectional iterator, but the class member functions
insert() and multimap() have versions that take as template parameters a weaker input iterator,
whose functionality requirements are more minimal than those guaranteed by the class of bidirectional
iterators.

- The multimap orders the sequence it controls by calling a stored function object of type
key_compare. This stored object is a comparison function that may be accessed by calling the
member function key_comp().

- The (key, value) pairs are stored in a multimap as objects of type pair. The pair class requires
the header <utility>, which is automatically included by <map>.

29.4 multimap Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the multimap object.

const_iterator A type that provides a bidirectional iterator that can read a const element in
the multimap.

const_pointer A type that provides a pointer to a const element in a multimap.

const_reference A type that provides a reference to a const element stored in a multimap for
reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const element
in the multimap.

difference_type A signed integer type that can be used to represent the number of elements of a
multimap in a range between elements pointed to by iterators.

iterator A type that provides the difference between two iterators those refer to
elements within the same multimap.

key_compare A type that provides a function object that can compare two sort keys to
determine the relative order of two elements in the multimap.

key_type A type that describes the sort key object that constitutes each element of the
multimap.

mapped_type A type that represents the data type stored in a multimap.
pointer A type that provides a pointer to a const element in a multimap.
reference A type that provides a reference to an element stored in a multimap.
reverse_iterator A type that provides a bidirectional iterator that can read or modify an element

in a reversed multimap.

size_type An unsigned integer type that provides a pointer to a const element in a
multimap

value_type A type that provides a function object that can compare two elements as sort
keys to determine their relative order in the multimap

Table 29.9

Member Functions

Member function Description
begin() Returns an iterator addressing the first element in the multimap.
clear() Erases all the elements of a multimap.
count() Returns the number of elements in a multimap whose key matches a parameter-specified

key.
empty() Tests if a multimap is empty.
end() Returns an iterator that addresses the location succeeding the last element in a multimap.
equal_range() Returns a pair of iterators respectively to the first element in a multimap with a key that is

Page 7 of 33 www.tenouk.com

greater than a specified key and to the first element in the multimap with a key that is
equal to or greater than the key.

erase() Removes an element or a range of elements in a multimap from specified positions or
removes elements that match a specified key.

find() Returns an iterator addressing the first location of an element in a multimap that has a key
equivalent to a specified key.

get_allocator() Returns a copy of the allocator object used to construct the multimap.
insert() Inserts an element or a range of elements into a multimap.
key_comp() Retrieves a copy of the comparison object used to order keys in a multimap.
lower_bound() Returns an iterator to the first element in a multimap that with a key that is equal to or

greater than a specified key.
max_size() Returns the maximum length of the multimap.
multimap() multimap constructor constructs a multimap that is empty or that is a copy of all or part of

some other multimap.
rbegin() Returns an iterator addressing the first element in a reversed multimap.
rend() Returns an iterator that addresses the location succeeding the last element in a reversed

multimap.
size() Returns the number of elements in the multimap.
swap() Exchanges the elements of two multimaps.
upper_bound() Returns an iterator to the first element in a multimap that with a key that is greater than a

specified key.
value_comp() The member function returns a function object that determines the order of elements in a

multimap by comparing their key values.

Table 29.10

multimap Class

- The (key, value) pairs are stored in a multimap as objects of type pair. The pair class requires
the header <utility>, which is automatically included by <map>.

- The STL multimap class is used for the storage and retrieval of data from a collection in which each
element is a pair that has both a data value and a sort key. The value of the key does not need to be
unique and is used to order the data automatically.

- The value of an element in a multimap, but not its associated key value, may be changed directly.
Instead, key values associated with old elements must be deleted and new key values associated with
new elements inserted.

template <
 class Key,
 class Type,
 class Traits=less<Key>,
 class Allocator=allocator<pair <const Key, Type> >
>

Parameters

Parameter Description
Key The key data type to be stored in the multimap.
Type The element data type to be stored in the multimap.

Traits
The type that provides a function object that can compare two element values as sort keys
to determine their relative order in the multimap. The binary predicate less<Key> is the
default value.

Allocator

The type that represents the stored allocator object that encapsulates details about the
map's allocation and de-allocation of memory. This argument is optional and the default
value is allocator<pair <const Key, Type> >.

Table 29.11

- The STL multimap class is:

▪ An associative container, which a variable size container that supports the efficient retrieval of

element values based on an associated key value.
▪ Reversible, because it provides bidirectional iterators to access its elements.
▪ Sorted, because its elements are ordered by key values within the container in accordance with a

specified comparison function.

Page 8 of 33 www.tenouk.com

▪ Multiple, because its elements do not need to have a unique keys, so that one key value may have
many element data values associated with it.

▪ A pair associative container, because its element data values are distinct from its key values.
▪ A template class, because the functionality it provides is generic and so independent of the

specific type of data contained as elements or keys. The data types to be used for elements and
keys are, instead, specified as parameters in the class template along with the comparison function
and allocator.

multimap Constructor

- Constructs a multimap that is empty or that is a copy of all or part of some other multimap.
- All constructors store a type of allocator object that manages memory storage for the multimap and that

can later be returned by calling get_allocator. The allocator parameter is often omitted in the class
declarations and preprocessing macros used to substitute alternative allocators.

- All constructors initialize their multimap.
- All constructors store a function object of type Traits that is used to establish an order among the

keys of the multimap and that can later be returned by calling key_comp().
- The first three constructors specify an empty initial multimap, the second specifying the type of

comparison function (_Comp) to be used in establishing the order of the elements and the third
explicitly specifying the allocator type (_Al) to be used. The keyword explicit suppresses certain
kinds of automatic type conversion.

- The fourth constructor specifies a copy of the multimap _Right.
- The last three constructors copy the range [_First, _Last) of a map with increasing explicitness

in specifying the type of comparison function of class Traits and allocator.

//multimap, constructor or ctor
//compiled with VC++ 7.0 or .Net
//notice the duplicate key and data element
#include <map>
#include <iostream>
using namespace std;

int main()
{
 typedef pair<int, int> Int_Pair;
 multimap<int, int>::iterator mmp0Iter, mmp1Iter, mmp3Iter, mmp4Iter, mmp5Iter, mmp6Iter;
 multimap<int, int, greater<int> >::iterator mmp2Iter;

 //Create an empty multimap mmp0 of key type integer
 multimap <int, int> mmp0;

 //Create an empty multimap mmp1 with the key comparison
 //function of less than, then insert 6 elements
 multimap<int, int, less<int> > mmp1;
 mmp1.insert(Int_Pair(2, 2));
 mmp1.insert(Int_Pair(2, 21));
 mmp1.insert(Int_Pair(1, 5));
 mmp1.insert(Int_Pair(3, 12));
 mmp1.insert(Int_Pair(5, 32));
 mmp1.insert(Int_Pair(4, 21));

 //Create an empty multimap mmp2 with the key comparison
 //function of greater than, then insert 4 elements
 multimap <int, int, greater<int> > mmp2;
 mmp2.insert(Int_Pair(1, 11));
 mmp2.insert(Int_Pair(2, 10));
 mmp2.insert(Int_Pair(2, 11));
 mmp2.insert(Int_Pair(3, 12));

 //Create a multimap mmp3 with the
 //allocator of multimap mmp1
 multimap <int, int>::allocator_type mmp1_Alloc;
 mmp1_Alloc = mmp1.get_allocator();
 multimap <int, int> mmp3(less<int>(), mmp1_Alloc);
 mmp3.insert(Int_Pair(3, 12));
 mmp3.insert(Int_Pair(1, 21));

 //multimap mmp4, a copy of multimap mmp1
 multimap <int, int> mmp4(mmp1);

 //Create a multimap mmp5 by copying the range mmp1[_First, _Last)
 multimap <int, int>::const_iterator mmp1_PIter, mmp1_QIter;
 mmp1_PIter = mmp1.begin();

Page 9 of 33 www.tenouk.com

 mmp1_QIter = mmp1.begin();
 mmp1_QIter++;
 mmp1_QIter++;
 multimap <int, int> mmp5(mmp1_PIter, mmp1_QIter);

 //Create a multimap mmp6 by copying the range mmp4[_First, _Last)
 //and with the allocator of multimap mmp2
 multimap <int, int>::allocator_type mmp2_Alloc;
 mmp2_Alloc = mmp2.get_allocator();
 multimap <int, int> mmp6(mmp4.begin(), ++mmp4.begin(), less<int>(), mmp2_Alloc);

 //--
 cout<<"Operation: multimap <int, int> mmp0\n";
 cout<<"mmp0 data: ";
 for(mmp0Iter = mmp0.begin(); mmp0Iter != mmp0.end(); mmp0Iter++)
 cout<<" "<<mmp0Iter->second;
 cout<<endl;

 cout<<"\nOperation1: multimap<int, int, less<int> > mmp1\n";
 cout<<"Operation2: mmp1.insert(Int_Pair(2, 2))...\n";
 cout<<"mmp1 data: ";
 for(mmp1Iter = mmp1.begin(); mmp1Iter != mmp1.end(); mmp1Iter++)
 cout<<" "<<mmp1Iter->second;
 cout<<endl;

 cout<<"\nOperation1: multimap <int, int, greater<int> > mmp2\n";
 cout<<"Operation2: mmp2.insert(Int_Pair(1, 11))...\n";
 cout<<"mmp2 data: ";
 for(mmp2Iter = mmp2.begin(); mmp2Iter != mmp2.end(); mmp2Iter++)
 cout<<" "<<mmp2Iter->second;
 cout<<endl;

 cout<<"\nOperation1: multimap <int, int> mmp3(less<int>(), mmp1_Alloc)\n";
 cout<<"Operation2: mmp3.insert(Int_Pair(3, 12))...\n";
 cout<<"mmp3 data: ";
 for(mmp3Iter = mmp3.begin(); mmp3Iter != mmp3.end(); mmp3Iter++)
 cout<<" "<<mmp3Iter->second;
 cout<<endl;

 cout<<"\nOperation: multimap <int, int> mmp4(mmp1)\n";
 cout<<"mmp4 data: ";
 for(mmp4Iter = mmp4.begin(); mmp4Iter != mmp4.end(); mmp4Iter++)
 cout<<" "<<mmp4Iter->second;
 cout << endl;

 cout<<"\nOperation: multimap <int, int> mmp5(mmp1_PIter, mmp1_QIter)\n";
 cout<<"mmp5 data: ";
 for(mmp5Iter = mmp5.begin(); mmp5Iter != mmp5.end(); mmp5Iter++)
 cout<<" "<<mmp5Iter->second;
 cout<<endl;

 cout<<"\nOperation: multimap <int, int> mmp6(mmp4.begin(), \n++mmp4.begin(), less<int>(),
mmp2_Alloc)\n";
 cout<<"mmp6 data: ";
 for(mmp6Iter = mmp6.begin(); mmp6Iter != mmp6.end(); mmp6Iter++)
 cout<<" "<<mmp6Iter->second;
 cout<<endl;
 return 0;
}

Output:

Page 10 of 33 www.tenouk.com

---End of multimap---------------------------------------
---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

29.5 Hash Tables

- The hash table is a data structure for collections but it is not part of the C++ standard library. It is
implementation dependant.

- Libraries typically provide four kinds of hash tables that are hash_map, hash_multimap,
hash_set, and hash_multiset.

29.5.1 hash_map

- The main advantage of hashing over sorting is greater efficiency; a successful hashing performs
insertions, deletions, and finds in constant average time as compared with a time proportional to the
logarithm of the number of elements in the container for sorting techniques.

- The value of an element in a hash_map, but not its associated key value, may be changed directly.
Instead, key values associated with old elements must be deleted and new key values associated with
new elements inserted.

- Hashed associative containers are optimized for the operations of lookup, insertion and removal. The
member functions that explicitly support these operations are efficient when used with a well-designed
hash function, performing them in a time that is on average constant and not dependent on the number
of elements in the container.

- A good designed hash function produces a uniform distribution of hashed values and minimizes the
number of collisions, where a collision is said to occur when distinct key values are mapped into the
same hashed value. In the worst case, with the worst possible hash function, the number of operations
is proportional to the number of elements in the sequence (linear time).

- This type of structure is an ordered list of uniquely occurring keywords with associated string values.
If, instead, the words had more than one correct definition, so that keys were not unique, then a
hash_multimap would be the container of choice.

- If, on the other hand, just the list of words were being stored, then a hash_set would be the correct
container. If multiple occurrences of the words were allowed, then a hash_multiset would be the
appropriate container structure.

- The hash_map orders the sequence it controls by calling a stored hash Traits object of class
value_compare. This stored object may be accessed by calling the member function
key_comp(). Such a function object must behave the same as an object of class

Page 11 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

hash_compare<Key, less<Key> >. Specifically, for all values _Key of type Key, the call
Traits(_Key) yields a distribution of values of type size_t.

- The iterator provided by the hash_map class is a bidirectional iterator.

<hash_map> Header Members

Operators

Operator Description
operator!= Tests if the hash_map or hash_multimap object on the left side of the operator is not equal

to the hash_map or hash_multimap object on the right side.
operator< Tests if the hash_map or hash_multimap object on the left side of the operator is less than

the hash_map or hash_multimap object on the right side.
operator<= Tests if the hash_map or hash_multimap object on the left side of the operator is less than or

equal to the hash_map or hash_multimap object on the right side.
operator== Tests if the hash_map or hash_multimap object on the left side of the operator is equal to the

hash_map or hash_multimap object on the right side.
operator> Tests if the hash_map or hash_multimap object on the left side of the operator is greater

than the hash_map or hash_multimap object on the right side.
operator>= Tests if the hash_map or hash_multimap object on the left side of the operator is greater

than or equal to the hash_map or hash_multimap object on the right side.

Table 29.12

Specialized Template Functions

Specialized template
function Description

swap() Exchanges the elements of two hash_maps or
hash_multimaps.

Table 29.13

Classes

Class Description

hash_compare
Class

Describes an object that can be used by any of the hash associative containers:
hash_map, hash_multimap, hash_set, or hash_multiset, as a default Traits parameter
object to order and hash the elements they contain.

value_compare
Class

Provides a function object that can compare the elements of a hash_map by comparing
the values of their keys to determine their relative order in the hash_map.

hash_map Class Used for the storage and fast retrieval of data from a collection in which each element is
a pair that has a sort key whose value is unique and an associated data value.

hash_multimap
Class

Used for the storage and fast retrieval of data from a collection in which each element is
a pair that has a sort key whose value need not be unique and an associated data value.

Table 29.14

hash_map Template Class Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the hash_map object.

const_iterator A type that provides a bidirectional iterator that can read a const
element in the hash_map.

const_pointer A type that provides a pointer to a const element in a hash_map.

const_reference A type that provides a reference to a const element stored in a
hash_map for reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const
element in the hash_map.

difference_type
A signed integer type that can be used to represent the number of
elements of a hash_map in a range between elements pointed to by
iterators.

Page 12 of 33 www.tenouk.com

iterator A type that provides a bidirectional iterator that can read or modify
any element in a hash_map.

key_compare A type that provides a function object that can compare two sort keys
to determine the relative order of two elements in the hash_map.

key_type A type describes the sort key object that constitutes each element of
the hash_map.

mapped_type A type that represents the data type stored in a hash_map.
pointer A type that provides a pointer to an element in a hash_map.
reference A type that provides a reference to an element stored in a hash_map.

reverse_iterator A type that provides a bidirectional iterator that can read or modify an
element in a reversed hash_map.

size_type An unsigned integer type that can represent the number of elements in
a hash_map.

value_type A type that provides a function object that can compare two elements
as sort keys to determine their relative order in the hash_map.

table 29.15

hash_map Template Class Member Functions

Member function Description
begin() Returns an iterator addressing the first element in the hash_map.
clear() Erases all the elements of a hash_map.
count() Returns the number of elements in a hash_map whose key matches a parameter-specified

key.
empty() Tests if a hash_map is empty.
end() Returns an iterator that addresses the location succeeding the last element in a hash_map.

equal_range()
Returns a pair of iterators, respectively, to the first element in a hash_map with a key that
is greater than a specified key and to the first element in the hash_map with a key that is
equal to or greater than the key.

erase() Removes an element or a range of elements in a hash_map from specified positions
find() Returns an iterator addressing the location of an element in a hash_map that has a key

equivalent to a specified key.
get_allocator() Returns a copy of the allocator object used to construct the hash_map.
hash_map() Constructs a hash_map that is empty or that is a copy of all or part of some other

hash_map.
insert() Inserts an element or a range of elements into a hash_map.
key_comp() Returns an iterator to the first element in a hash_map with a key value that is equal to or

greater than that of a specified key.
lower_bound() Returns an iterator to the first element in a hash_map with a key value that is equal to or

greater than that of a specified key.
max_size() Returns the maximum length of the hash_map.
rbegin() Returns an iterator addressing the first element in a reversed hash_map.
rend() Returns an iterator that addresses the location succeeding the last element in a reversed

hash_map.
size() Specifies a new size for a hash_map.
swap() Exchanges the elements of two hash_maps.
upper_bound() Returns an iterator to the first element in a hash_map that with a key value that is greater

than that of a specified key.
value_comp() Retrieves a copy of the comparison object used to order element values in a hash_map.

Table 29.16

hash_map Template Class Operator

Operator Description
operator[] Inserts an element into a hash_map with a specified key

value.

Table 29.17

hash_map Class

Page 13 of 33 www.tenouk.com

- Stores and retrieves data quickly from a collection in which each element is a pair that has a sort key
whose value is unique and an associated data value.

template <
 class Key,
 class Type,
 class Traits=hash_compare<Key, less<Key> >,
 class Allocator=allocator<pair <const Key, Type> >
>

Parameters

Parameter Description
Key The element data type to be stored in the hash_map.
Type The element data type to be stored in the hash_map.

Traits

The type which includes two function objects, one of class compare that is a binary
predicate able to compare two element values as sort keys to determine their relative
order and a hash function that is a unary predicate mapping key values of the elements to
unsigned integers of type size_t. This argument is optional, and
hash_compare<Key, less<Key> > is the default value.

Allocator

The type that represents the stored allocator object that encapsulates details about the
hash_map's allocation and de-allocation of memory. This argument is optional, and the
default value is allocator<pair <const Key, Type> >.

Table 29.18

- The hash_map is:

▪ An associative container, which a variable size container that supports the efficient retrieval of

element values based on an associated key value.
▪ Reversible, because it provides a bidirectional iterator to access its elements.
▪ Hashed, because its elements are grouped into buckets based on the value of a hash function

applied to the key values of the elements.
▪ Unique in the sense that each of its elements must have a unique key.
▪ A pair associative container, because its element data values are distinct from its key values.
▪ A template class, because the functionality it provides is generic and so independent of the

specific type of data contained as elements or keys. The data types to be used for elements and
keys are, instead, specified as parameters in the class template along with the comparison function
and allocator.

hash_map Constructor

- Constructs a hash_map that is empty or that is a copy of all or part of some other hash_map.
- All constructors store a type of allocator object that manages memory storage for the hash_map and

that can later be returned by calling get_allocator. The allocator parameter is often omitted in the
class declarations and preprocessing macros used to substitute alternative allocators.

- All constructors initialize their hash_map.
- All constructors store a function object of type Traits that is used to establish an order among the

keys of the hash_map and that can later be returned by calling key_comp.
- The first three constructors specify an empty initial hash_map, the second, in addition, specifying the

type of comparison function (_Comp) to be used in establishing the order of the elements and the
third explicitly specifying the allocator type (_Al) to be used.

- The keyword explicit suppresses certain kinds of automatic type conversion.
- The fourth constructor specifies a copy of the hash_map _Right.
- The last three constructors copy the range [_First, _Last) of a hash_map with increasing

explicitness in specifying the type of comparison function of class Traits and allocator.

//hash_map, constructor
//compiled with visual C++ 7.0
//or VC.Net, some warnings
#include <hash_map>
#include <iostream>
using namespace std;

int main()
{

Page 14 of 33 www.tenouk.com

typedef pair <int, int> Int_Pair;
hash_map <int, int>::iterator hmp0_Iter, hmp1_Iter, hmp3_Iter, hmp4_Iter, hmp5_Iter, hmp6_Iter;
hash_map <int, int, hash_compare<int, greater<int> > >::iterator hmp2_Iter;

//Create an empty hash_map hmp0 of key type integer
hash_map <int, int> hmp0;

//Create an empty hash_map hmp1 with the key comparison
//function of less than, then insert 4 elements
hash_map <int, int, hash_compare <int, less<int> > > hmp1;
hmp1.insert(Int_Pair(1, 13));
hmp1.insert(Int_Pair(3, 51));
hmp1.insert(Int_Pair(7, 22));
hmp1.insert(Int_Pair(2, 31));

//Create an empty hash_map hmp2 with the key comparison
//function of greater than, then insert 4 elements
//no duplicate key...
hash_map <int, int, hash_compare <int, greater<int> > > hmp2;
hmp2.insert(Int_Pair(1, 17));
hmp2.insert(Int_Pair(2, 20));
hmp2.insert(Int_Pair(4, 13));
hmp2.insert(Int_Pair(3, 34));

//Create a hash_map hmp3 with the
//hash_map hmp1 allocator
//notice the duplicate key...
hash_map <int, int>::allocator_type hmp1_Alloc;
hmp1_Alloc = hmp1.get_allocator();
hash_map <int, int> hmp3(less<int>(), hmp1_Alloc);
hmp3.insert(Int_Pair(2, 17));
hmp3.insert(Int_Pair(1, 12));
hmp3.insert(Int_Pair(2, 15));
hmp3.insert(Int_Pair(1, 22));

//Create a hash_map hm5 by copying the range hm1[_First, _Last)
hash_map <int, int>::const_iterator hmp1_PIter, hmp1_QIter;
hmp1_PIter = hmp1.begin();
hmp1_QIter = hmp1.begin();
hmp1_QIter++;
hmp1_QIter++;
hash_map <int, int> hmp5(hmp1_PIter, hmp1_QIter);

//Create a hash_map hm6 by copying the range hm2[_First, _Last)
//and with the allocator of hash_map hm2
hash_map <int, int>::allocator_type hmp2_Alloc;
hmp2_Alloc = hmp2.get_allocator();
hash_map <int, int> hmp6(hmp2.begin(), ++hmp2.begin(), less<int>(), hmp2_Alloc);

//------------------------------------
cout<<"Operation: hash_map <int, int> hmp0\n";
cout<<"hmp0 data: ";
for(hmp0_Iter = hmp0.begin(); hmp0_Iter != hmp0.end(); hmp0_Iter++)
cout<<hmp0_Iter->second<<" ";
cout<<endl;

cout<<"\nOperation1: hash_map<int, int, \nhash_compare<int, less<int> > > hmp1\n";
cout<<"Operation2: hmp1.insert(Int_Pair(1, 13))...\n";
cout<<"hmp1 data: ";
for(hmp1_Iter = hmp1.begin(); hmp1_Iter != hmp1.end(); hmp1_Iter++)
cout<<hmp1_Iter->second<<" ";
cout<<endl;

cout<<"\nOperation1: hash_map<int, int, \nhash_compare<int, greater<int> > > hmp2\n";
cout<<"Operation2: hmp2.insert(Int_Pair(1, 17))...\n";
cout<<"hmp2 data: ";
for(hmp2_Iter = hmp2.begin(); hmp2_Iter != hmp2.end(); hmp2_Iter++)
cout<<hmp2_Iter->second<<" ";
cout<<endl;

cout<<"\nOperation1: hash_map<int, int> hmp3(less<int>(), hmp1_Alloc)\n";
cout<<"Operation2: hmp3.insert(Int_Pair(2, 17))...\n";
cout<<"hmp3 data: ";
for(hmp3_Iter = hmp3.begin(); hmp3_Iter != hmp3.end(); hmp3_Iter++)
cout<<hmp3_Iter->second<<" ";
cout<<endl;

cout<<"\nOperation: hash_map<int, int> hmp5(hmp1_PIter, hmp1_QIter)\n";
cout<<"hmp5 data: ";

Page 15 of 33 www.tenouk.com

for(hmp5_Iter = hmp5.begin(); hmp5_Iter != hmp5.end(); hmp5_Iter++)
cout<<hmp5_Iter->second<<" ";
cout<<endl;

cout<<"\nOperation: hash_map<int, int> hmp6(hmp2.begin(), \n++hmp2.begin(), less<int>(),
hmp2_Alloc);\n";
cout<<"hmp6 data: ";
for(hmp6_Iter = hmp6.begin(); hmp6_Iter != hmp6.end(); hmp6_Iter++)
cout<<hmp6_Iter->second <<" ";
cout<<endl;
return 0;
}

Output:

---End of hash_map---------------------------------------
---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

29.5.2 hash_multimap Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the hash_multimap object.

const_iterator A type that provides a bidirectional iterator that can read a const element in the
hash_multimap.

const_pointer A type that provides a pointer to a const element in a hash_multimap.

const_reference A type that provides a reference to a const element stored in a hash_multimap for
reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const element in the
hash_multimap.

difference_type A signed integer type that can be used to represent the number of elements of a
hash_multimap in a range between elements pointed to by iterators.

iterator A type that provides a bidirectional iterator that can read or modify any element in a
hash_multimap.

key_compare A type that provides a function object that can compare two sort keys to determine
the relative order of two elements in the hash_multimap.

key_type A type that describes the sort key object that constitutes each element of the
hash_multimap.

Page 16 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

mapped_type A type that represents the data type stored in a hash_multimap.
pointer A type that provides a pointer to an element in a hash_multimap.
reference A type that provides a reference to an element stored in a hash_multimap.
reverse_iterator A type that provides a bidirectional iterator that can read or modify an element in a

reversed hash_multimap.
size_type An unsigned integer type that can represent the number of elements in a

hash_multimap.
value_type A type that provides a function object that can compare two elements as sort keys to

determine their relative order in the hash_multimap.

Table 29.19

Member Functions

Member function Description
begin() Returns an iterator addressing the first element in the hash_multimap.
clear() Erases all the elements of a hash_multimap.
count() Returns the number of elements in a hash_multimap whose key matches a parameter-

specified key.
empty() Tests if a hash_multimap is empty.
end() Returns an iterator that addresses the location succeeding the last element in a

hash_multimap.
equal_range() Returns an iterator that addresses the location succeeding the last element in a

hash_multimap.
erase() Removes an element or a range of elements in a hash_multimap from specified positions
find() Returns an iterator addressing the location of an element in a hash_multimap that has a key

equivalent to a specified key.
get_allocator() Returns a copy of the allocator object used to construct the hash_multimap.
hash_multimap() hash_multimap constructor, constructs a list of a specific size or with elements of a specific

value or with a specific allocator or as a copy of some other hash_multimap.
insert() Inserts an element or a range of elements into the hash_multimap at a specified position.
key_comp() Retrieves a copy of the comparison object used to order keys in a hash_multimap.
lower_bound() Returns an iterator to the first element in a hash_multimap that with a key value that is equal

to or greater than that of a specified key.
max_size() Returns the maximum length of the hash_multimap.
rbegin() Returns an iterator addressing the first element in a reversed hash_multimap.
rend() Returns an iterator that addresses the location succeeding the last element in a reversed

hash_multimap.
size() Specifies a new size for a hash_multimap.
swap() Exchanges the elements of two hash_multimaps.
upper_bound() Returns an iterator to the first element in a hash_multimap that with a key value that is greater

than that of a specified key.
value_comp() Retrieves a copy of the comparison object used to order element values in a hash_multimap.

Table 29.20

- The container class hash_multimap is an extension of the STL and is used for the storage and fast

retrieval of data from a collection in which each element is a pair that has a sort key whose value need
not be unique and an associated data value.

template <
 class Key,
 class Type,
 class Traits = hash_compare<Key, less<Key> >,
 class Allocator = allocator<pair <const Key, Type> >
>

Parameters

Parameter Description
Key The element data type to be stored in the hash_multimap.
Type The element data type to be stored in the hash_multimap.

Traits
The type that includes two function objects, one of class Traits that is a binary predicate able to
compare two element values as sort keys to determine their relative order and a hash function that
is a unary predicate mapping key values of the elements to unsigned integers of type size_t.
This argument is optional, and the hash_compare<Key, less<Key> > is the default value.

Page 17 of 33 www.tenouk.com

Allocator
The type that represents the stored allocator object that encapsulates details about the
hash_multimap's allocation and de-allocation of memory. This argument is optional, and the
default value is allocator<pair <const Key, Type> >.

Table 29.21

- The hash_multimap is:

▪ An associative container, which a variable size container that supports the efficient retrieval of

element values based on an associated key value.
▪ Reversible, because it provides a bidirectional iterator to access its elements.
▪ Hashed, because its elements are grouped into buckets based on the value of a hash function

applied to the key values of the elements.
▪ Multiple, because its elements do not need to have a unique keys, so that one key value may have

many element data values associated with it.
▪ A pair associative container, because its element values are distinct from its key values.
▪ A template class, because the functionality it provides is generic and so independent of the

specific type of data contained as elements or keys. The data types to be used for elements and
keys are, instead, specified as parameters in the class template along with the comparison function
and allocator.

- The hash_multimap orders the sequence it controls by calling a stored hash Traits object of type

value_compare(). This stored object may be accessed by calling the member function
key_comp().

- Such a function object must behave the same as an object of class hash_compare<Key,
less<Key> >. Specifically, for all values _Key of type Key, the call Traits(_Key) yields a
distribution of values of type size_t.

- The iterator provided by the hash_multimap class is a bidirectional iterator, but the class member
functions insert() and hash_multimap() have versions that take as template parameters a
weaker input iterator, whose functionality requirements are more minimal than those guaranteed by the
class of bidirectional iterators.

hash_multimap Constructor

- Constructs a hash_multimap that is empty or that is a copy of all or part of some other
hash_multimap.

- All constructors store a type of allocator object that manages memory storage for the hash_multimap
and that can later be returned by calling get_allocator(). The allocator parameter is often
omitted in the class declarations and preprocessing macros used to substitute alternative allocators.

- All constructors initialize their hash_multimap.
- All constructors store a function object of type Traits that is used to establish an order among the

keys of the hash_multimap and that can later be returned by calling key_comp().
- The first three constructors specify an empty initial hash_multimap, the second specifying the type

of comparison function (_Comp) to be used in establishing the order of the elements and the third
explicitly specifying the allocator type (_Al) to be used. The keyword explicit suppresses certain
kinds of automatic type conversion.

- The fourth constructor specifies a copy of the hash_multimap _Right.
- The last three constructors copy the range [_First, _Last) of a map with increasing explicitness

in specifying the type of comparison function of class Traits and allocator.

//hash_multimap, constructor
//compiled with VC7.0 or .Net
//a lot of warning messages:-)
#include <hash_map>
#include <iostream>
using namespace std;

int main()
{
 typedef pair <int, int> Int_Pair;
 hash_multimap <int, int>::iterator hmp0_Iter, hmp1_Iter, hmp3_Iter, hmp4_Iter, hmp5_Iter;
 hash_multimap <int, int, hash_compare <int, greater<int> > >::iterator hmp2_Iter;

 //Create an empty hash_multimap hmp0 of key type integer
 hash_multimap <int, int> hmp0;

Page 18 of 33 www.tenouk.com

 //Create an empty hash_multimap hmp1 with the key comparison
 //function of less than, then insert 6 elements
 hash_multimap <int, int, hash_compare <int, less<int> > > hmp1;
 hmp1.insert(Int_Pair(3, 12));
 hmp1.insert(Int_Pair(2, 30));
 hmp1.insert(Int_Pair(1, 22));
 hmp1.insert(Int_Pair(7, 41)) ;
 hmp1.insert(Int_Pair(4, 9));
 hmp1.insert(Int_Pair(7, 30));

 //Create an empty hash_multimap hmp2 with the key comparison
 //function of greater than, then insert 2 elements
 hash_multimap <int, int, hash_compare <int, greater<int> > > hmp2;
 hmp2.insert(Int_Pair(2, 13));
 hmp2.insert(Int_Pair(1, 17));

 //Create a hash_multimap hmp3 with the
 //allocator of hash_multimap hmp1
 hash_multimap <int, int>::allocator_type hmp1_Alloc;
 hmp1_Alloc = hmp1.get_allocator();
 hash_multimap <int, int> hmp3(less<int>(),hmp1_Alloc);
 hmp3.insert(Int_Pair(2, 13));
 hmp3.insert(Int_Pair(4, 10));

 //Create a hash_multimap hmp4 by copying the range hmp1[_First, _Last)
 hash_multimap <int, int>::const_iterator hmp1_PIter, hmp1_QIter;
 hmp1_PIter = hmp1.begin();
 hmp1_QIter = hmp1.begin();
 hmp1_QIter++;
 hmp1_QIter++;
 hmp1_QIter++;
 hash_multimap <int, int> hmp4(hmp1_PIter, hmp1_QIter);

 //Create a hash_multimap hmp5 by copying the range hmp2[_First, _Last)
 //and with the allocator of hash_multimap hmp2
 hash_multimap <int, int>::allocator_type hmp2_Alloc;
 hmp2_Alloc = hmp2.get_allocator();
 hash_multimap <int, int> hmp5(hmp2.begin(), ++hmp2.begin(), less<int>(), hmp2_Alloc);

 //--
 cout<<"Operation: hash_multimap <int, int> hmp0\n";
 cout<<"hmp0 data: ";
 for(hmp0_Iter = hmp0.begin(); hmp0_Iter != hmp0.end(); hmp0_Iter++)
 cout<<hmp0_Iter->second<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multimap<int, int, \n hash_compare<int, less<int> > > hmp1\n";
 cout<<"Operation2: hmp1.insert(Int_Pair(3, 12))...\n";
 cout<<"hmp1 data: ";
 for(hmp1_Iter = hmp1.begin(); hmp1_Iter != hmp1.end(); hmp1_Iter++)
 cout<<hmp1_Iter->second<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multimap<int, int, \n hash_compare<int, greater<int> > > hmp2\n";
 cout<<"Operation2: hmp2.insert(Int_Pair(2, 13))...\n";
 cout<<"hmp2 data: ";
 for(hmp2_Iter = hmp2.begin(); hmp2_Iter != hmp2.end(); hmp2_Iter++)
 cout<<hmp2_Iter->second<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multimap<int, int> hmp3(less<int>(), hmp1_Alloc)\n";
 cout<<"Operation2: hmp3.insert(Int_Pair(2, 13))...\n";
 cout<<"hmp3 data: ";
 for(hmp3_Iter = hmp3.begin(); hmp3_Iter != hmp3.end(); hmp3_Iter++)
 cout<<hmp3_Iter->second<<" ";
 cout<<endl;

 cout<<"\nOperation: hash_multimap<int, int> hmp4(hmp1_PIter, hmp1_QIter)\n";
 cout<<"hmp4 data: ";
 for(hmp4_Iter = hmp4.begin(); hmp4_Iter != hmp4.end(); hmp4_Iter++)
 cout<<hmp4_Iter->second<<" ";
 cout<<endl;

 cout<<"\nOperation: hash_multimap<int, int> hmp5(hmp2.begin(), \n ++hmp2.begin(),
less<int>(), hmp2_Alloc);\n";
 cout<<"hmp5 data: ";
 for(hmp5_Iter = hmp5.begin(); hmp5_Iter != hmp5.end(); hmp5_Iter++)
 cout<<hmp5_Iter->second<<" ";
 cout<<endl;

Page 19 of 33 www.tenouk.com

 return 0;
}

Output:

---End of hash_multimap------------------------------------
---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

29.5.3 hash_set

- The elements of a hash_set are unique and serve as their own sort keys. A model for this type of
structure is an ordered list of, say, words in which the words may occur only once.

- If multiple occurrences of the words were allowed, then a hash_multiset would be the appropriate
container structure. If unique definitions were attached as values to the list of key words, then a
hash_map would be an appropriate structure to contain this data. If instead the definitions were not
unique, then a hash_multimap would be the container of choice.

- The hash_set orders the sequence it controls by calling a stored hash Traits object of type
value_compare.

- This stored object may be accessed by calling the member function key_comp(). Such a function
object must behave the same as an object of class hash_compare<Key, less<Key> >.
Specifically, for all values _Key of type Key, the call Trait(_Key) yields a distribution of values
of type size_t.

- The iterator provided by the hash_set class is a bidirectional iterator.

<hash_set> Header Members

Operators

Operator Description
operator!= Tests if the hash_set or hash_multiset object on the left side of the operator is not equal to

the hash_set or hash_multiset object on the right side.
operator< Tests if the hash_set or hash_multiset object on the left side of the operator is less than the

hash_set or hash_multiset object on the right side.
operator<= Tests if the hash_set or hash_multiset object on the left side of the operator is less than or

equal to the hash_set or hash_multiset object on the right side.
operator== Tests if the hash_set or hash_multiset object on the left side of the operator is equal to the

Page 20 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

hash_set or hash_multiset object on the right side.
operator> Tests if the hash_set or hash_multiset object on the left side of the operator is greater than

the hash_set or hash_multiset object on the right side.
operator>= Tests if the hash_set or hash_multiset object on the left side of the operator is greater than

or equal to the hash_set or hash_multiset object on the right side.

Table 29.22

Specialized Template Functions

Specialized
template function Description

swap() Exchanges the elements of two hash_sets or
hash_multisets.

Table 29.23

Classes

Class Description

hash_compare
Class

Describes an object that can be used by any of the hash associative containers —
hash_map, hash_multimap, hash_set, or hash_multiset — as a default Traits
parameter object to order and hash the elements they contain.

hash_set
Class

Used for the storage and fast retrieval of data from a collection in which the values of
the elements contained are unique and serve as the key values.

hash_multiset
Class

Used for the storage and fast retrieval of data from a collection in which the values of
the elements contained are unique and serve as the key values.

Table 29.24

hash_set Template Class Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the hash_set object.

const_iterator A type that provides a bidirectional iterator that can read a const element
in the hash_set.

const_pointer A type that provides a pointer to a const element in a hash_set.

const_reference A type that provides a reference to a const element stored in a hash_set
for reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const
element in the hash_set.

difference_type A signed integer type that can be used to represent the number of elements
of a hash_set in a range between elements pointed to by iterators.

iterator A type that provides a bidirectional iterator that can read or modify any
element in a hash_set.

key_compare A type that provides a function object that can compare two sort keys to
determine the relative order of two elements in the hash_set.

key_type A type that describes an object stored as an element of a hash_set in its
capacity as sort key.

pointer A type that provides a pointer to an element in a hash_set.
reference A type that provides a reference to an element stored in a hash_set
reverse_iterator A type that provides a bidirectional iterator that can read or modify an

element in a reversed hash_set.
size_type An unsigned integer type that can represent the number of elements in a

hash_set.

value_compare
A type that provides two function objects, a binary predicate of class
compare that can compare two element values of a hash_set to determine
their relative order and a unary predicate that hashes the elements.

value_type A type that describes an object stored as an element of a hash_set in its
capacity as a value.

Table 29.25

hash_set Template Class Member Functions

Page 21 of 33 www.tenouk.com

Member function Description
begin() Returns an iterator that addresses the first element in the hash_set.
clear() Erases all the elements of a hash_set.
count() Returns the number of elements in a hash_set whose key matches a parameter-

specified key.
empty() Tests if a hash_set is empty.
end() Returns an iterator that addresses the location succeeding the last element in a

hash_set.

equal_range()
Returns a pair of iterators respectively to the first element in a hash_set with a key that
is greater than a specified key and to the first element in the hash_set with a key that is
equal to or greater than the key.

erase() Removes an element or a range of elements in a hash_set from specified positions or
removes elements that match a specified key.

find() Returns an iterator addressing the location of an element in a hash_set that has a key
equivalent to a specified key.

get_allocator() Returns a copy of the allocator object used to construct the hash_set.
hash_set() Constructs a hash_set that is empty or that is a copy of all or part of some other

hash_set.
insert() Inserts an element or a range of elements into a hash_set.
key_comp() Retrieves a copy of the comparison object used to order keys in a hash_set.
lower_bound() Returns an iterator to the first element in a hash_set with a key that is equal to or

greater than a specified key.
max_size() Returns the maximum length of the hash_set.
rbegin() Returns an iterator addressing the first element in a reversed hash_set.
rend() Returns an iterator that addresses the location succeeding the last element in a

reversed hash_set.
size() Returns the number of elements in the hash_set.
swap() Exchanges the elements of two hash_sets.
upper_bound() Returns an iterator to the first element in a hash_set that with a key that is equal to or

greater than a specified key.
value_comp() Retrieves a copy of the hash traits object used to hash and order element key values in

a hash_set.

Table 29.26

hash_set Class

- The container class hash_set is an extension of the Standard Template Library (STL) and is used for the
storage and fast retrieval of data from a collection in which the values of the elements contained are
unique and serve as the key values.

template <
 class Key,
 class Traits=hash_compare<Key, less<Key> >,
 class Allocator=allocator<Key>
>

Parameters

Parameter Description
Key The element data type to be stored in the hash_set.

Traits

The type which includes two function objects, one of class compare that is a binary
predicate able to compare two element values as sort keys to determine their relative
order and a hash function that is a unary predicate mapping key values of the
elements to unsigned integers of type size_t. This argument is optional, and the
hash_compare<Key, less<Key> > is the default value.

Allocator

The type that represents the stored allocator object that encapsulates details about
the hash_set's allocation and de-allocation of memory. This argument is optional,
and the default value is allocator<Key>.

Table 29.27

- The hash_set is:

Page 22 of 33 www.tenouk.com

▪ An associative container, which a variable size container that supports the efficient retrieval of
element values based on an associated key value. Further, it is a simple associative container
because its element values are its key values.

▪ Reversible, because it provides a bidirectional iterator to access its elements.
▪ Hashed, because its elements are grouped into buckets based on the value of a hash function

applied to the key values of the elements.
▪ Unique in the sense that each of its elements must have a unique key. Because hash_set is also a

simple associative container, its elements are also unique.
▪ A template class because the functionality it provides is generic and so independent of the specific

type of data contained as elements or keys. The data types to be used for elements and keys are,
instead, specified as parameters in the class template along with the comparison function and
allocator.

hash_set Constructor

- Constructs a hash_set that is empty or that is a copy of all or part of some other hash_set.
- All constructors store a type of allocator object that manages memory storage for the hash_set and

that can later be returned by calling get_allocator(). The allocator parameter is often omitted in
the class declarations and preprocessing macros used to substitute alternative allocators.

- All constructors initialize their hash_sets.
- All constructors store a function object of type Traits that is used to establish an order among the

keys of the hash_set and that can later be returned by calling key_comp.
- The first three constructors specify an empty initial hash_set, the second specifying the type of

comparison function (_Comp) to be used in establishing the order of the elements and the third
explicitly specifying the allocator type (_Al) to be used.

- The key word explicit suppresses certain kinds of automatic type conversion.
- The fourth constructor specifies a copy of the hash_set _Right.
- The last three constructors copy the range [_First, _Last) of a hash_set with increasing

explicitness in specifying the type of comparison function of class Traits and allocator.
- The actual order of elements in a hash_set container depends on the hash function, the ordering

function and the current size of the hash table and cannot, in general, be predicted as it could with the
set container, where it was determined by the ordering function alone.

//hash_set, constructor
//compiled with VC7.0/.Net
//some warnings
#include <hash_set>
#include <iostream>
using namespace std;

int main()
{
hash_set <int>::iterator hst0_Iter, hst1_Iter, hst3_Iter, hst4_Iter, hst5_Iter;
hash_set <int, hash_compare <int, greater<int> > >::iterator hst2_Iter;

//Create an empty hash_set hst0 of key type integer
hash_set <int> hst0;

//Create an empty hash_set hst1 with the key comparison
//function of less than, then insert 5 elements
hash_set <int, hash_compare<int, less<int> > > hst1;
hst1.insert(7);
hst1.insert(3);
hst1.insert(12);
hst1.insert(51);
hst1.insert(10);

//Create an empty hash_set hst2 with the key comparison
//function of greater than, then insert 4 elements
hash_set<int, hash_compare<int, greater<int> > > hst2;
hst2.insert(71);
hst2.insert(68);
hst2.insert(68);
hst2.insert(55);

//Create a hash_set hst3 with the
//hash_set hst1 allocator
hash_set<int>::allocator_type hst1_Alloc;
hst1_Alloc = hst1.get_allocator();
hash_set<int> hst3(less<int>(),hst1_Alloc);

Page 23 of 33 www.tenouk.com

hst3.insert(12);
hst3.insert(13);
hst3.insert(12);

//Create a hash_set hst4 by copying the range hst1[_First, _Last)
hash_set <int>::const_iterator hst1_PIter, hst1_QIter;
hst1_PIter = hst1.begin();
hst1_QIter = hst1.begin();
hst1_QIter++;
hst1_QIter++;
hash_set<int> hst4(hst1_PIter, hst1_QIter);

//Create a hash_set hst5 by copying the range hst4[_First, _Last)
//and with the allocator of hash_set hst2
hash_set <int>::allocator_type hst2_Alloc;
hst2_Alloc = hst2.get_allocator();
hash_set <int> hst5(hst1.begin(), ++hst1.begin(), less<int>(), hst2_Alloc);

//---
cout<<"Operation: hash_set <int> hst0\n";
cout<<"hst0 data: ";
for(hst0_Iter = hst0.begin(); hst0_Iter != hst0.end(); hst0_Iter++)
cout<<*hst0_Iter<<" ";
cout<<endl;

cout<<"\nOperation: hash_set <int, hash_compare<int, \nless<int> > > hst1\n";
cout<<"Operation: hst1.insert(7)...\n";
cout<< "hst1 data: ";
for(hst1_Iter = hst1.begin(); hst1_Iter != hst1.end(); hst1_Iter++)
cout<<*hst1_Iter << " ";
cout<<endl;

cout<<"\nOperation: hash_set <int, hash_compare<int, \ngreater<int> > > hst2\n";
cout<<"Operation: hst2.insert(71)...\n";
cout<<"hst2 data: ";
for(hst2_Iter = hst2.begin(); hst2_Iter != hst2.end(); hst2_Iter++)
cout<<*hst2_Iter<<" ";
cout<<endl;

cout<<"\nOperation: hash_set<int> hst3(less<int>(),hst1_Alloc)\n";
cout<<"Operation: hst3.insert(12)...\n";
cout<<"hst3 data: ";
for(hst3_Iter = hst3.begin(); hst3_Iter != hst3.end(); hst3_Iter++)
cout<<*hst3_Iter<<" ";
cout<<endl;

cout<<"\nOperation: hash_set<int> hst4(hst1_PIter, hst1_QIter)\n";
cout<<"hst4 data: ";
for(hst4_Iter = hst4.begin(); hst4_Iter != hst4.end(); hst4_Iter++)
cout<<*hst4_Iter<<" ";
cout<<endl;

cout<<"\nOperation: hash_set <int> hst5(hst1.begin(), \n++hst1.begin(), less<int>(),
hst2_Alloc)\n";
cout<<"hst5 data: ";
for(hst5_Iter = hst5.begin(); hst5_Iter != hst5.end(); hst5_Iter++)
cout<<*hst5_Iter<<" ";
cout<<endl;
return 0;
}

Output:

Page 24 of 33 www.tenouk.com

---End of the hash_set--
---www.tenouk.com---

1. Check the best selling C / C++ and STL books at Amazon.com.

29.5.4 hash_multiset Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the hash_multiset object.

const_iterator A type that provides a bidirectional iterator that can read a const element in
the hash_multiset.

const_pointer A type that provides a pointer to a const element in a hash_multiset.

const_reference A type that provides a reference to a const element stored in a
hash_multiset for reading and performing const operations.

const_reverse_iterator A type that provides a bidirectional iterator that can read any const element
in the hash_multiset.

difference_type A signed integer type that provides the difference between two iterators that
address elements within the same hash_multiset.

iterator A type that provides a bidirectional iterator that can read or modify any
element in a hash_multiset.

key_compare A type that provides a function object that can compare two sort keys to
determine the relative order of two elements in the hash_multiset.

key_type A type that provides a function object that can compare sort keys to
determine the relative order of two elements in the hash_multiset.

pointer A type that provides a pointer to an element in a hash_multiset
reference A type that provides a reference to an element stored in a hash_multiset.
reverse_iterator A type that provides a bidirectional iterator that can read or modify an

element in a reversed hash_multiset.
size_type An unsigned integer type that can represent the number of elements in a

hash_multiset.

value_compare
A type that provides two function objects, a binary predicate of class
compare that can compare two element values of a hash_multiset to
determine their relative order and a unary predicate that hashes the elements.

value_type A type that describes an object stored as an element of a hash_multiset in its
capacity as a value.

Table 29.28

Page 25 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

Member Functions

Member function Description
begin() Returns an iterator that addresses the first element in the hash_multiset.
clear() Erases all the elements of a hash_multiset.
count() Returns the number of elements in a hash_multiset whose key matches a parameter-

specified key
empty() Tests if a hash_multiset is empty.
end() Returns an iterator that addresses the location succeeding the last element in a

hash_multiset.

equal_range()
Returns a pair of iterators respectively to the first element in a hash_multiset with a key
that is greater than a specified key and to the first element in the hash_multiset with a key
that is equal to or greater than the key.

erase() Removes an element or a range of elements in a hash_multiset from specified positions or
removes elements that match a specified key.

find() Returns an iterator addressing the location of an element in a hash_multiset that has a key
equivalent to a specified key.

get_allocator() Returns a copy of the allocator object used to construct the hash_multiset.
hash_multiset() hash_multiset constructor, constructs a hash_multiset that is empty or that is a copy of all

or part of some other hash_multiset.
insert() Inserts an element or a range of elements into a hash_multiset.
key_comp() Retrieves a copy of the comparison object used to order keys in a hash_multiset.
lower_bound() Returns an iterator to the first element in a hash_multiset with a key that is equal to or

greater than a specified key.
max_size() Returns the maximum length of the hash_multiset.
rbegin() Returns an iterator addressing the first element in a reversed hash_multiset.
rend() Returns an iterator that addresses the location succeeding the last element in a reversed

hash_multiset.
size() Returns the number of elements in the hash_multiset.
swap() Exchanges the elements of two hash_multisets.
upper_bound() Returns an iterator to the first element in a hash_multiset that with a key that is equal to or

greater than a specified key.
value_comp() Retrieves a copy of the hash traits object used to hash and order element key values in a

hash_multiset.

Table 29.29

hash_multiset Class

- The container class hash_multiset is an extension of the Standard Template Library and is used for the
storage and fast retrieval of data from a collection in which the values of the elements contained serve
as the key values and are not required to be unique.

template <
 class Key,
 class Traits = hash_compare<Key, less<Key> >,
 class Allocator = allocator<Key>
>

Parameters

Parameter Description
Key The element data type to be stored in the hash_multiset.

Traits

The type which includes two function objects, one of class compare that is a binary predicate able
to compare two element values as sort keys to determine their relative order and a hash function
that is a unary predicate mapping key values of the elements to unsigned integers of type
size_t. This argument is optional, and the hash_compare<Key, less<Key> > is the
default value.

Allocator

The type that represents the stored allocator object that encapsulates details about the
hash_multiset's allocation and de-allocation of memory. This argument is optional, and the default
value is allocator<Key>.

Table 29.30

- The hash_multiset is:

Page 26 of 33 www.tenouk.com

▪ An associative container, which a variable size container that supports the efficient retrieval of
element values based on an associated key value. Further, it is a simple associative container
because its element values are its key values.

▪ Reversible, because it provides a bidirectional iterator to access its elements.
▪ Hashed, because its elements are grouped into buckets based on the value of a hash function

applied to the key values of the elements.
▪ Unique in the sense that each of its elements must have a unique key. Because

hash_multiset is also a simple associative container, its elements are also unique.
▪ A template class because the functionality it provides is generic and so independent of the specific

type of data contained as elements or keys. The data types to be used for elements and keys are,
instead, specified as parameters in the class template along with the comparison function and
allocator.

- The elements of a hash_multiset may be multiple and serve as their own sort keys, so keys are not

unique.
- The hash_multiset orders the sequence it controls by calling a stored hash traits object of type

value_compare. This stored object may be accessed by calling the member function
key_comp(). Such a function object must behave the same as an object of class
hash_compare<Key, less<Key> >. Specifically, for all values Key of type Key, the call
Trait(Key) yields a distribution of values of type size_t.

- Inserting elements invalidates no iterators, and removing elements invalidates only those iterators that
had specifically pointed at the removed elements.

- The iterator provided by the hash_multiset class is a bidirectional iterator, but the class member
functions insert() and hash_multiset() have versions that take as template parameters a
weaker input iterator, whose functionality requirements are more minimal than those guaranteed by the
class of bidirectional iterators.

hash_multiset Constructor

- Constructs a hash_multiset that is empty or that is a copy of all or part of some other
hash_multiset.

- All constructors store a type of allocator object that manages memory storage for the
hash_multiset and that can later be returned by calling get_allocator().

- The allocator parameter is often omitted in the class declarations and preprocessing macros used to
substitute alternative allocators.

- All constructors initialize their hash_multisets.
- All constructors store a function object of type Traits that is used to establish an order among the

keys of the hash_multiset and that can later be returned by calling key_comp().
- The first three constructors specify an empty initial hash_multiset, the second specifying the type

of comparison function (_Comp) to be used in establishing the order of the elements and the third
explicitly specifying the allocator type (_Al) to be used. The keyword explicit suppresses certain
kinds of automatic type conversion.

- The fourth constructor specifies a copy of the hash_multiset _Right.
- The last three constructors copy the range [_First, _Last) of a hash_multiset with

increasing explicitness in specifying the type of comparison function of class Compare and allocator.
- The actual order of elements in a hash_set container depends on the hash function, the ordering

function and the current size of the hash table and cannot, in general, be predicted as it could with the
set container, where it was determined by the ordering function alone.

//hash_multiset, constructor
//compiled with VC7.0 or .Net
//a lot of warning messages...
#include <hash_set>
#include <iostream>
using namespace std;

int main()
{
 hash_multiset <int>::iterator hms0_Iter, hms1_Iter, hms3_Iter, hms4_Iter, hms5_Iter;
 hash_multiset <int, hash_compare <int, greater<int> > >::iterator hms2_Iter;

 //Create an empty hash_multiset hms0 of key type integer
 hash_multiset <int> hms0;

 //Create an empty hash_multiset hms1 with the key comparison

Page 27 of 33 www.tenouk.com

 //function of less than, then insert 6 elements
 hash_multiset<int, hash_compare<int, less<int> > > hms1;
 hms1.insert(12);
 hms1.insert(17);
 hms1.insert(24);
 hms1.insert(17);
 hms1.insert(9);

 //Create an empty hash_multiset hms2 with the key comparison
 //function of greater than, then insert 4 elements
 hash_multiset<int, hash_compare<int, greater<int> > > hms2;
 hms2.insert(21);
 hms2.insert(34);
 hms2.insert(21);
 hms2.insert(17);

 //Create a hash_multiset hms3 with the
 //allocator of hash_multiset hms1
 hash_multiset <int>::allocator_type hms1_Alloc;
 hms1_Alloc = hms1.get_allocator();
 hash_multiset <int> hms3(less<int>(), hms1_Alloc);
 hms3.insert(71);
 hms3.insert(52);
 hms3.insert(31);

 //Create a hash_multiset hms4 by copying the range hms1[_First, _Last)
 hash_multiset <int>::const_iterator hms1_PIter, hms1_QIter;
 hms1_PIter = hms1.begin();
 hms1_QIter = hms1.begin();
 hms1_QIter++;
 hms1_QIter++;
 hms1_QIter++;
 hash_multiset<int> hms4(hms1_PIter, hms1_QIter);

 //Create a hash_multiset hms5 by copying the range hms2[_First, _Last)
 //and with the allocator of hash_multiset hms2
 hash_multiset<int>::allocator_type hms2_Alloc;
 hms2_Alloc = hms2.get_allocator();
 hash_multiset<int> hms5(hms2.begin(), ++hms2.begin(),less<int>(), hms2_Alloc);

 //--
 cout<<"Operation: hash_multiset <int> hms0\n";
 cout<<"hms0 data: ";
 for(hms0_Iter = hms0.begin(); hms0_Iter != hms0.end(); hms0_Iter++)
 cout<<*hms0_Iter<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multiset<int, \n hash_compare<int, less<int> > > hms1\n";
 cout<<"Operation2: hms1.insert(12)...\n";
 cout<<"hms1 data: ";
 for(hms1_Iter = hms1.begin(); hms1_Iter != hms1.end(); hms1_Iter++)
 cout<<*hms1_Iter<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multiset<int, \n hash_compare<int, greater<int> > > hms2\n";
 cout<<"Operation2: hms2.insert(21)...\n";
 cout<<"hms2 data: ";
 for(hms2_Iter = hms2.begin(); hms2_Iter != hms2.end(); hms2_Iter++)
 cout<<*hms2_Iter<<" ";
 cout<<endl;

 cout<<"\nOperation1: hash_multiset<int> hms3(less<int>(),hms1_Alloc)\n";
 cout<<"Operation2: hms3.insert(71)...\n";
 cout<<"hms3 data: ";
 for(hms3_Iter = hms3.begin(); hms3_Iter != hms3.end(); hms3_Iter++)
 cout<<*hms3_Iter<<" ";
 cout<<endl;

 cout<<"\nOperation: hash_multiset<int> hms4(hms1_PIter, hms1_QIter)\n";
 cout<<"hms4 data: ";
 for(hms4_Iter = hms4.begin(); hms4_Iter != hms4.end(); hms4_Iter++)
 cout<<*hms4_Iter<<" ";
 cout<<endl;

 cout<<"\nOperation: hash_multiset<int> hms5(hms2.begin(), \n ++hms2.begin(), less<int>(),
hms2_Alloc)\n";
 cout<<"hms5 data: ";
 for(hms5_Iter = hms5.begin(); hms5_Iter != hms5.end(); hms5_Iter++)
 cout<<*hms5_Iter<<" ";
 cout<<endl;

Page 28 of 33 www.tenouk.com

 return 0;
}

Output:

29.6 Strings

- You can also use strings as STL containers. By strings that mean objects of the C++ string classes,
basic_string<>, string, and wstring. Strings are similar to vectors except that their elements
are characters. This has been discussed extensively in Module 25 and 26.

29.7 Ordinary Arrays

- An ordinary C and C++ language array type that has static or dynamic size is a container. However,
ordinary arrays are not STL containers because they don't provide member functions such as size()
and empty().

- However, the STL's design allows you to call algorithms for these ordinary arrays. This is especially
useful when you process static arrays of values as an initializer list.

- You should have familiar with this traditional array, what is new in STL is using algorithms for them.
- Note that in C++ it is no longer necessary to program dynamic arrays directly. Vectors provide all

properties of dynamic arrays with a safer and more convenient interface.

29.8 Some Summary

No Sequences container Summary

1 vector

A sequence that supports random access to elements, constant time insertion
and removal of elements at the end, and linear time insertion and removal of
elements at the beginning or in the middle. The number of elements in a
vector may vary dynamically; memory management is automatic. vector
is the simplest of the STL container classes, and in many cases the most
efficient.

2 deque

Like a vector with extra features that deque does not have any member
functions analogous to vector's capacity() and reserve(), and does
not provide any of the guarantees on iterator validity that are associated with
those member functions.
The Standard Template Library (STL) sequence container deque arranges
elements of a given type in a linear arrangement and, like vectors, allow fast
random access to any element and efficient insertion and deletion at the back
of the container. However, unlike a vector, the deque class also supports
efficient insertion and deletion at the front of the container.

4 list A doubly linked list. It is a sequence that supports both forward and backward
traversal, and (amortized) constant time insertion and removal of elements at

Page 29 of 33 www.tenouk.com

http://www.tenouk.com/Module25.html
http://www.tenouk.com/Module26.html

the beginning or the end, or in the middle. Lists have the important property
that insertion and splicing do not invalidate iterators to list elements, and that
even removal invalidates only the iterators that point to the elements that are
removed. The ordering of iterators may be changed (that is,
list<Type>::iterator might have a different predecessor or successor
after a list operation than it did before), but the iterators themselves will not be
invalidated or made to point to different elements unless that invalidation or
mutation is explicit.

 Associative container Summary

6 set

A sorted associative container that stores objects of type Key. Set is a
simple associative container, meaning that its value type, as well as its key
type, is Key. It is also a unique associative container, meaning that no two
elements are the same. The set algorithms require their arguments to be sorted
ranges, and, since set and multiset are sorted associative containers, their
elements are always sorted in ascending order. The output range of these
algorithms is always sorted, and inserting a sorted range into a set or
multiset is a fast operation: the unique sorted associative container and
multiple sorted associative container requirements guarantee that inserting a
range takes only linear time if the range is already sorted. Set has the
important property that inserting a new element into a set does not invalidate
iterators that point to existing elements. Erasing an element from a set also
does not invalidate any iterators, except, of course, for iterators that actually
point to the element that is being erased.

7 multiset

Multiset is a sorted associative container that stores objects of type Key.
Multiset is a simple associative container, meaning that its value type, as
well as its key type, is Key. It is also a multiple associative container, meaning
that two or more elements may be identical. The set algorithms require their
arguments to be sorted ranges, and, since set and multiset are sorted
associative containers, their elements are always sorted in ascending order. The
output range of these algorithms is always sorted, and inserting a sorted range
into a set or multiset is a fast operation: the unique sorted associative
container and multiple sorted associative container requirements guarantee
that inserting a range takes only linear time if the range is already sorted.
Multiset has the important property that inserting a new element into a
multiset does not invalidate iterators that point to existing elements.
Erasing an element from a multiset also does not invalidate any iterators,
except, of course, for iterators that actually point to the element that is being
erased.

8 map

Map is a sorted associative container that associates objects of type Key with
objects of type Data. Map is a pair associative container, meaning that its
value type is pair<const Key, Data>. It is also a unique associative
container, meaning that no two elements have the same key.
Map has the important property that inserting a new element into a map does
not invalidate iterators that point to existing elements. Erasing an element from
a map also does not invalidate any iterators, except, of course, for iterators that
actually point to the element that is being erased.

9 multimap

Multimap is a sorted associative container that associates objects of type
Key with objects of type Data. multimap is a pair associative container,
meaning that its value type is pair<const Key, Data>. It is also a
multiple associative container, meaning that there is no limit on the number
of elements with the same key.
Multimap has the important property that inserting a new element into a
multimap does not invalidate iterators that point to existing elements.
Erasing an element from a multimap also does not invalidate any iterators,
except, of course, for iterators that actually point to the element that is being
erased.

Implementation dependent, non ANSI C++ (ISO/IEC C++)

10 hash

The function object hash<Type> is a Hash Function; it is used as the default
hash function by all of the Hashed Associative Containers that are included in
the STL. The hash<Type> template is only defined for template arguments
of type char*, const char*, crope, wrope, and the built-in integral
types. If you need a Hash Function with a different argument type, you must
either provide your own template specialization or else use a different Hash
Function. This is implementation extension, not the ANSI C++ standard.

11 hash_set Hash_set is a hashed associative container that stores objects of type Key.
Hash_set is a simple associative container, meaning that its value type, as

Page 30 of 33 www.tenouk.com

well as its key type, is Key. It is also a unique associative container, meaning
that no two elements compare equal using the Binary Predicate EqualKey.
Hash_set is useful in applications where it is important to be able to search
for an element quickly. If it is important for the elements to be in a particular
order, however, then set is more appropriate.

12 hash_multiset

hash_multiset is a hashed associative container that stores objects of
type Key. hash_multiset is a simple associative container, meaning that
its value type, as well as its key type, is Key. It is also a multiple associative
container, meaning that two or more elements may compare equal using the
Binary Predicate EqualKey.
hash_multiset is useful in applications where it is important to be able to
search for an element quickly. If it is important for the elements to be in a
particular order, however, then multiset is more appropriate.

13 hash_map

Hash_map is a hashed associative container that associates objects of type
Key with objects of type Data. Hash_map is a pair associative container,
meaning that its value type is pair<const Key, Data>. It is also a
unique associative container, meaning that no two elements have keys that
compare equal using EqualKey.
Looking up an element in a hash_map by its key is efficient, so hash_map
is useful for "dictionaries" where the order of elements is irrelevant. If it is
important for the elements to be in a particular order, however, then map is
more appropriate.

14 hash_multimap

Hash_multimap is a hashed associative container that associates objects
of type Key with objects of type Data. Hash_multimap is a pair
associative container, meaning that its value type is pair<const Key,
Data>. It is also a multiple associative container, meaning that there is no
limit on the number of elements whose keys may compare equal using
EqualKey.
Looking up an element in a hash_multimap by its key is efficient, so
hash_multimap is useful for "dictionaries" where the order of elements is
irrelevant. If it is important for the elements to be in a particular order,
however, then multimap is more appropriate.

Table 29.31

- Program example compiled using g++.

//******mapconstructor.cpp********
//map, constructor
//compiled with VC++ 7.0
//or .Net
#include <map>
#include <iostream>
using namespace std;

int main()
{
 typedef pair<int, int> Int_Pair;
 map<int, int>::iterator mp0_Iter, mp1_Iter, mp3_Iter, mp4_Iter, mp5_Iter, mp6_Iter;
 map<int, int, greater<int> >::iterator mp2_Iter;

 //Create an empty map mp0 of key type integer
 map <int, int> mp0;

 //Create an empty map mp1 with the key comparison
 //function of less than, then insert 6 elements
 map <int, int, less<int> > mp1;
 mp1.insert(Int_Pair(1, 13));
 mp1.insert(Int_Pair(3, 23));
 mp1.insert(Int_Pair(3, 31));
 mp1.insert(Int_Pair(2, 23));
 mp1.insert(Int_Pair(6, 15));
 mp1.insert(Int_Pair(9, 25));

 //Create an empty map mp2 with the key comparison
 //function of greater than, then insert 3 elements
 map <int, int, greater<int> > mp2;
 mp2.insert(Int_Pair(3, 12));
 mp2.insert(Int_Pair(1, 31));
 mp2.insert(Int_Pair(2, 21));

 //Create a map mp3 with the

Page 31 of 33 www.tenouk.com

http://www.sgi.com/tech/stl/SimpleAssociativeContainer.html
http://www.tenouk.com/Module000.html

 //allocator of map mp1
 map <int, int>::allocator_type mp1_Alloc;
 mp1_Alloc = mp1.get_allocator();
 map <int, int> mp3(less<int>(), mp1_Alloc);
 mp3.insert(Int_Pair(1, 10));
 mp3.insert(Int_Pair(2, 12));

 //Create a copy, map mp4, of map mp1
 map <int, int> mp4(mp1);

 //Create a map mp5 by copying the range mp1[_First, _Last)
 map <int, int>::const_iterator mp1_PIter, mp1_QIter;
 mp1_PIter = mp1.begin();
 mp1_QIter = mp1.begin();
 mp1_QIter++;
 mp1_QIter++;
 map <int, int> mp5(mp1_PIter, mp1_QIter);

 //Create a map mp6 by copying the range mp4[_First, _Last)
 //and with the allocator of map mp2
 map <int, int>::allocator_type mp2_Alloc;
 mp2_Alloc = mp2.get_allocator();
 map <int, int> mp6(mp4.begin(), ++mp4.begin(), less<int>(), mp2_Alloc);

 //--
 cout<<"Operation: map <int, int> mp0\n";
 cout<<"mp0 data: ";
 for(mp0_Iter = mp0.begin(); mp0_Iter != mp0.end(); mp0_Iter++)
 cout<<" "<<mp0_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int, less<int> > mp1\n";
 cout<<"Operation2: mp1.insert(Int_Pair(1, 13))...\n";
 cout<<"mp1 data: ";
 for(mp1_Iter = mp1.begin(); mp1_Iter != mp1.end(); mp1_Iter++)
 cout<<" "<<mp1_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int, greater<int> > mp2\n";
 cout<<"Operation2: mp2.insert(Int_Pair(3, 12))...\n";
 cout<<"mp2 data: ";
 for(mp2_Iter = mp2.begin(); mp2_Iter != mp2.end(); mp2_Iter++)
 cout<<" "<<mp2_Iter->second;
 cout<<endl;

 cout<<"\nOperation1: map <int, int> mp3(less<int>(), mp1_Alloc)\n";
 cout<<"Operation2: mp3.insert(Int_Pair(1, 10))...\n";
 cout<<"mp3 data: ";
 for(mp3_Iter = mp3.begin(); mp3_Iter != mp3.end(); mp3_Iter++)
 cout<<" "<<mp3_Iter->second;
 cout<<endl;

 cout<<"\nOperation: map <int, int> mp4(mp1)\n";
 cout<<"mp4 data: ";
 for(mp4_Iter = mp4.begin(); mp4_Iter != mp4.end(); mp4_Iter++)
 cout<<" "<<mp4_Iter->second;
 cout<<endl;

 cout<<"\nOperation: map <int, int> mp5(mp1_PIter, mp1_QIter)\n";
 cout<<"mp5 data: ";
 for(mp5_Iter = mp5.begin(); mp5_Iter != mp5.end(); mp5_Iter++)
 cout<<" "<<mp5_Iter->second;
 cout<<endl;

 cout<<"\nOperation: map <int, int> mp6(mp4.begin(), \n++mp4.begin(), less<int>(),
mp2_Alloc);\n";
 cout<<"mp6 data: ";
 for(mp6_Iter = mp6.begin(); mp6_Iter != mp6.end(); mp6_Iter++)
 cout<<" "<<mp6_Iter->second;
 cout<<endl;
 return 0;
}

[bodo@bakawali ~]$ g++ mapconstructor.cpp -o mapconstructor
[bodo@bakawali ~]$./mapconstructor

Operation: map <int, int> mp0
mp0 data:

Page 32 of 33 www.tenouk.com

Operation1: map <int, int, less<int> > mp1
Operation2: mp1.insert(Int_Pair(1, 13))...
mp1 data: 13 23 23 15 25

Operation1: map <int, int, greater<int> > mp2
Operation2: mp2.insert(Int_Pair(3, 12))...
mp2 data: 12 21 31

Operation1: map <int, int> mp3(less<int>(), mp1_Alloc)
Operation2: mp3.insert(Int_Pair(1, 10))...
mp3 data: 10 12

Operation: map <int, int> mp4(mp1)
mp4 data: 13 23 23 15 25

Operation: map <int, int> mp5(mp1_PIter, mp1_QIter)
mp5 data: 13 23

Operation: map <int, int> mp6(mp4.begin(),
++mp4.begin(), less<int>(), mp2_Alloc);
mp6 data: 13

---End of container--

---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

Page 33 of 33 www.tenouk.com

http://www.tenouk.com/cplusbook.html

