MODULE 22
TYPECASTING

My Training Period: hours
Abilities

= Understand the type casting.
= Understand and use static_cast, const_cast, dynamic_castand reinterpret_cast.
= Understand and use the expl icit keyword.

22.1 C Typecasting

- Typecasting is used to convert the type of a variable, function, object, expression or return value to
another type.

- Throughout this tutorial you have encountered many codes that use simple C-style type cast.

- One of the said advantageous of C++ is the type safe feature. During the compile or run time there are
type checking process that not available in C. This can avoid a lot of program bugs and unexpected
logical errors.

- In C an expression, expression, of type type, can be cast to another type by using the following
syntax:

(type) expression 0Or

//1ook like a function :0) isn’t it?
type (expression)

- For example:

int p;
double dou;

//same as p = int (dou);
p = (int) dou;

- The previous example used the explicit type conversion that is done by programmers. Integral type
promotion and demotion (automatic type casting, as explained in Module 2); is the implicit type
conversion.

- What ever it is, explicit type conversion should be adopted for good programming habits such as for
troubleshooting and readability.

- The weaknesses in C type cast are listed below:

= The syntax is same for every casting operation from simple variables to objects and classes.
For complex type casting, we as well as compiler don’t know the intended purpose of the
casting and this will create ambiguity.

= When we do the debugging, it is very difficult to locate the related cast problems, although by
using the tools provided by the compiler, because there are many codes that use parentheses.

= It allows us to cast practically any type to any other type. This can create many program
bugs. If the program compiled and run successfully, the result still can contain logical errors.

- The four type casting operators in C++ with their main usage is listed in the following table:

Type caster keyword Description

static_cast To convert non polymorphic types.

const_cast To add or remove the const-ness or volati le-ness type.
dynamic_cast To convert polymorphic types.

reinterpret_cast | For type conversion of unrelated types.

Table 22.1: Type caster

- The syntax is same for the four type cast except the cast name:
name_cast<new_type> (expression)

- Where:

www.tenouk.com

name_cast | either one of the static, const, dynamic or reinterpret
new_type The result type of the cast.
expression | Expression to be cast

22.2 static_cast

- It allows casting a pointer of a derived class to its base class and vice versa. This cast type uses
information available at compile time to perform the required type conversion.
- The syntax is:

name_cast<new_type> (expression)

- If new_type is a reference type, the result is an lvalue; otherwise, the result is an rvalue
- Explicitly can be used to perform conversion defined in classes as well as performing standard
conversion between basic data types, for example:

int p;
double dou;

p = static_cast<int> (dou);

- Program example:

#include <iostream.h>
#include <stdlib.h>

int main(Q)
int sum = 1000;
int count = 21;

double averagel = sum/count;
cout<<"Before conversion = '"<<averagel<<endl;

double average2 = static_cast<double>(sum)/count;

cout<<"After conversion = ''<<average2<<endl;
system(*'pause™);
return O;

}

Output:

"hohoh.exe

Before conversion = 47

After conversion = 47.619
Pres=z any key to continue

- Other usage of the static_cast includes the conversion of int to enum, reference of type P& to
Q&, an object of type P to an object of type Q and a pointer to member to another pointer to member
within the same class hierarchy.

- You also can convert any expression to void using static_cast, which the value of the expression
is discarded.

- static_cast cannot be used to convert the const-ness and volati le-ness (cv qualification),
use const_cast instead and polymorphic types.

- Anintegral type to enumeration conversion can be done using static_cast. The conversion results
in an enumeration with the same value as the integral type provided the integral type value is within the
range of the enumeration. The value that is not within the range should be undefined.

- Keep in mind that, static_cast is not as safe as dynamic_cast, because it does not have the run
time check, for example, for ambiguous pointer, static_cast may return successful but a
dynamic_cast pointer will fail.

- Program example:

www.tenouk.com

#include <iostream.h>
#include <stdlib.h>

//enum data type
enum color {blue, yellow, red, green, magenta};

int main()

int pl = 3;

cout<<"integer type, pl = "<<pl<<endl;
cout<<"color cl = static_cast<color> (pl)"<<endl;
color cl = static_cast<color> (pl);

cout<<"enum type, cl = "<<cl<<endl;

system(*'pause™);

return O;

3
Output:

" hohoh.exe

integer type, pl = 3
color ol = static_cast{color? C(pl>

enum type, cl = 3
Pres=s any key to continue . . .

22.3 const_cast

- This cast type is used to add to or remove the const-ness or volati I e-ness of the expression.
- The syntax is:

const_cast<new_type> (expression)

- new_type and expression must be of the same type except for const and volatile
modifiers. Casting is resolved at compile time and the result is of type new_type.

- A pointer to const can be converted to a pointer to non-const that is in all other respects an identical
type. If successful, the resulting pointer refers to the original object.

- A const object or a reference to const cast results in a non-const object or reference that is
otherwise an identical type.

- The const_cast operator performs similar typecasts on the volati e modifier. A pointer to
volati le object can be cast to a pointer to non-volati le object without otherwise changing the
type of the object. The result is a pointer to the original object. A volati le-type object or a reference
to volati le-type can be converted into an identical non-volati le type.

- Simple integral program example of removing the const-ness:

//demonstrates const_cast
#include <iostream.h>
#include <stdlib.h>

int main()

//p = 10 is a constant value, cannot be modified
const int p = 20;

cout<<'const p = "<<p<<"\nq = p + 20 = "<<(p + 20)<<endl;
//The following code should generate error, because

//we try to modify the constant value...

//uncomment, recompile and re run, notice the error...
//p = 15;

//p++;

//remove the const...

int r = const_cast<int&> (p);

//the value of 10 should be modified now...

—r;

cout<<"Removing the const, decrement by 1,\nNew value = "<<r<<endl;
system("'pause');

www.tenouk.com

Output:

const p
g = p + 28 = 48
Removing the const,. decrement

Hew value = 19
Presz any key to continue . .

- Another simple program example:

//Demonstrate const_cast
#include <iostream.h>
#include <stdlib.h>

struct One

//test function...
void functl()
{ cout<<"Testing..."<<endl;}

¥

//const argument, cannot be modified...
void funct2(const One& c)

{
//will generate warning/error. ..
c.functl();

¥

int mainQ)
One b;
funct2(b);

system(*‘pause™);
return O;

- We have to remove the const of the argument. Change c.funct1(); to the following statements
recompile and rerun the program.

//remove the const...

One &noconst = const_cast<One&> (c);
cout<<"The reference = "<<&noconst<<endl;
noconst.functl():

Output:

- Another program example.

//Demonstrates type casting
#include <iostream.h>
#include <stdlib.h>

double functl(double& T)

{
//do some work here...
++;
cout<<"f = "<<f<<endl;
//return the incremented value...
return f;
b

www.tenouk.com

//const argument, can"t be modified...

void funct2(const double& d)

{
cout<<"d = "'<<d<<endl;
//remove const...
//use the non-const argument, making function call...
double value = functl(const_cast<double&> (d));
//display the returned value...
cout<<"value = "<<value<<endl;

¥

int mainQ)
double c = 4.324;
//first function call...
funct2(c);
system(*'pause™);

return 0;

}

Output:

value = 5.324
Press any key to continue

- volatile and const removal program example:

//Demonstrate type casting
#include <iostream.h>
#include <stdlib.h>

class One
{
public:
void funct()
{cout<<"Testing..."<<endl;};
}:

//const and volatile...
const volatile int* Testl;
//const. ..

const int* Test2;

void TestConstVol()

{
One Test3;
//remove const...
const_cast<One&>(Test3) .funct();
//remove const and volatile...
const_cast<int*> (Testl);

¥

int mainQ)
TestConstVol();
system(*'pause™);
return O;

}

Output:

Eﬂthihmicasﬁngtueg

to continue

www.tenouk.com

Removing the const this pointer program example

//removing the const-ness of the
//this pointer

#include <iostream.h>

#include <stdlib.h>

class Test

{

public:

void GetNumber(int);

//Read only function...
void DisplayNumber() const;

private:
int Number;

¥

void Test::GetNumber(int Num)
{Number = Num;}

void Test::DisplayNumber() const

{
cout<<'\nBefore removing const-ness: "<<Number;
const_cast<Test*>(this)->Number+=2;
cout<<'\nAfter removing const-ness: "<<Number<<endl;
3

int mainQ)
Test p;

p-GetNumber(20);
p.DisplayNumber();

system(*‘pause™);

return O;

3
Output:

Before removing const—ness:

After removing const-ness:
Presz any key to continue

- This function const-ness removal also can be achieved by using the mutabl e specifier.
- Program example using mutable keyword to modify the const function member variable.

//using mutable to remove the
//const-ness of the function...
#include <iostream.h>

#include <stdlib.h>

class Test
{
//using mutable
mutable int count;
mutable const int* ptr;
public:
//Read only function can"t
//change const arguments.
int funct(int num = 10) const
{
//should be valid expression...
count = num+=3;
ptr = #
cout<<"After some operation, the new value: "<<*ptr<<endl;
return count;

www.tenouk.com

int main(void)

{
Test var;
cout<<"Initial value of the argument is: 10"<<endl;
var . funct(10);
system(*'pause™);
return O;
¥
Output:

Y b5 bin' projo010.exe

Initial value of the argument is: 18
After some operation, the new value: 13

Press any key to continue . . .

22.4 dynamic_cast

Note:

For this part, you must enable the Run-Time Type Information (RTTI) setting of your compiler
:0). For Visual C++ .Net: Project menu — your_project name Properties.. > C / C++
folder — Language setting.

win32prog Property Pages

Configurakion; |P.I:ti\-'EI:DE:|:lLII;|:I j Platform: |.ﬁ.ctive{'-.-'-.-'in32]l j
Configuration Properties » Disable Language Extensions Mo
General Default Char Unsigned Mo
Debugging Treat wchar_t as Built-in Tvpe Mo
4 ClC++ Force Conformance In For Loop Scop Mo
General Enable Run-Time Type Info Yes (/GR)
Optirizakion
Preprocessar
Code Generation
g Language
Precompiled Heade
Cukput Files

Browse Informatior
Advanced
Command Line

[Linker

- This cast is exclusively used with pointers and references to objects for class hierarchy navigation.
- The syntax:

dynamic_cast<new_type> (expression)

- That means converts the operand expression to an object of type, new_type. The new_type
must be a pointer or a reference to previously defined class type or a pointer to void. The type of
expression must be a pointer if new_type is a pointer or lvalue if new_type is a reference.

- It can be used to cast from a derived class pointer to a base class pointer (upcasting), cast a derived
class pointer to another derived (sibling) class pointer (crosscast) or cast a base class pointer to a
derived class pointer (downcast).

- Differing from other cast, dynamic_cast operator is part of the C++ run time type information
(rtti) tally to the term dynamic instead of static, hence it usage closely related to the polymorphic
classes, classes which have at least one virtual function.

- Asyou have learned, for non-polymorphic class, use the static_cast.

- The validity or safety of the type casting is checked during the run time, if the pointer being cast is not a
pointer to a valid complete object of the requested type, the value returned is a NULL pointer.

www.tenouk.com

- Itis safe if the object being pointed to is of type derived class. The actual object is said to be the
complete object. The pointer to the base class is said to point to a sub-object of the complete object.

- The following diagram is the simple class hierarchy. There are base and derived classes. Derived class
is the class that inherits the base class(s) member variable(s) and function(s) with restrictions
implemented using public, private or protected keywords.

Figure 22.1: Simple class hierarchy

- Anobject of class C could be depicted as the following diagram. For class C instance, there is a B and
A sub-objects. The instance of class C, including the A and B sub-objects, is the complete object.

Figure 22.2: Class C with sub-objects B and A

- Type conversion from base class pointer to a derived class pointer is called downcast.

- Type conversion from derived class pointer to a base class pointer, is called upcast.

- Another one is crosscast, a cast from a class to a sibling class in class hierarchy or sibling class. Two
classes are siblings if a class is directly or indirectly derived from both of their base classes and one is
not derived from the other. It is a multi inheritance class hierarchy.

- Let do some experiment through program examples starting from the upcasting.

Figure 22.3: Upcasting, from Derived2 to Derivedl/Basel

//upcast conversion using dynamic_cast
#include <iostream.h>
#include <stdlib.h>

//base class
class Basel {};

//derived class. ..
class Derivedl:public Basel {};

//another derived class
class Derived2:public Derivedl{};

//dynamic_cast test function...
void functli()

//instantiate an object..
Derived2* Testl = new Derived2;

//upcasting, from derived class to base class,

//Derivedl is a direct from Basel
//making Test2 pointing to Derivedl sub-object of Testl

www.tenouk.com

Derivedl* Test2 = dynamic_cast<Derivedl*>(Testl);
cout<<"Derivedl* Test2 = dynamic_cast<Derivedl*>(Testl);" " <<endl;

if(1Test2)
cout<<"The conversion is fail..._."<<endl;
else
cout<<"The conversion is successful..."<<endl;

//upcasting, from derived class to base class

//Derived2 is an indirect from Basel

Basel* Test3 = dynamic_cast<Derivedl*>(Testl);

cout<<'\nBasel* Test3 = dynamic_cast<Derivedl*>(Testl);"<<endl;

if(1Test3)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful..."<<endl;
3
int mainQ)
functl();
system(*'pause');
return O;
¥
Output:

Jhohoh.exe

Derivedl= Test? = dynamic_cast{ﬁeriuedl*}(Testl};
The conversion is successful...

Bazel® Test3d = dynamic_cast{Derivedl=i(Testll;
The conversion is successful...
Press any key to continue . . .

Basel == Base: ==

i
.‘-..-_

Figure 22.4: void™* type, from base to base class

- void™* type conversion program example.

//1f new_name is void*, the result of
//conversion is a pointer to the complete
//object pointed to by the expression

//void* and dynamic_cast
#include <iostream.h>
#include <stdlib.h>

//base class
class Basel
{
public:
virtual void functli(Q{};
¥

//another base class...
class Base2
{
public:
virtual void funct2(Q){}:;
};

//dynamic_cast test function...
void funct3()

//instantiate objects..
Basel * Testl = new Basel;
Base2 * Test2 = new Base2;

//making Test3 pointing to an object of type Basel
void* Test3 = dynamic_cast<void*>(Testl);

www.tenouk.com

cout<<"void* Test3 = dynamic_cast<void*>(Testl);"<<endl;

iT(1Testl3)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful..."<<endl;

//making Test3 pointing to an object of type Base2
Test3 = dynamic_cast<void*>(Test2);
cout<<'"\nTest3 = dynamic_cast<void*>(Test2);"<<endl;
if(1Test3)
cout<<"The conversion is fail..."<<endl;
else

}

int main(Q)

cout<<"The conversion is successful..."<<endl;

funct3();
system(*‘pause™);
return O;

}

Output:

“hohoh.exe

void=* Test3d = dynami
The conversion is =suc

_c
e

onversion is
any key to continu

Eazel

Denwvedl -

I I

Figure 22.5: Downcast, from Basel to Derived1 class

//downcast conversion using dynamic_cast
#include <iostream.h>
#include <stdlib.h>

//base class
class Basel {

public:

virtual void functli(Q{};
};

//derived class. ..
class Derivedl:public Basel {
public:
virtual void funct2(Q){};
}:

//dynamic_cast test function...
void funct3()
{
//instantiate objects..
Basel* Testl = new Derivedl;
Basel* Test2 = new Basel;

//making Testl pointing to Derivedl
Derivedl* Test3 = dynamic_cast<Derivedl*>(Testl);

cout<<"Derivedl* Test3 = dynamic_cast<Derivedl*>(Testl);"<<endl;

if(1Test3)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful..."<<endl;

www.tenouk.com

//should fails coz Test2 pointing
//to Basel not Derivedl, Test4 == NULL
Derivedl* Test4 = dynamic_cast<Derivedl*>(Test2);
cout<<'"\nDerivedl* Test4 = dynamic_cast<Derivedl*>(Test2);"<<endl;
iT(1Test4)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful..."<<endl;
//reconfirm, should be NULL pointer..
cout<<"Should be NULL pointer = "<<Test4<<endl;

}

int main(Q)

funct3();
system(*'pause™);
return O;

}

Output:

Jhohoh.exe

Derivedl»* Test3 dynamic_cast&heriuedl*}(Testl);I’
[

The conversion is successful...

Derivedl* Testd = dynamic_cast<{Derivedl=>(Test2>;
The conversion is fail...

Should he NULL pointer = HBxB00006080

Presz any key to continue . . .

Bazel

o —

Denwedl -

; r Derived2
¥

Dieniveds

Figure 22.6: Multiple conversion, from Derived3 to Basel

//multiple inheritance
//conversion using dynamic_cast
#include <iostream.h>

#include <stdlib.h>

//base class
class Basel {};

class Derivedl:public Basel{};
class Derived2:public Basel{};

//derived class...
class Derived3:public Derivedl, public Derived2
{
public:
virtual void functi1Q{}
};

//dynamic_cast test function...
void funct2()

//instantiate an object..
Derived3 *Testl = new Derived3;

//may fail, ambiguous..._from Derived3 direct
//conversion to Basel...
//if you use good compiler, please comment out this

www.tenouk.com

//part, there should be run time error:-)
Basel* Test2 = dynamic_cast<Basel*>(Testl);
cout<<"Basel* Test2 = dynamic_cast<Basel*>(Testl);"<<endl;

if(1Test2)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful..."<<endl;

//reconfirm the pointer
cout<<"The pointer should be NULL ==> "<<Test2<<endl;
/) end comment out-------——-

//solution, traverse, recast...

//Tirstly, cast to Derivedl

Derivedl* Test3 = dynamic_cast<Derivedl*>(Testl);
cout<<'\nDerivedl* Test3 = dynamic_cast<Derivedl*>(Testl);"<<endl;

if(1Testl3)
cout<<"The conversion is fail..._."<<endl;
else
cout<<"The conversion is successful..."<<endl;

//then cast to basel....
Basel* Test4 = dynamic_cast<Basel*>(Test3);
cout<<'\nBasel* Test4 = dynamic_cast<Basel*>(Test3);"<<endl;
if(1Test4)
cout<<"The conversion is fail..._."<<endl;
else
cout<<"The conversion is successful..."<<endl;

}

int main(Q)

{
funct2();
system("'pause');
return O;

Output:

Bas E: = dynamic_cast<{Basel=*>(Tezstl>;
The conversion iz fail...
The pointer should bhe WULL == HxBABEEAAA

Derivedl* Test3d = dynamic_cast{Derivedl=>{Testl>;
The conversion is successful...

Basel=* Test4d = dynamic_cast<{Basel=>(Te=st3>;
The conversion is successful...
Press any key to continue . . .

- Let try the crosscast program example.

Note:
The next two program examples will generate warning and runtime error if you use a very ‘good’ compiler
:0). The unreliable type conversions have been protected by the compiler during runtime.

Basel 1‘ l Base?

4 Denved2

Derivedl [*- i""""""""""""
vy ¥ ¥
Deriveds

Figure 22.7: Crosscast, from Base2 to Derivedl

//testing the crosscast: downcast, upcast and crosscast
//conversion using dynamic_cast
#include <iostream.h>

www.tenouk.com

#include <stdlib.h>

//base class
class Basel

{
public:
virtual void functl(Q{};
}:
class Derivedl:public Basel
{
public:
virtual void funct2(Q){};
}:
class Derived2:public Basel{
public:
virtual void funct3(Q{};
}:

//derived class...
class Base2

public:

virtual void funct4(Q{};
};
class Derived3:public Derivedl,public Derived2,public Base2
{3;

//dynamic_cast test function...

void funct5(Q)

{
//instantiate an object
//Testl of type Base2...
//or testl of type Derived2...
//you can choose either one:-)

Base2* Testl = new Base2;
//Derived2* Testl = new Derived2;

//start with downcast, type Base2/Derived2 to Derived3...

Derived3* Test2 = dynamic_cast<Derived3*>(Testl);

cout<<"Firstly, Derived3* Test2 = dynamic_cast<Derived3*>(Testl); " <<endl;
if(1Test2)

cout<<"The conversion is fail lor!"<<endl;
cout<<"Checking the pointer = "<<Test2<<endl;

}

else
cout<<"The conversion is successful..."<<endl;

//Upcast, type derived3 to type derivedl...

Derivedl* Test3 = dynamic_cast<Derivedl*>(Test2);

cout<<'\nThen, Derivedl* Test3 = dynamic_cast<Derivedl*>(Test2);"<<endl;
if(1Test3)

cout<<"The conversion is fail lor!"<<endl;
cout<<"Checking the pointer = "<<Test3<<endl;
}
else
cout<<"The conversion is successful..._"<<endl;

//crosscast, direct, type Base2/Derived2 to Derivedl. ..

Derivedl* Test4 = dynamic_cast<Derivedl*>(Testl);

cout<<'\nThen, Derivedl* Test4 = dynamic_cast<Derivedl*>(Testl);"<<endl;
if(1Test4)

cout<<"The conversion is fail lor!" <<endl;
cout<<"Checking the pointer = "<<Test3<<endl;

}

else
cout<<"The conversion is successful..._"<<endl;
delete Testl;

}

int mainQ)

www.tenouk.com

funct5();
system(*‘pause™);
return O;

}

Output:

" Program Files'Microsoft Yisual Studi

Firstly, Derdivedd= Test2 = dynamlc_cast{Deriued3*>(Test1);I’
The converszion iz fail lowpt [
Checking the pointer = BxHHBRBEEA

Then,., Derivedl*=* Tezt3d = dynamic_cast{Derivedl=>{Test2>;
The converszion iz fail lowt

Checking the pointer = BxHHBRBEEA

Then,. Derivedl* Tezt4d = dynamic_cast{Derivedl=>{Testl>;
The conversion iz fail lor?

Checking the pointer = BxHHBEBEEA

Prezs=z any k to continue . . .

- Another tough program example.

Eazel EazeZ

Denvedl

//dynamic_cast ambiguous conversion experiment :0)
#include <iostream.h>
#include <stdlib.h>

//a class with virtual function...
//polymorphic..
class Basel
{
public:
virtual void FuncBasel()

G

//another class with virtual function...
class Base2
{

public:

virtual void FuncBase2()

G

//derived class from Basel and Base2 classes
//public virtual and private...
class Derivedl:public virtual Basel, private Base2

s

//dynamic_cast test function...

void DynamicCastSample()

{
//instantiate an object of type Derivedl class...
Derivedl DerivedObj;

//simple assignment, derived to base class, upcasting...
//cast needed to break private protection...

Base2* Base20bj = (Base2*) &DerivedObj;

//another assignment, derived to base class, upcasting...

//public inheritance, no need casting..
Basel* BaselObj = &DerivedObj;

//base class to derived class, downcast

www.tenouk.com

Derivedl& DerivedlObj = dynamic_cast<Derivedl&>(*Base20bj);

if(1&Derivedl1lObj)

cout<<"Conversion is failed!...."<<endl;
else

cout<<'"Conversion is OK...."<<endl;

cout<<"The address.."<<&DerivedlObj<<endl;

//base class to derived class, downcast
BaselObj = dynamic_cast<Basel*>(Base20bj);

if(!1BaselObj)

cout<<"Conversion is failed!...."<<endl;
else

cout<<'"Conversion is OK...."<<endl;

cout<<"The address..''<<BaselObj<<endl;

//base class to base class, ??7??
//no inheritance..
Base20bj = dynamic_cast<Base2*>(BaselObj);

iT(!1Base20bj)

cout<<"Conversion is failed!...."<<endl;
else

cout<<'"Conversion is OK...."<<endl;

cout<<"The address..'<<Base20bj<<endl;

//derived class to base class, upcast
BaselObj = dynamic_cast<Basel*>(&DerivedlObj);

if(!1BaselObj)

cout<<"Conversion is failed!...."<<endl;
else

cout<<'"Conversion is OK...."<<endl;

cout<<"The address..''<<BaselObj<<endl;

//derived class to base class...
//DerivedlObj is derived from non-virtual, private Base2..
Base20bj = dynamic_cast<Base2*>(&DerivedlObj);

if(1Base20bj)

cout<<'"Conversion is failed!..._."<<endl;
else

cout<<'"Conversion is OK...."<<endl;

cout<<"The address..'<<Base20bj<<endl;

int mainQ)

int *ptr = NULL;

int var;
cout<<"Benchmarking..."<<endl;
cout<<"Address of var = "<<&var<<endl;

//NULL pointer
cout<<"NULL *ptr = "<<ptr<<endl;
cout<<endl;

//call the function for dynamic_cast testing...

DynamicCastSample();
system(*‘pause™);
return O;

3

Output:

www.tenouk.com

Addrezzs of var = Bx11378ffa

NMULL =ptr = BxBEBEBHEBH

Conversion is OK....
The address..Ax11398fed
Conversion is OK....
T he address..ﬂxi%B?Bf&a

Conversion is

The address..A0xBEEHEAAEA
Conversion is OK....
The address..Bx11398fea
Conversion is i

The address..A0xBEEHEAAEA

Prezz any key to continue

- Well, tired playing with type casting huh?

225 rtti

- Run time type information/identification (RTTI) is a mechanism which the type of an object can be
determined during the program execution where the type of the object cannot be determined by the

static information.

- It can be applied on the pointers and references. RTTI elements consists of:

RTTI element

Brief description

dynamic_cast

Polymorphic types conversion.

typeid() operator

Used to identify the exact type of an object.

type_info class

Used for holding the type information returned by the typeid operator.

typeid(expression)
typeid(type_name)

- You can use typeid to get run-time identification of type_name and expressions. A call to

Table 22.2: RTTI elements

The typeid operator syntax:

typeid returns a reference to an object of type const type_infoé&. The returned object
represents the type of the typeid operand.

- Ifthe typeid operand is a dereferenced pointer or a reference to a polymorphic type (class with
virtual functions), typeid returns the dynamic type of the actual object pointed or referred to in the
expression. If the operand is non-polymorphic, typeid returns an object that represents the static
type. typeid operator can be used with fundamental data types as well as user-defined types.

- Ifthe typeid operand is a dereferenced NULL pointer, the bad_typeid exception handler is

thrown.

- Program example, don’t forget to include the typeinfo.h header file.

//using typeid operator, type_info::before()
//and type_info::name() member functions

#include <iostream.h>
#include <stdlib.h>
#include <typeinfo.h>

//T - True, F - False
#define T 1
#define F O

//a base class
class A { };

//a derived class
class B : A { };

int mainQ)

{

char c;

www.tenouk.com

float T;

//using typeinfo operator, == for comparison
if (typeid(c) == typeid(fF))

cout<<"c and f are the same type.'"<<endl;
else

cout<<'c and f are different type.'<<endl;

//using true and false comparison...

//name() and before() are typeinfo member functions...
cout<<typeid(int).name();

cout<<" before "<<typeid(double).name()<<": "'<<
(typeid(int) .before(typeid(double)) ? T:F)<<endl;

cout<<typeid(double).name();
cout<<" before "<<typeid(int).name()<<": ''<<
(typeid(double) .before(typeid(int)) ? T:F)<<endl;

cout<<typeid(A).name();

cout<<" before "<<typeid(B).name()<<": *'<<
(typeid(A) .before(typeid(B)) ? T:F)<<endl;
system(*'pause™);

return O;

}

Output:

c and f are different type.
int hefore double: B

douhle bhefore int: 1
A bhefore B:

to continue .

- Another program example:

//getting the run time type information...
#include <iostream.h>

#include <stdlib.h>

#include <typeinfo.h>

//polymorphic base class...
class _ rtti Test

//This makes Test a polymorphic class type.
virtual void func(Q {}:
};

//derived class...
class Derived : public Test {};

int main(void)

{
//Instantiate Derived type object...
Derived DerivedObj;
//Declare a Derived type pointer
Derived *DerivedPtr;
//Initialize the pointer
DerivedPtr = &DerivedObj;
//do the run time checking...
if(typeid(*DerivedPtr) == typeid(Derived))
//check the type of *DerivedPtr
cout<<"Ptr *DerivedPtr type name is "<<typeid(*DerivedPtr)._name();
if(typeid(*DerivedPtr) != typeid(Test))
cout<<'\nPointer DerivedPtr is not a Test class type.\n";
system(*'pause™);
return O;
¥
Output:

www.tenouk.com

\ b5 bin', projo010.exe

Pty *DerivedPtr type name iz Derived

Pointer DerivedPtr is not a Test class tupe.
Press any key to continue . . .

7

- If the expression is dereferencing a NULL pointer, typeid() will throw a bad_typeid exception
handler. If the expression is neither a pointer nor a reference to a base class of the object, the result is a
type_inTo reference representing the static type of the expression.

- Another program example.

//run time type information...
#include <iostream.h>
#include <stdlib.h>

#include <typeinfo.h>

class Base
{

public:

virtual void functQ{}
¥

class Derived:public Base{};
int mainQ)

Derived* Testl = new Derived;
Base* Test2 = Testl;

cout<<"The type name of Testl is: "
cout<<typeid(Testl).name()<<endl;
cout<<"The type name of *Testl is: ";
cout<<typeid(*Testl).name()<<endl;
cout<<"The type name of Test2 is: "
cout<<typeid(Test2).name()<<endl;
cout<<"The type name of *Test2 is: ";
cout<<typeid(*Test2).name()<<endl;

delete Testl;
system(*'pause™);
return O;

3
Output:

Derived =
Derived mm

Derived
Press an continue ..

22.6 reinterpret_cast

- This operator is used to convert any pointer to any other pointer type. It also can be used to convert any
integral type to any pointer type and vice versa.

- Because of the unrelated or ‘random’ type conversion can be done using reinterpret_cast, it can
be easily unsafe if used improperly and it is non portable. It should only be used when absolutely
necessary.

- It cannot be used for const-ness and volatile-ness conversion.

- Can be used to convert for example, int™> to char>, or classA to classB, which both class are
unrelated classes, between two unrelated pointers, pointers to members or pointers to functions.

- For null pointer, it converts a null pointer value to the null pointer value of the destination type.

- Program example. If you change the For loop from -10 to O, the conversion values still same, may
need to use 2's complement.

//using reinterpret_cast, int to

www.tenouk.com

//unsigned int pointers conversion
#include <iostream.h>
#include <stdlib.h>

unsigned int* Test(int *q)

{
//convert int pointer to unsigned int pointer
unsigned int* code = reinterpret_cast<unsigned int*>(q);
//return the converted type data, a pointer...
return code;
}

int main(void)

//array name is a pointer...
int a[10];

cout<<"int pointer unsigned int pointer'<<endl;
for(int i = 0;i<=10;i++)
cout<<(a+i)<<" converted to "<<Test(a+i)<<endl;
system(*'pause');
return O;

¥
Output:

W projo0l0.exe

int pointer unsigned int pointer I!
BxAf12ff64 converted to BxBA12ff64d [
AxAH12ff68 converted to BxBA12FFGE

BxAf12ff6oc converted to BxBA12ff6c

AxA012ff 78 converted to BxBA12FF7A

BxA012ff 74 converted to BxBA12ff74

AxA012f 78 converted to BxBA12FF78

AxAA12ff7c converted to BxBA12ffYc

AxA012f f88 converted to BxBA12FTF8A

BxAH12ff84 converted to BxBA12fFf84

AxAH12ff88 converted to BxBA12FfFHE

BxAA12ff8c converted to AxBA12ff8c

Presz any key to continue . . .

2.2.7 explicit Keyword

- Keyword explicit used to avoid a single argument constructor from defining an automatic type
conversion.

- Atypical explicit usage example is in a collection class in which you can pass the initial size as
constructor argument. For example, you could declare a constructor that has an argument for the initial
size of a stack as shown below:

//simple class

//compiled using visual C++ _Net
#include <iostream>

using namespace std;

class MyStack

{)
public:
//create a stack with initial size
MyStack(int initsize);
~MyStack(void);

}:

MyStack: :MyStack(int initsize)
static Xx;
cout<<"Constructor: Pass #'"<<x<<endl;
X++;

}

MyStack: : ~MyStack(void)

{
static y;

cout<<"Destructor: Pass #'"<<y<<endl;

www.tenouk.com

y++;

}

//----main program----
int main(Q)

//The initial stack size is 10
MyStack p(20);

//but, there will be new stack objects
//with size of 30!

p = 30;
cout<<"Without the explicit keyword!\n";
return O;

}

Output:

"projectycskr

Conztructor: Pass HA
Constructor: Pass #1
Destructor: Pass HA

Without the explicit keyword?
Deztructor: Paszs #1

Press ani key to continue

- Here, without explicit keyword the constructor would define an automatic type conversion from
int type to MyStack object type.

- From the program output also, it is clear that the constructor was invoked two times, once for
Mystack with size of 20 and another one with size 30. This is not our intention.

- Then we could assign an integer, 30 to MyStack wrongfully, as shown below:

p = 30;

- The automatic type conversion would convert the integer 30 to Mystack, with 30 elements (size) and
then assign it to p.

- By declaring the int constructor as an expl i cit;, the assignment p = 30; will result an error at compile
time. The following is the program example using expl icit keyword.

//simple class

//compiled using visual C++ _Net
#include <iostream>

using namespace std;

class MyStack

{ _
public:
//create a stack with initial size
explicit MyStack(int initsize);
~MyStack(void);

}:

MyStack: :MyStack(int initsize)

{
static Xx;
cout<<"Constructor: Pass #'"<<x<<endl;
X++;

}

MyStack: : ~MyStack(void)

{
static y;
cout<<"Destructor: Pass #'"<<y<<endl;
y++;

}

//----main program----

int main()

//The initial stack size is 10
MyStack p(20);
//but, there will be new stack objects

www.tenouk.com

//with size of 30!

//p = 30;
cout<<"With the explicit keyword!\n";
return O;

}

Output:

projectwctskrl

Constructor: Pass HB
With the explicit kevword?msm
Destructor: Pass

- You can try un-commenting the p = 30 code, then recompile and re run the program. It should
generate an error.

- Note that explicit also rules out the initialization with type conversion by using the assignment syntax
as shown below:

MyStack p1(30); //0K
MyStack p2 = 30; //error

- The previous program example based on the template of the STL. More information is in Module 24
above.
- Program example compiled using VC++ / VC++ .Net.

//run time type information...
//compiled using VC++/VC++ _Net
#include <iostream>

#include <typeinfo.h>

using namespace std;

class Base

public:
virtual void functQ{}
}:

class Derived:public Base{};
int mainQ)

Derived* Testl = new Derived;
Base* Test2 = Testl;

cout<<"The type name of Testl is: ";
cout<<typeid(Testl)._ name()<<endl;
cout<<"The type name of *Testl is: ";
cout<<typeid(*Testl).name()<<endl;
cout<<"The type name of Test2 is: ";
cout<<typeid(Test2) _ name()<<endl;
cout<<"The type name of *Test2 is: ";
cout<<typeid(*Test2).name()<<endl;
delete Testl;

return O;

}
Output:

g:\vcnetprojek\searchpattern\Debug\sea...

type name of 3
tuype name of *=*Tes i ass Derived

tupe name of Test2 di=z: cla Base =
type name of :5t2 is: class Derived
ess any key to continue

- Program example compiled using g++.

www.tenouk.com

http://www.tenouk.com/Module24.html
http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html
http://www.tenouk.com/Module000.html

//upcast conversion using dynamic_cast
#include <iostream>
using namespace std;

//base class
class Basel {};

//derived class...
class Derivedl:public Basel {};

//another derived class
class Derived2:public Derivedl{};

//dynamic_cast test function...
void functl1()

//instantiate an object.
Derived2* Testl = new Derived2;

//upcasting, from derived class to base class,

//Derivedl is a direct from Basel

//making Test2 pointing to Derivedl sub-object of Testl
Derivedl* Test2 = dynamic_cast<Derivedl*>(Testl);
cout<<"Derivedl* Test2 = dynamic_cast<Derivedl*>(Testl);"<<endl;

if(1Test2)
cout<<"The conversion is fail..."<<endl;
else
cout<<"The conversion is successful...'"<<endl;

//upcasting, from derived class to base class
//Derived2 is an indirect from Basel
Basel* Test3 = dynamic_cast<Derivedl*>(Testl);
cout<<'\nBasel* Test3 = dynamic_cast<Derivedl*>(Testl);"<<endl;
iT(1Test3)
cout<<"The conversion is fail..._."<<endl;
else
cout<<"The conversion is successful..."<<endl;

3
int mainQ)

functl();
return 0O;

}

[bodo@bakawali ~]$ g++ typecast.cpp -0 typecast
[bodo@bakawali ~]$./typecast

Derivedl* Test2 = dynamic_cast<Derivedl*>(Testl);
The conversion is successful...

Basel* Test3 = dynamic_cast<Derivedl*>(Testl);
The conversion is successful...

000

Further reading and digging:

1. Check the best selling C/C++, Object Oriented and pattern analysis books at Amazon.com.

www.tenouk.com

http://www.tenouk.com/cplusbook.html

