
MODULE 27
 --THE STL--

CONTAINER PART I
vector, deque

My Training Period: hours

Note: Compiled using VC++7.0/.Net, win32 empty console mode application. g++ examples given at the end of
this Module.

Abilities

▪ Able to understand the containers.
▪ Able to understand sequence and associative containers.
▪ Able to understand and use vector sequence container.
▪ Able to understand and use deque sequence container.

- The Standard Template Library (STL) is a generic library that provides solutions to managing

collections of data with an efficient algorithm.
- The STL provides a collection of classes that meet different kind of tasks, with algorithms that operate

on the classes. STL components are templates, as you have learned in Module 24, it can be used for
arbitrary data types.

- Furthermore, STL also provides a framework for other collection of user defined classes or algorithms.
The traditional programming such as dynamic arrays, linked lists, binary trees, search algorithms
and other data structures routines can be implemented using STL more efficiently and easily.

- To easily understand this topic, you should have good understanding of the traditional arrays data
type and operations that can be done on arrays elements such as comparison, sorting, deletion,
modification, insertion etc. and as well as templates.

27.1 Introduction: STL components

- The STL consist of the containers, iterators, and algorithms.

27.1.1 Containers

- Container classes’ purpose is to contain other objects. Each of these classes is a template, and can be
instantiated to contain any type of object.

- The STL container classes include vector, list, deque, set, multiset, map, multimap,
hash_set, hash_multiset, hash_map and hash_multimap to suit different kind of tasks.
You may find other containers that are implementation dependent/extension.

27.1.2 Iterators

- It is a pointer used to manipulate the elements of the objects’ collections. These collections may be
containers or subsets of containers. Iterators provide common interface for any arbitrary container type.

- Every container class provides its own iterator type but when you try the program examples later, most
of the containers have a common iterator types. It is a smart pointer. For simple example, to increment
an iterator you call operator ++. To access the value of an iterator you may use operator *.

27.1.3 Algorithms

- Used to process the elements of collections. For example, algorithms can search, sort and modify.
Algorithms use iterators. Thus, an algorithm has to be written only once to work with arbitrary
containers because the iterator interface for iterators is common for all container types.

- We can use a general algorithm to suit our needs even if that need is very special or complex. You will
find in the program examples later, most of the member functions for processing the elements or data
are common for various containers.

- The data and operations in STL are decoupled. Container classes manage the data, and the operations
are defined by the algorithms, used together with the iterators. Conceptually, iterators are the linker
between these two components. They let any algorithm interact with any container, graphically shown
below.

Page 1 of 30 www.tenouk.com

http://www.tenouk.com/Module000.html
http://www.tenouk.com/Module24.html

- Theoretically, you can combine every kind of container with every kind of algorithm. All components
work with arbitrary types, a good example of the generic programming concept.

- Containers and algorithms are generic for arbitrary types and classes respectively. The STL provides
even more generic components. By using certain adapters and function objects (or functors) you can
supplement, constrain, or configure the algorithms and the interfaces for special needs.

- In this module we will discussed in detail about containers and at the same time the iterators and
algorithm also will be introduced as well.

27.3 Containers Type

- There are two types of containers.

27.3.1 Sequence containers

- Are ordered collections in which every element has a certain position. This ‘ordered’ term does not
mean ascending or descending, but it refers to a certain position.

- This position depends on the time and place of the insertion, but it is independent of the value of the
element. For example, if you put 10 elements into a collection by appending each element at the end of
the actual collection, these elements are in the exact order in which you put them.

- The STL contains three predefined sequence container classes: vector, deque, and list.

27.3.2 Associative containers

- Are sorted collections in which the actual position of an element depends on its value due to a
certain sorting criterion. If you put ten elements into a collection, their order depends only on their
value. The order of insertion doesn't matter.

- The STL contains four predefined associative container classes: set, multiset, map, multimap,
hash_map, hash_multimap, hash_set and hash_multiset. Some of these containers are not required by
ANSI C++ (ISO/IEC C++).

- An associative container can be considered a special kind of sequence container because sorted
collections are ordered according to a sorting criterion. Note that the STL collection types are
completely distinct from each other. They have different implementations that are not derived from
each other.

- The automatic sorting of elements in associative containers does not mean that those containers are
especially designed for sorting elements. You can also sort the elements of a sequence container.

- The key advantage of automatic sorting is better performance when you search elements. In particular,
you can always use a binary search, which results in logarithmic complexity rather than linear
complexity.

27.3.2.1 Associative Container Category

- An associative container is a variable-sized container that supports efficient retrieval of elements
(values) based on keys.

- It supports insertion and removal of elements, but differs from a sequence in that it does not provide a
mechanism for inserting an element at a specific position.

- As with all containers, the elements in an associative container are the type of value_type.
Additionally, each element in an associative container has a key, of type key_type.

- In a Simple Associative Containers, the value_type and key_type are the same that is the
elements are their own keys.

Page 2 of 30 www.tenouk.com

- In others, the key is some specific part of the value. Since elements are stored according to their keys, it
is essential that the key associated with each element is immutable.

- In simple associative containers this means that the elements themselves are immutable, while in other
types of associative containers a Pair Associative Containers, the elements themselves are mutable
but the part of an element that is its key cannot be modified. This means that an associative container's
value type is not assignable.

- The fact that the value type of an associative container is not assignable has an important consequence:
associative containers cannot have mutable iterators. This is simply because a mutable iterator must
allow assignment.

- That is, if i is a mutable iterator and t is an object of i's value type, then *i = t must be a valid
expression.

- In simple associative containers, where the elements are the keys, the elements are completely
immutable; the nested types iterator and const_iterator are therefore the same. Other types
of associative containers, however, do have mutable elements, and do provide iterators through which
elements can be modified.

- In pair associative containers, for example, have two different nested types’ iterator and
const_iterator.

- Even in this case, iterator is not a mutable iterator: as explained above, it does not provide the
expression:

 *i = t.

- It is, however, possible to modify an element through such an iterator: if, for example,

i is of type map<int, double>

- Then:

(*i).second = 3

- Is a valid expression.
- In some associative containers a Unique Associative Containers, it is guaranteed that no two elements

have the same key.
- In other associative containers a Multiple Associative Containers, multiple elements with the same

key are permitted.

27.4 Common Container Operation

- There are operations common to all containers. The following Table is a list of these operations. You
will find these operations somewhere in the program examples later.

Sample Code Operation

con, con1 and con2 are containers.
ContainerType con
e.g. vector<int> vec0 Creates an empty container without any element
ContainerType con1(con2)
e.g. vector<int> vec0(vec1) Copies a container of the same type
ContainerType con(begin,end)e.g.
vector<int> vec0(p.begin(),p.end())

Creates a container and initializes it with copies of all
elements of [begin, end)

con.~ContType() Deletes all elements and frees the memory
con.size() Returns the actual number of elements
con.empty() Returns whether the container is empty, equivalent to

size()==0, but might be faster.
con.max_size() Returns the maximum number of elements possible
con1 == con2 Returns whether con1is equal to con2
con1 != con2 Returns whether con1is not equal to con2, equivalent to

!(con1==con2)
con1 < con2 Returns whether con1is less than con2
con1 > con2 Returns whether con1is greater than con2, equivalent to

con2 < con1
con1 <= con2 Returns whether con1is less than or equal to con2,

equivalent to !(con2<con1)
con1 >= con2 Returns whether con1is greater than or equal to con2,

Page 3 of 30 www.tenouk.com

equivalent to !(con1<con2)
con1 = con2 Assignment, assigns all elements of con1 to con2
con1.swap(con2) Swaps the data of con1and con2
swap(con1,con2) Same but a global function
con.begin() Returns an iterator for the first element
con.end() Returns an iterator for the position after the last element
con.rbegin() Returns a reverse iterator for the first element of a reverse

iteration
con.rend() Returns a reverse iterator for the position after the last

element of a reverse iteration
con.insert(position,element) Inserts a copy of element.
con.erase(begin,end) Removes all elements of the range [begin, end), some

containers return next element not removed
con.clear() Removes all elements, making the container empty
con.get_allocator() Returns the memory model of the container

Table 27.1: Common Operations Examples of Container Classes

- Example:

Initialize with the elements of another container:

//ls is a linked list of int
list<int> ls;
...
//copy all elements of the ls list into a con vector
vector<int> con(ls.begin(), ls.end());

27.5 Sequence Containers

27.5.1 Vectors

- A vector manages its elements in a dynamic array. It enables random access. Appending and removing
elements at the end of the array is very fast.

- However, inserting an element in the middle or at the beginning of the array takes time because all the
following elements have to be moved to make room for it while maintaining the order.

- It allows constant time insertions and deletions at the end of the sequence. Inserting or deleting
elements in the middle of a vector requires linear time. The structure of vector can be depicted as
follow:

- Vector reallocation occurs when a member function must increase the sequence contained in the vector
object beyond its current storage capacity. Other insertions and deletions may alter various storage
addresses within the sequence.

- In all such cases, iterators or references that point at altered portions of the sequence become invalid. If
no reallocation happens, only iterators and references before the insertion/deletion point remain valid.

- The vector<bool> class is a full specialization of the template class vector for elements of type
bool with an allocator for the underlying type used by the specialization.

- The vector<bool> reference class is a nested class whose objects are able to provide references to
elements (single bits) within a vector<bool> object.

- The list class container is superior with respect to insertions and deletions at any location within a
sequence. The performance of the deque class container is superior with respect to insertions and
deletions at the beginning and end of a sequence compared to vector.

- The following general example defines a vector for integer values, inserts ten elements, and prints the
elements of the vector:

//vector example
#include <iostream>
//vector header file
#include <vector>
using namespace std;

Page 4 of 30 www.tenouk.com

int main()
{
//vector container for integer elements
//declaration
vector<int> coll;

//append elements with values 1 to 10
for(int i=1; i<=10; ++i)
 coll.push_back(i);

//print all elements separated by a space
for(i=0; i<coll.size(); ++i)
 cout<<coll[i]<<' ';

cout<<endl;
return 0;
}

Output:

- Let us dig more detail about the vector. A lot of stuff has been provided by the C++ STL, our task is to
learn how to use them properly, before you create or refine your own containers. Do not reinvent the
wheel.

 <vector> Header Members

- The following section is a <vector> header member.

 Operators

Operator Brief Description

operator!=
Tests if the vector object on the left side of the operator is not equal to the vector
object on the right side.
The return value is true if the vectors are not equal; false if the vectors are equal.

operator<
Tests if the vector object on the left side of the operator is less than the vector object
on the right side.
The return value is true if the vector on the left side of the operator is less than the
vector on the right side of the operator; otherwise false.

operator<=
Tests if the vector object on the left side of the operator is less than or equal to the
vector object on the right side.
The return value is true if the vector on the left side of the operator is less than or
equal to the vector on the right side of the operator; otherwise false.

operator==
Tests if the vector object on the left side of the operator is equal to the vector object
on the right side.
The return value is true if the vector on the left side of the operator is equal to the
vector on the right side of the operator; otherwise false.

operator>
Tests if the vector object on the left side of the operator is greater than the vector
object on the right side.
The return value is true if the vector on the left side of the operator is greater than the
vector on the right side of the operator; otherwise false.

operator>=
Tests if the vector object on the left side of the operator is greater than or equal to the
vector object on the right side.
The return value is true if the vector on the left side of the operator is greater than or
equal to the vector on the right side of the vector; otherwise false.

Table 27.2

- Program examples:

//vector, operators
#include <vector>
#include <iostream>

Page 5 of 30 www.tenouk.com

using namespace std;

int main()
{

//vector container for integer elements
//declaration
vector<int> vec1, vec2, vec3;

cout<<"vec1 data: ";
//append elements with values 1 to 10
for(int i=1; i<=10; ++i)
 vec1.push_back(i);
//print all elements separated by a space
for(i=0; i<vec1.size(); ++i)
 cout<<vec1[i]<<' ';
cout<<endl;

cout<<"vec2 data: ";
//append elements with values 1 to 10
for(i=11; i<=20; ++i)
 vec2.push_back(i);
//print all elements separated by a space
for(i=0; i<vec2.size(); ++i)
 cout<<vec2[i]<<' ';
cout<<endl;

cout<<"vec3 data: ";
//append elements with values 1 to 10
for(i=1; i<=10; ++i)
 vec3.push_back(i);
//print all elements separated by a space
for(i=0; i<vec3.size(); ++i)
 cout<<vec3[i]<<' ';
cout<<"\n\n";

cout<<"Operation: vec1 != vec2"<<endl;
if(vec1 != vec2)
 cout<<"vec1 and vec2 is not equal."<<endl;
else
 cout<<"vec1 and vec2 is equal."<<endl;

cout<<"\nOperation: vec1 == vec3"<<endl;
if(vec1 == vec3)
 cout<<"vec1 and vec3 is equal."<<endl;
else
 cout<<"vec1 and vec3 is not equal."<<endl;

cout<<"\nOperation: vec1 < vec2"<<endl;
if(vec1 < vec2)
 cout<<"vec1 less than vec2."<<endl;
else
 cout<<"vec1 is not less than vec2."<<endl;

cout<<"\nOperation: vec2 > vec1"<<endl;
if(vec2 > vec1)
 cout<<"vec2 greater than vec1."<<endl;
else
 cout<<"vec2 is not greater than vec1."<<endl;

cout<<"\nOperation: vec2 >= vec1"<<endl;
if(vec2 >= vec1)
 cout<<"vec2 greater or equal than vec1."<<endl;
else
 cout<<"vec2 is not greater or equal than vec1."<<endl;

cout<<"\nOperation: vec1 <= vec2"<<endl;
if(vec1 <= vec2)
 cout<<"vec1 less or equal than vec2."<<endl;
else
 cout<<"vec1 is not less or equal than vec2."<<endl;
 return 0;
}

Output:

Page 6 of 30 www.tenouk.com

 vector Class Template

Class Description
vector
Class

A template class of sequence containers that arrange elements of a given type in a
linear arrangement and allow fast random access to any element.

Table 27.3

- The STL vector class is a template class of sequence containers that arrange elements of a given type in

a linear arrangement and allow fast random access to any element.
- They should be the preferred container for a sequence when random-access performance is concerned.

vector Class Template Members

vector Class template Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the vector object.

const_iterator A type that provides a random-access iterator that can read a const
element in a vector.

const_pointer A type that provides a pointer to a const element in a vector.

const_reference A type that provides a reference to a const element stored in a
vector for reading and performing const operations.

const_reverse_iterator A type that provides a random-access iterator that can read any
const element in the vector.

difference_type A type that provides the difference between the addresses of two
elements in a vector.

iterator A type that provides a random-access iterator that can read or
modify any element in a vector.

pointer A type that provides a pointer to an element in a vector.
reference A type that provides a reference to an element stored in a vector.
reverse_iterator A type that provides a random-access iterator that can read or

modify any element in a reversed vector.
size_type A type that counts the number of elements in a vector.
value_type A type that represents the data type stored in a vector.

Table 27.4

vector Class Template Member Functions

Member function Description
assign() Erases a vector and copies the specified elements to the empty vector.
at() Returns a reference to the element at a specified location in the vector.

Page 7 of 30 www.tenouk.com

back() Returns a reference to the last element of the vector.
begin() Returns a random-access iterator to the first element in the container.
capacity() Returns the number of elements that the vector could contain without

allocating more storage.
clear() Erases the elements of the vector.
empty() Tests if the vector container is empty.
end() Returns a random-access iterator that point just beyond the end of the

vector.
erase() Removes an element or a range of elements in a vector from specified

positions.
front() Returns a reference to the first element in a vector.
get_allocator() Returns an object to the allocator class used by a vector.
insert() Inserts an element or a number of elements into the vector at a specified

position.
max_size() Returns the maximum length of the vector.
pop_back() Deletes the element at the end of the vector.
push_back() Add an element to the end of the vector.
rbegin() Returns an iterator to the first element in a reversed vector.
rend() Returns an iterator to the end of a reversed vector.
resize() Specifies a new size for a vector.
reserve() Reserves a minimum length of storage for a vector object.
size() Returns the number of elements in the vector.
swap() Exchanges the elements of two vectors.

vector()
Vector constructor, constructs a vector of a specific size or with elements of
a specific value or with a specific allocator or as a copy of some other
vector.

Table 27.5

- The following section demonstrate the program examples using the member functions and the typedefs
- Vector constructor, constructs a vector of a specific size or with elements of a specific value or with a

specific allocator or as a copy of all or part of some other vector.
- All constructors store an allocator object and initialize the vector.

//vector constructors
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int>::iterator vec0Iter, vec1Iter, vec2Iter, vec3Iter, vec4Iter, vec5Iter;

//Create an empty vector vec0
vector <int> vec0;

//Create a vector vec1 with 10 elements of default value 0
vector <int> vec1(10);

//Create a vector vec2 with 7 elements of value 13
vector <int> vec2(7, 13);

//Create a vector vec3 with 5 elements of value 3 and with the allocator
//of vector vec2
vector <int> vec3(5, 3, vec2.get_allocator());

//vector vec4, a copy of vector vec2
vector <int> vec4(vec2);

//Create a vector vec5 by copying the range of vec4[_First, _Last)
vector <int> vec5(vec4.begin() + 1, vec4.begin() + 3);

cout<<"Operation: vector <int> vec0\n";
cout<<"vec0 data: ";
for(vec0Iter = vec0.begin(); vec0Iter != vec0.end(); vec0Iter++)
cout<<" "<<*vec0Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec1(10)\n";
cout<<"vec1 data: ";
for(vec1Iter = vec1.begin(); vec1Iter != vec1.end(); vec1Iter++)
cout<<" "<<*vec1Iter;

Page 8 of 30 www.tenouk.com

cout<<endl;

cout<<"\nOperation: vector <int> vec2(7, 13)\n";
cout<<"vec2 data: ";
for(vec2Iter = vec2.begin(); vec2Iter != vec2.end(); vec2Iter++)
cout<<" "<<*vec2Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec3(5, 3, vec2.get_allocator())\n";
cout<<"vec3 data: ";
for(vec3Iter = vec3.begin(); vec3Iter != vec3.end(); vec3Iter++)
cout<<" "<<*vec3Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec4(vec2)\n";
cout<<"vec4 data: ";
for(vec4Iter = vec4.begin(); vec4Iter != vec4.end(); vec4Iter++)
cout<<" "<<*vec4Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec5(vec4.begin()+1, vec4.begin()+3)\n";
cout<<"vec5 data: ";
for(vec5Iter = vec5.begin(); vec5Iter != vec5.end(); vec5Iter++)
cout<<" "<<*vec5Iter;
cout<<endl;
return 0;
}

Output:

- After erasing any existing elements in a vector, assign() either inserts a specified range of elements
from the original vector into a vector or inserts copies of a new element of a specified value into a
vector.

//vector, assign()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec2;
vector <int>::iterator Iter;

vec2.push_back(1);
vec2.push_back(5);
vec2.push_back(3);
vec2.push_back(4);
vec2.push_back(5);
vec2.push_back(3);
vec2.push_back(7);
vec2.push_back(8);
vec2.push_back(4);

cout<<"Operation: vec2.begin() and vec2.end()"<<endl;

Page 9 of 30 www.tenouk.com

cout<<"vec2 data: ";
for(Iter = vec2.begin(); Iter != vec2.end(); Iter++)
cout<<*Iter<<" ";
cout<<"\n\n";

cout<<"Operation: vec2.assign(vec2.begin()+1, vec2.begin()+3)"<<endl;
vec2.assign(vec2.begin()+2, vec2.begin()+8);
cout<<"vec2 data: ";
for(Iter = vec2.begin(); Iter != vec2.end(); Iter++)
cout<<*Iter<<" ";
cout<<"\n\n";

cout<<"Operation: vec2.assign(5, 7)"<<endl;
vec2.assign(5, 7);
cout<<"vec2 data: ";
for(Iter = vec2.begin(); Iter != vec2.end(); Iter++)
cout<<*Iter<<" ";
cout<<endl;
return 0;
}

Output:

- The return value is a reference to the element subscripted in the argument. If _Off is greater than the
size of the vector, at() throws an exception.

- If the return value of at() is assigned to a const_reference, the vector object cannot be
modified. If the return value of at() is assigned to a reference, the vector object can be modified.

//vector, at()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(1);
vec1.push_back(7);
vec1.push_back(4);
vec1.push_back(3);

//print all elements separated by a space
cout<<"The vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
 cout<<vec1[i]<<' ';

cout<<"\n\nOperation: vec1.at(position)";
const int &x = vec1.at(1);
int &y = vec1.at(3);
int &z = vec1.at(0);
cout<<"\nThe 2nd element is "<<x<<endl;
cout<<"The 4th element is "<<y<<endl;
cout<<"The 1st element is "<<z<<endl;
return 0;
}

Output:

Page 10 of 30 www.tenouk.com

- For back(), the return value is the last element of the vector. If the vector is empty, the return value is
undefined.

- If the return value of back() is assigned to a const_reference, the vector object cannot be
modified. If the return value of back() is assigned to a reference, the vector object can be
modified.

- For front(), the return value is a reference to the first element in the vector object. If the vector is
empty, the return is undefined.

- If the return value of front() is assigned to a const_reference, the vector object cannot be
modified. If the return value of front() is assigned to a reference, the vector object can be
modified.

//vector, back() and front()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1, vec2;
vec1.push_back(12);
vec1.push_back(10) ;
vec1.push_back(7);

//print all elements separated by a space
cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
 cout<<vec1[i]<<' ';
cout<<endl;

int& x = vec1.back();
const int& y = vec1.front();

cout<<"\nOperation: x = vec1.back()\n";
cout<<"The last integer of vec1 is "<<x<<endl;

cout<<"Operation: y = vec1.front()\n";
cout<<"The 1st integer of vec1 is "<<y<<endl;

return 0;
}

Output:

- The return value is a random-access iterator addressing the first element in the vector or to the location
succeeding an empty vector.

- If the return value of begin() is assigned to a const_iterator, the vector object cannot be
modified. If the return value of begin() is assigned to an iterator, the vector object can be
modified.

Page 11 of 30 www.tenouk.com

//vector, begin()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::iterator vec1_Iter;

vec1.push_back(21);
vec1.push_back(12);
vec1.push_back(32);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.begin()\n";
vec1_Iter = vec1.begin();
cout<<"The first element of vec1 is "<<*vec1_Iter<<endl;

cout<<"\nOperation: *vec1_Iter = 10\n";
*vec1_Iter = 10;
cout<<"new vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"Operation: vec1.begin()\n";
vec1_Iter = vec1.begin();
cout<<"The first element of vec1 is now "<<*vec1_Iter<<endl;
return 0;
}

Output:

- The return value is the current length of storage allocated for the vector.
- The member function resize() will be more efficient if sufficient memory is allocated to

accommodate it. Use the member function reserve() to specify the amount of memory allocated.

//vector, capacity()
//and size()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(3);
vec1.push_back(1);
vec1.push_back(6);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"Operation: vec1.capacity()\n";
cout<<"The length of storage allocated is "<<vec1.capacity()<<"."<<endl;

Page 12 of 30 www.tenouk.com

vec1.push_back(10);
vec1.push_back(12);
vec1.push_back(4);

cout<<"\nnew vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"The length of storage allocated is now "<<vec1.capacity()<<"."<<endl;
return 0;
}

Output:

- For empty(), the return value is true if the vector is empty; false if the vector is not empty.

//vector, clear(), empty()
//and size()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(10);
vec1.push_back(20);
vec1.push_back(30);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"The size of vec1 is "<<vec1.size()<<endl;

cout<<"\nOperation: vec1.empty()"<<endl;
if(vec1.empty())
cout<<"vec1 is empty"<<endl;
else
cout<<"vec1 is not empty"<<endl;

cout<<"\nOperation: vec1.clear()"<<endl;
vec1.clear();
cout<<"The size of vec1 after clearing is "<<vec1.size()<<endl;

cout<<"\nOperation: vec1.empty()"<<endl;
if(vec1.empty())
cout<<"vec1 is empty"<<endl;
else
cout<<"vec1 is not empty"<<endl;
return 0;
}

Output:

Page 13 of 30 www.tenouk.com

- For end(), the return value is a pointer to the end of the vector object. If the vector is empty, the result
is undefined.

- If the return value of end() is assigned to a variable of type const_iterator, the vector object
cannot be modified. If the return value of end() is assigned to a variable of type iterator, the
vector object can be modified.

//vector, begin(), end()
#include <vector>
#include <iostream>

int main()
{
 using namespace std;
 vector <int> vec1;
 vector <int>::iterator vec1_Iter;

 vec1.push_back(9);
 vec1.push_back(2);
 vec1.push_back(7);
 vec1.push_back(3);

 cout<<"Operation: vec1.begin() and vec1.end()"<<endl;
 cout<<"vec1 data: ";
 for(vec1_Iter = vec1.begin(); vec1_Iter != vec1.end(); vec1_Iter++)
 cout<<*vec1_Iter<<' ';
 cout<<endl;
 return 0;
}

Output:

- The return value for erase() is an iterator that designates the first element remaining beyond any
elements removed, or a pointer to the end of the vector if no such element exists.

//vector, erase(), begin()
//and end()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::iterator Iter;
vec1.push_back(3);
vec1.push_back(7);
vec1.push_back(22);
vec1.push_back(5);
vec1.push_back(12);
vec1.push_back(17);

Page 14 of 30 www.tenouk.com

cout<<"Original vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
cout<<" "<<*Iter;
cout<<endl;

cout<<"\nOperation: erase(vec1.begin()"<<endl;
vec1.erase(vec1.begin()) ;
cout<<"New vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
 cout<<" "<<*Iter;
cout<<endl;

cout<<"\nOperation: vec1.erase(vec1.begin()+1, vec1.begin()+3)"<<endl;
vec1.erase(vec1.begin() + 1, vec1.begin() + 3);
cout<<"New vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
 cout<<" "<<*Iter;
cout<<endl;
return 0;
}

Output:

- The return value is the first insert() function returns an iterator that point to the position where the
new element was inserted into the vector.

//vector, insert()
//begin(), end()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::iterator Iter;
vec1.push_back(12);
vec1.push_back(100);
vec1.push_back(9);
vec1.push_back(21);

cout<<"Original vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
cout<<" "<<*Iter;
cout<<endl;

cout<<"\nOperation: vec1.insert(vec1.begin()+1, 17)"<<endl;
vec1.insert(vec1.begin()+1, 17);
cout<<"New vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
cout<<" "<<*Iter;
cout<<endl;

cout<<"\nOperation: vec1.insert(vec1.begin()+2, 3, 24)"<<endl;
vec1.insert(vec1.begin()+2, 3, 24);
cout<<"New vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)
cout<<" "<<*Iter;
cout<<endl;

cout<<"\nOperation: vec1.insert(vec1.begin()+1, \n"
" vec1.begin()+2, vec1.begin()+4)"<<endl;
vec1.insert(vec1.begin()+1, vec1.begin()+2, vec1.begin()+4);
cout<<"New vec1 data: ";
for(Iter = vec1.begin(); Iter != vec1.end(); Iter++)

Page 15 of 30 www.tenouk.com

cout<<" "<<*Iter;
cout<<endl;
return 0;
}

Output:

- The return value is the maximum possible length of the vector.

//vector, max_size()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::size_type i;

i = vec1.max_size();
cout<<"The max possible length of the vector is "<<i<<endl;
return 0;
}

Output:

//vector, pop_back(), back()
//and push_back()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(4);
vec1.push_back(7);
vec1.push_back(3);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.back()\n";
cout<<vec1.back()<<endl;

cout<<"\nOperation: push_back(2)\n";
vec1.push_back(2);
cout<<vec1.back()<<endl;

cout<<"New vec1 data: ";
for(i=0; i<vec1.size(); ++i)

Page 16 of 30 www.tenouk.com

cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.pop_back()\n";
vec1.pop_back();
cout<<vec1.back()<<endl;

cout<<"New vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

return 0;
}

Output:

- The return value is a reverse random-access iterator addressing the first element in a reversed vector or
addressing what had been the last element in the un reversed vector.

- If the return value of rbegin() is assigned to a const_reverse_iterator, the vector object
cannot be modified. If the return value of rbegin() is assigned to a reverse_iterator, the
vector object can be modified.

//vector, rbegin()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::iterator vec1_Iter;
vector <int>::reverse_iterator vec1_rIter;

vec1.push_back(10);
vec1.push_back(7);
vec1.push_back(3);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.begin()\n";
vec1_Iter = vec1.begin();
cout<<"The first element of vec1 is "<<*vec1_Iter<<endl;

cout<<"\nOperation: vec1.rbegin()\n";
vec1_rIter = vec1.rbegin();
cout<<"The first element of the reversed vec1 is "<<*vec1_rIter<<endl;
return 0;
}

Output:

Page 17 of 30 www.tenouk.com

- The return value is a reverse random-access iterator that addresses the location succeeding the last
element in a reversed vector (the location that had preceded the first element in the unreversed vector).

- rend() is used with a reversed vector just as end() is used with a vector.
- If the return value of rend() is assigned to a const_reverse_iterator, then the vector object

cannot be modified. If the return value of rend() is assigned to a reverse_iterator, then the
vector object can be modified.

- rend() can be used to test to whether a reverse iterator has reached the end of its vector.
- The value returned by rend() should not be dereferenced.

//vector, rend()
//and rbegin()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vector <int>::reverse_iterator vec1_rIter;

vec1.push_back(7);
vec1.push_back(3);
vec1.push_back(4);
vec1.push_back(1);

cout<<"Operation: vec1.rbegin() and vec1.rend()\n";
cout<<"vec1 data: ";
for(vec1_rIter = vec1.rbegin(); vec1_rIter != vec1.rend(); vec1_rIter++)
 cout<<*vec1_rIter<<' ';
cout<<endl;
return 0;
}

Output:

- If the container's size is less than the requested size, _Newsize, elements are added to the vector until
it reaches the requested size.

- If the container's size is larger than the requested size, the elements closest to the end of the container
are deleted until the container reaches the size _Newsize. If the present size of the container is the
same as the requested size, no action is taken.

- size() reflects the current size of the vector.

//vector, resize()
//and size()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;
vec1.push_back(40);
vec1.push_back(20);

Page 18 of 30 www.tenouk.com

vec1.push_back(10);
vec1.push_back(12);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

//resize to 5 and add data at the end...
cout<<"\nOperation: vec1.resize(5,30)\n";
vec1.resize(5,30);
cout<<"The size of vec1 is "<<vec1.size()<<endl;
cout<<"The value of the last object is "<<vec1.back()<<endl;
cout<<"\nNew vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.resize(4)\n";
vec1.resize(4);

cout<<"\nNew vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nThe new size of vec1 is "<<vec1.size()<<endl;
cout<<"The value of the last object is "<<vec1.back()<<endl;
return 0;
}

Output:

- The return value is the current length of the vector.

//vector, reserve()
//capacity() and size()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(4);
vec1.push_back(2);
vec1.push_back(10);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"\nOperation: vec1.capacity()"<<endl;
cout<<"Current capacity of vec1 = "<<vec1.capacity()<<endl;
cout<<"\nOperation: vec1.reserve(10)"<<endl;
vec1.reserve(10);

Page 19 of 30 www.tenouk.com

cout<<"Current capacity of vec1 = "<<vec1.capacity()<<endl;
cout<<"\nOperation: vec1.size()"<<endl;
cout<<"Current size of vec1 = "<<vec1.size()<<endl;
return 0;
}

Output:

//vector, swap()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1, vec2;

vec1.push_back(4);
vec1.push_back(7);
vec1.push_back(2);
vec1.push_back(12);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

vec2.push_back(11);
vec2.push_back(21);
vec2.push_back(30);

cout<<"vec2 data: ";
for(i=0; i<vec2.size(); ++i)
cout<<vec2[i]<<' ';
cout<<endl;

cout<<"The number of elements in vec1 = "<<vec1.size()<<endl;
cout<<"The number of elements in vec2 = "<<vec2.size()<<endl;
cout<<endl;

cout<<"Operation: vec1.swap(vec2)\n"<<endl;
vec1.swap(vec2);
cout<<"The number of elements in v1 = "<<vec1.size()<<endl;
cout<<"The number of elements in v2 = "<<vec2.size()<<endl;

cout<<"vec1 data: ";
for(i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"vec2 data: ";
for(i=0; i<vec2.size(); ++i)
cout<<vec2[i]<<' ';
cout<<endl;
return 0;
}

Output:

Page 20 of 30 www.tenouk.com

vector Class Template Operator

Operator Description
operator[] Returns a reference to the vector element at a specified

position.

Table 27.6

- The return value is, if the position specified is greater than the size of the container, the result is
undefined.

- If the return value of operator[] is assigned to a const_reference, the vector object cannot be
modified. If the return value of operator[] is assigned to a reference, the vector object can be
modified.

//vector operator[]
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int> vec1;

vec1.push_back(10);
vec1.push_back(9);
vec1.push_back(8);
vec1.push_back(12);

cout<<"vec1 data: ";
for(int i=0; i<vec1.size(); ++i)
cout<<vec1[i]<<' ';
cout<<endl;

cout<<"Operation: int& j = vec1[2]\n";
int& j = vec1[2];
cout<<"The third integer of vec1 is "<<j<<endl;
return 0;
}

Output:

vector Class Template Specializations

Specialization Description

vector<bool>
Class

A full specialization of the template class vector for elements of type
bool with an allocator for the underlying type used by the
specialization.

Page 21 of 30 www.tenouk.com

Table 27.7

vector<bool> Class

vector<bool> Class Members

vector<bool> Typedefs

Typedef Description

const_iterator
A type that describes an object that can serve as a constant random-
access iterator for the sequence of Boolean elements contained by the
vector.

const_pointer A type that describes an object that can serve as a constant pointer to
a Boolean element of the sequence contained by the vector.

const_reference A type that describes an object that can serve as a constant reference
to a Boolean element of the sequence contained by the vector.

iterator A type that describes an object that can serve as a random-access
iterator for a sequence of Boolean elements contained by a vector.

pointer A type that describes an object that can serve as a constant pointer to
a Boolean element of the sequence contained by the vector.

Table 27.8

vector<bool> Member Functions

Member
function Description

flip() Reverses all bits in the vector.
swap() Exchanges the elements of two vectors with Boolean elements.

Table 27.9

//vector_bool, flip()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
_Bvector vecbool;

vecbool.push_back(1);
vecbool.push_back(0);

cout<<"The vector is: "<<vecbool.front()<<" "<<vecbool.back()<<endl;
cout<<"\nOperation: vecbool.flip()\n";
vecbool.flip();
cout<<"The flipped vector is: "<<vecbool.front()<<" "<<vecbool.back()<<endl;
return 0;
}

Output:

//vector_bool, swap()
#include <vector>
#include <iostream>
using namespace std;

int main()
{
_Bvector vec1, vec2;

Page 22 of 30 www.tenouk.com

vec1.push_back(0);
vec1.push_back(0);
vec2.push_back(1);
vec2.push_back(1);

cout<<"The vector vec1 is: "<<vec1.front()<<" "<<vec1.back()<<endl;
cout<<"The vector vec2 is: "<<vec2.front()<<" "<<vec2.back()<<endl;

cout<<"Operation: swap(vec1, vec2);\n";
swap(vec1, vec2);
cout<<"After swapping, vec1 is: "<<vec1.front()<<" "<<vec1.back()<<endl;
cout<<"After swapping, vec2 is: "<<vec2.front()<<" "<<vec2.back()<<endl;
return 0;
}

Output:

Nested Classes

Nested class Description
vector<bool>
reference Class

A nested class whose objects are able to provide references to
elements (single bits) within a vector<bool> object.

Table 27.10

---------------------------------------End of vector-----------------------------------
---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

27.5.2 deque

- The term deque (pronounced “deck”) is an abbreviation for ‘double-ended queue’. It is a dynamic
array that is implemented so that it can grow in both directions.

- So, inserting elements at the end and at the beginning is fast. However, inserting elements in the middle
takes time because elements must be moved. Deque structure can be depicted as follow:

- Deque reallocation occurs when a member function must insert or erase elements of the sequence:

▪ If an element is inserted into an empty sequence, or if an element is erased to leave an empty
sequence, then iterators earlier returned by begin() and end() become invalid.

▪ If an element is inserted at the first position of the deque, then all iterators, but no references, that
designate existing elements become invalid.

▪ If an element is inserted at the end of the deque, then end() and all iterators, but no references,
that designate existing elements become invalid.

Page 23 of 30 www.tenouk.com

http://www.tenouk.com/cplusbook.html

▪ If an element is erased at the front of the deque, only that iterator and references to the erased
element become invalid.

▪ If the last element is erased from the end of the deque, only that iterator to the final element and
references to the erased element become invalid.

- Otherwise, inserting or erasing an element invalidates all iterators and references.
- The following general deque example declares a deque for floating-point values, inserts elements from

1.2 to 12 at the front of the container, and prints all elements of the deque:

//simple deque example
#include <iostream>
#include <deque>
using namespace std;

int main()
{
//deque container for floating-point elements
//declaration
deque<float> elem, elem1;

//insert the elements each at the front
cout<<"push_front()\n";
for(int i=1; i<=10; ++i)
//insert at the front
elem.push_front(i*(1.2));

//print all elements separated by a space
for(i=0; i<elem.size(); ++i)
cout<<elem[i]<<' ';
cout<<endl;

//insert the elements each at the back
cout<<"\npush_back()\n";
//insert at the back
for(i=1; i<=10; ++i)
elem1.push_back(i*(1.2));

//print all elements separated by a space
for(i=0; i<elem1.size(); ++i)
cout<<elem1[i]<<' ';
cout<<endl;

return 0;
}

Output:

<deque> Header Members

Operators

Operator Description
operator!= Tests if the deque object on the left side of the operator is not equal to the

deque object on the right side.
operator< Tests if the deque object on the left side of the operator is less than the deque

object on the right side.
operator<= Tests if the deque object on the left side of the operator is less than or equal to

the deque object on the right side.
operator== Tests if the deque object on the left side of the operator is equal to the deque

object on the right side.
operator> Tests if the deque object on the left side of the operator is greater than the

deque object on the right side.

Page 24 of 30 www.tenouk.com

operator>= Tests if the deque object on the left side of the operator is greater than or equal
to the deque object on the right side.

Table 27.11

deque Template Class

Class Description
deque
Class

A template class of sequence containers that arrange elements of a given type in
a linear arrangement and, like vectors, allow fast random access to any element
and efficient insertion and deletion at the back of the container.

Table 27.12

- The STL sequence container deque arranges elements of a given type in a linear arrangement and, like

vectors, allow fast random access to any element and efficient insertion and deletion at the back of the
container.

- However, unlike a vector, the deque class also supports efficient insertion and deletion at the front of
the container.

deque Template Class Members

Typedefs

Typedef Description
allocator_type A type that represents the allocator class for the deque object.

const_iterator A type that provides a random-access iterator that can access and read a
const element in the deque.

const_pointer A type that provides a pointer to a const element in a deque.

const_reference A type that provides a reference to a const element stored in a deque
for reading and performing const operations.

const_reverse_iterator A type that provides a random-access iterator that can read any const
element in the deque.

difference_type A type that provides the difference between two iterators that refer to
elements within the same deque.

iterator A type that provides a random-access iterator that can read or modify
any element in a deque.

pointer A type that provides a pointer to an element in a deque.
reference A type that provides a reference to an element stored in a deque.
reverse_iterator A type that provides a random-access iterator that can read or modify an

element in a reversed deque.
size_type A type that counts the number of elements in a deque.
value_type A type that represents the data type stored in a deque.

Table 27.13

deque Template Class Member Functions

Member function Description
assign() Erases elements from a deque and copies a new set of elements to the target

deque.
at() Returns a reference to the element at a specified location in the deque.
back() Returns a reference to the last element of the deque.
begin() Returns an iterator addressing the first element in the deque.
clear() Erases all the elements of a deque.

deque()
deque constructor, constructs a deque of a specific size or with elements of a
specific value or with a specific allocator or as a copy of all or part of some
other deque.

empty() Tests if a deque is empty.
end() Returns an iterator that addresses the location succeeding the last element in a

deque.
erase() Removes an element or a range of elements in a deque from specified

positions.
front() Returns a reference to the first element in a deque.
get_allocator() Returns a copy of the allocator object used to construct the deque.

Page 25 of 30 www.tenouk.com

insert() Inserts an element or a number of elements or a range of elements into the
deque at a specified position.

max_size() Returns the maximum length of the deque.
pop_back() Deletes the element at the end of the deque.
pop_front() Deletes the element at the beginning of the deque.
push_back() Adds an element to the end of the deque.
push_front() Adds an element to the beginning of the deque.
rbegin() Returns an iterator to the first element in a reversed deque.
rend() Returns an iterator that point just beyond the last element in a reversed deque.
resize() Specifies a new size for a deque.
size() Returns the number of elements in the deque.
swap() Exchanges the elements of two deques.

Table 27.14

deque Template Class Operator

Operator Description
operator[] Returns a reference to the deque element at a specified position.

Table 27.15

- deque constructor, constructs a deque of a specific size or with elements of a specific value or with a

specific allocator or as a copy of all or part of some other deque.
- All constructors store an allocator object and initialize the deque.
- None of the constructors perform any interim reallocations.

//deque, constructors
#include <deque>
#include <iostream>
using namespace std;

int main()
{
deque <int>::iterator deq0Iter, deq1Iter, deq2Iter, deq3Iter, deq4Iter, deq5Iter,
deq6Iter;

//Create an empty deque deq0
deque <int> deq0;

//Create a deque deq1 with 10 elements of default value 0
deque <int> deq1(10);

//Create a deque deq2 with 7 elements of value 10
deque <int> deq2(7, 10);

//Create a deque deq3 with 4 elements of value 2 and with the
//allocator of deque deq2
deque <int> deq3(4, 2, deq2.get_allocator());

//Create a copy, deque deq4, of deque deq2
deque <int> deq4(deq2);

//deque deq5 a copy of the deq4[_First, _Last) range
deq4Iter = deq4.begin();
deq4Iter++;
deq4Iter++;
deq4Iter++;
deque <int> deq5(deq4.begin(), deq4Iter);

//Create a deque deq6 by copying the range deq4[_First, _Last) and
//the allocator of deque deq2
deq4Iter = deq4.begin();
deq4Iter++;
deq4Iter++;
deq4Iter++;
deque <int> deq6(deq4.begin(), deq4Iter, deq2.get_allocator());

//------------------------------------
cout<<"Operation: deque <int> deq0\n";
cout<<"deq0 data: ";
for(deq0Iter = deq0.begin(); deq0Iter != deq0.end(); deq0Iter++)
cout<<*deq0Iter<<" ";

Page 26 of 30 www.tenouk.com

cout<<endl;

cout<<"\nOperation: deque <int> deq1(10)\n";
cout<<"deq1 data: ";
for(deq1Iter = deq1.begin(); deq1Iter != deq1.end(); deq1Iter++)
cout<<*deq1Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq2(7, 3)\n";
cout<<"deq2 data: ";
for(deq2Iter = deq2.begin(); deq2Iter != deq2.end(); deq2Iter++)
cout<<*deq2Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq3(4, 2, deq2.get_allocator())\n";
cout<<"deq3 data: ";
for(deq3Iter = deq3.begin(); deq3Iter != deq3.end(); deq3Iter++)
cout<<*deq3Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq4(deq2);\n";
cout<<"deq4 data: ";
for(deq4Iter = deq4.begin(); deq4Iter != deq4.end(); deq4Iter++)
cout<<*deq4Iter<<" ";
cout<<endl;

cout<<"\nOperation1: deq4Iter++...\n";
cout<<"Operation2: deque <int> deq5(deq4.begin(), deq4Iter)\n";
cout<<"deq5 data: ";
for(deq5Iter = deq5.begin(); deq5Iter != deq5.end(); deq5Iter++)
cout << *deq5Iter<<" ";
cout << endl;

cout<<"\nOperation1: deq4Iter = deq4.begin() and deq4Iter++...\n";
cout<<"Operation2: deque <int> deq6(deq4.begin(), \n"
" deq4Iter, deq2.get_allocator())\n";
cout<<"deq6 data: ";
for(deq6Iter = deq6.begin(); deq6Iter != deq6.end(); deq6Iter++)
cout<<*deq6Iter<<" ";
cout<<endl;
return 0;
}

Output:

- The following are program examples compiled using g++. Well, it seems that compiling STL
programs using g++ is smoother because if you use an old constructs, that is not based on the standard,
in your program, g++ will prompt you!

Page 27 of 30 www.tenouk.com

http://www.tenouk.com/Module000.html

//*******vector.cp*********
//vector constructors
#include <vector>
#include <iostream>
using namespace std;

int main()
{
vector <int>::iterator vec0Iter, vec1Iter, vec2Iter, vec3Iter, vec4Iter, vec5Iter;

//Create an empty vector vec0
vector <int> vec0;

//Create a vector vec1 with 10 elements of default value 0
vector <int> vec1(10);

//Create a vector vec2 with 7 elements of value 13
vector <int> vec2(7, 13);

//Create a vector vec3 with 5 elements of value 3 and with the allocator
//of vector vec2
vector <int> vec3(5, 3, vec2.get_allocator());

//vector vec4, a copy of vector vec2
vector <int> vec4(vec2);

//Create a vector vec5 by copying the range of vec4[_First, _Last)
vector <int> vec5(vec4.begin() + 1, vec4.begin() + 3);

cout<<"Operation: vector <int> vec0\n";
cout<<"vec0 data: ";
for(vec0Iter = vec0.begin(); vec0Iter != vec0.end(); vec0Iter++)
cout<<" "<<*vec0Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec1(10)\n";
cout<<"vec1 data: ";
for(vec1Iter = vec1.begin(); vec1Iter != vec1.end(); vec1Iter++)
cout<<" "<<*vec1Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec2(7, 13)\n";
cout<<"vec2 data: ";
for(vec2Iter = vec2.begin(); vec2Iter != vec2.end(); vec2Iter++)
cout<<" "<<*vec2Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec3(5, 3, vec2.get_allocator())\n";
cout<<"vec3 data: ";
for(vec3Iter = vec3.begin(); vec3Iter != vec3.end(); vec3Iter++)
cout<<" "<<*vec3Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec4(vec2)\n";
cout<<"vec4 data: ";
for(vec4Iter = vec4.begin(); vec4Iter != vec4.end(); vec4Iter++)
cout<<" "<<*vec4Iter;
cout<<endl;

cout<<"\nOperation: vector <int> vec5(vec4.begin()+1, vec4.begin()+3)\n";
cout<<"vec5 data: ";
for(vec5Iter = vec5.begin(); vec5Iter != vec5.end(); vec5Iter++)
cout<<" "<<*vec5Iter;
cout<<endl;
return 0;
}

[bodo@bakawali ~]$ g++ vector.cpp -o vector
[bodo@bakawali ~]$./vector

Operation: vector <int> vec0
vec0 data:

Operation: vector <int> vec1(10)
vec1 data: 0 0 0 0 0 0 0 0 0 0

Operation: vector <int> vec2(7, 13)
vec2 data: 13 13 13 13 13 13 13

Page 28 of 30 www.tenouk.com

Operation: vector <int> vec3(5, 3, vec2.get_allocator())
vec3 data: 3 3 3 3 3

Operation: vector <int> vec4(vec2)
vec4 data: 13 13 13 13 13 13 13

Operation: vector <int> vec5(vec4.begin()+1, vec4.begin()+3)
vec5 data: 13 13

//********deque.cpp*********
//deque, constructors
#include <deque>
#include <iostream>
using namespace std;

int main()
{
deque <int>::iterator deq0Iter, deq1Iter, deq2Iter, deq3Iter, deq4Iter, deq5Iter,
deq6Iter;

//Create an empty deque deq0
deque <int> deq0;

//Create a deque deq1 with 10 elements of default value 0
deque <int> deq1(10);

//Create a deque deq2 with 7 elements of value 10
deque <int> deq2(7, 10);

//Create a deque deq3 with 4 elements of value 2 and with the
//allocator of deque deq2
deque <int> deq3(4, 2, deq2.get_allocator());

//Create a copy, deque deq4, of deque deq2
deque <int> deq4(deq2);

//deque deq5 a copy of the deq4[_First, _Last) range
deq4Iter = deq4.begin();
deq4Iter++;
deq4Iter++;
deq4Iter++;
deque <int> deq5(deq4.begin(), deq4Iter);

//Create a deque deq6 by copying the range deq4[_First, _Last) and
//the allocator of deque deq2
deq4Iter = deq4.begin();
deq4Iter++;
deq4Iter++;
deq4Iter++;
deque <int> deq6(deq4.begin(), deq4Iter, deq2.get_allocator());

//------------------------------------
cout<<"Operation: deque <int> deq0\n";
cout<<"deq0 data: ";
for(deq0Iter = deq0.begin(); deq0Iter != deq0.end(); deq0Iter++)
cout<<*deq0Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq1(10)\n";
cout<<"deq1 data: ";
for(deq1Iter = deq1.begin(); deq1Iter != deq1.end(); deq1Iter++)
cout<<*deq1Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq2(7, 3)\n";
cout<<"deq2 data: ";
for(deq2Iter = deq2.begin(); deq2Iter != deq2.end(); deq2Iter++)
cout<<*deq2Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq3(4, 2, deq2.get_allocator())\n";
cout<<"deq3 data: ";
for(deq3Iter = deq3.begin(); deq3Iter != deq3.end(); deq3Iter++)
cout<<*deq3Iter<<" ";
cout<<endl;

cout<<"\nOperation: deque <int> deq4(deq2);\n";
cout<<"deq4 data: ";
for(deq4Iter = deq4.begin(); deq4Iter != deq4.end(); deq4Iter++)
cout<<*deq4Iter<<" ";

Page 29 of 30 www.tenouk.com

cout<<endl;

cout<<"\nOperation1: deq4Iter++...\n";
cout<<"Operation2: deque <int> deq5(deq4.begin(), deq4Iter)\n";
cout<<"deq5 data: ";
for(deq5Iter = deq5.begin(); deq5Iter != deq5.end(); deq5Iter++)
cout << *deq5Iter<<" ";
cout << endl;

cout<<"\nOperation1: deq4Iter = deq4.begin() and deq4Iter++...\n";
cout<<"Operation2: deque <int> deq6(deq4.begin(), \n"
" deq4Iter, deq2.get_allocator())\n";
cout<<"deq6 data: ";
for(deq6Iter = deq6.begin(); deq6Iter != deq6.end(); deq6Iter++)
cout<<*deq6Iter<<" ";
cout<<endl;
return 0;
}

[bodo@bakawali ~]$ g++ deque.cpp -o deque
[bodo@bakawali ~]$./deque

Operation: deque <int> deq0
deq0 data:

Operation: deque <int> deq1(10)
deq1 data: 0 0 0 0 0 0 0 0 0 0

Operation: deque <int> deq2(7, 3)
deq2 data: 10 10 10 10 10 10 10

Operation: deque <int> deq3(4, 2, deq2.get_allocator())
deq3 data: 2 2 2 2

Operation: deque <int> deq4(deq2);
deq4 data: 10 10 10 10 10 10 10

Operation1: deq4Iter++...
Operation2: deque <int> deq5(deq4.begin(), deq4Iter)
deq5 data: 10 10 10

Operation1: deq4Iter = deq4.begin() and deq4Iter++...
Operation2: deque <int> deq6(deq4.begin(),
 deq4Iter, deq2.get_allocator())
deq6 data: 10 10 10

--End of deque--

---www.tenouk.com---

Further reading and digging:

1. Check the best selling C / C++ and STL books at Amazon.com.

Page 30 of 30 www.tenouk.com

http://www.tenouk.com/cplusbook.html

