
MODULE 21
EXCEPTION HANDLING

 In the worst case, there must be an emergency exit!

My Training Period: hours

Note:
The compiler used to compile the program examples in this Module is Visual Studio 6.0®, Win32 Empty Console
Mode application.
There is no C++ standard <exception> class found in my Borland® C++ 5.02 compiler. Check your compiler
documentation :o) and don’t forget to install any patches and Service Packs if any. For Borland you may try
Borland C++ Builder 5.5, 6.0 or multiplatform C++ BuilderX. Examples also tested using VC++ .Net

Abilities

▪ Able to understand and use C++ exception handlings.

21.1 Introduction

- When we develop a program, we expect the program does what it is supposed to do without any error.
Many operations, including object instantiation and file processing, are subject to failures that may go
beyond errors. Out-of-memory conditions, for instance, can occur even when your program is running
correctly.

- As an example, for typical application program the highest layer may consist of graphic user interface
(GUI) part that provide interface for users. These high-level components interact with objects, which in
turn encapsulate the application programming interface (API) routines.

- At a lower level, the API routines may interact with the operating system. The operating system itself
invokes system services that deal with low-level hardware resources such as physical memory, file
systems, and security modules. In general, runtime errors are detected in these lower code layers should
not be handled by themselves.

- To handle an error appropriately, higher-level components have to be informed that an error has
occurred. Generally, error handling consists of detecting an error and notifying the components that are
in charge. These components in turn attempt to recover from the error or terminate the program
properly.

- From the simplest one, we may use a proper prompting, for example:

Enter two integer separated by space:

- But what about if the user enter other than integer and not separate it by space? At least there must be a
prompt message or an alert dialog box, if the invalid data entered such as classic messages Abort,
Retry, Ignore where:

Message Description
Retry Debug the assertion or get help on asserts.
Ignore Ignore the assertion and continue running the program.
Abort Halt execution of the program and end the debugging session.

Table 21.1: Abort, Retry and Ignore

- Throughout this tutorial also, you should have encountered several mechanism used, such as

conditional statements using the if statements combined with exit(), abort() and
terminate() functions, when there are errors, the program just terminate with some error message,
passing the control back to operating system. Some of the messages may be very useful for our
debugging process.

- We also have had used the assert() function to test the validity of the program expressions as
discussed in Module 10.

- But program logic can’t be proved correct under all situation, we must ready for this situation by
providing the emergency exit for them.

- C++ provides two methods to handle this anomalous situation called exceptions, that are using
assertions and exceptions.

21.2 Assertions

www.tenouk.com

http://www.tenouk.com/Module10.html

- Assertion has been discussed in Module 10 and it should be a revision here.
- Same as C, C++ also supports assertion programming. Programmer specifies checks for correct

conditions to continue program execution. We use assert.h library for standard C and <cassert>
for C++, something like this:

//C++ and standard C
#include <assert.h>
//#include <cassert>

- Preprocessor macro assert() used to provide assertion processing. Macro expects an expression

with an integral value, for example:

//assertion macro
assert(expression);

- Program segment example:

cout<<"Enter an integer: "<<endl;
 cin>>p;
if(p!=0)
 cout<<"p x p x p = "<<p*p*p<<endl;
else
 //0 - normal exit, non-zero-some error
 exit(1);

If (p!=0) The program will continue normally.

If (p==0)
The assertion fails, error message displayed in the following form and
program terminates.
Assertion failed: expression, file filename, line number

- Assertion processing can be disabled by enabling the NDEBUG (no debug):

//turn assertion checking off
#define NDEBUG

//undefined the NDEBUG, turn on the assertion if
//#defined DEBUG has been defined...
#undef NDEBUG

- Assertion processing typically used only during program development and debugging. The assert

expression is not evaluated in the Release Version of your program. Typically, assertions can be used
for:

▪ Catching the program logic errors. Use assertion statements to catch logic errors. You can set

an assertion on a condition that must be true according to your program logic. The assertion
only has an effect if a logic error occurs.

▪ Checking the results of an operation. Use assertion statements to check the result of an

operation. Assertions are most valuable for testing operations which results are not so obvious
from a quick visual inspection.

▪ Testing the error conditions that supposed to be handled. Use assertions to test for error

conditions at a point in your code where errors supposed to be handled.

21.3 C Exception - structured exception handling (Microsoft® implementation)

- This part presented here just as a comparison and discussion to the standard C++.
- A structured exception handler has no concept of objects or typed exceptions, it cannot handle

exceptions thrown by C++ code; but, C++ catch handlers can handle C exceptions.
- So, the C++ exception handling syntax using try, throw…catch is not accepted by the C compiler, but

structured exception handling syntax (Microsoft® implementation) using __try, __except, __finally is
supported by the C++ compiler.

- The major difference between structured exception handling and C++ exception handling is that the
C++ exception handling deals with types, while the C structured exception handling deals with
exceptions of one type specifically, unsigned int.

www.tenouk.com

http://www.tenouk.com/Module10.html

- C exceptions are identified by an unsigned integer value, whereas C++ exceptions are identified by data
type.

- When an exception is raised in C, each possible handler executes a filter that examines the C exception
context and determines whether to accept the exception, pass it to some other handler, or ignore it
whereas when an exception is thrown in C++, it may be of any type.

- C structured exception handling model is referred to as what is called asynchronous, which the
exceptions occur secondary to the normal flow of control whereas the C++ exception handling
mechanism is fully synchronous, which means that exceptions occur only when they are invoked or
thrown.

- If a C exception is raised in a C++ program, it can be handled by a structured exception handler with its
associated filter or by a C++ catch handler, whichever is dynamically closer to the exception context.

- The following is a program example of the C++ program raises a C exception inside a C++ try block:

//C structured exception handling
//and C++ exception handling
#include <iostream.h>

//function prototype.. .
void TestCFunct(void);

int main()
{
 //C++ try block...
 try
 {
 //function calls...
 TestCFunct();
 }

 //catch block...
 catch(...)
 {
 cout<<"Caught the exception, C style..."<< endl;
 }
 return 0;
}

//function definition...
void TestCFunct()
{
 //structured handling exception...
 __try
 {
 int p, r = 2, q = 0;
 //exception should be raised here
 //divide by 0...
 p = r*(10/q);
 }
 __finally
 {
 cout<<"In __finally" << endl;
 //finding the appropriate catch...
 }
}

Output:

- Besides that, C’s exception that uses the setjmp() and longjmp() functions, do not support C++
object semantics.

- Using these functions in C++ programs may lesser the performance by preventing optimization on local
variables.

- It is better to use the C++ exception handling try, throw...catch constructs instead.

21.4 C++ Exception

www.tenouk.com

- An exception occurs when an unexpected error or unpredictable behaviors happened on your program

not caused by the operating system itself. These exceptions are handled by code which is outside the
normal flow of control and it needs an emergency exit.

- Compared to the structured exception handling, returning an integer as an error flag is problematic
when dealing with objects. The C++ exception-handling can be a full-fledged object, with data
members and member functions.

- Such an object can provide the exception handler with more options for recovery. A clever exception
object, for example, can have a member function that returns a detailed verbal description of the error,
instead of letting the handler look it up in a table or a file.

- C++ has incorporated three operators to help us handle these situations: try, throw and catch.
- The following is the try, throw…catch program segment example:

try
{
 buff = new char[1024];
 if(buff == 0)
 throw "Memory allocation failure!";

}

//catch what is thrown...
catch(char* strg)
{
 cout<<"Exception raised: "<<strg<<endl;
}

- In grammar form:

The try-block:
try
{compound-statement handler-list
 handler-list here

The throw-expression:
throw expression
}
{
The handler:
catch (exception-declaration) compound-statement
exception-declaration:
type-specifier-list here
}

- Let discuss in detail one by one.

21.4.1 try

- A try block is a group of C++ statements, enclosed in curly braces { }, that might cause an exception.
This grouping restricts the exception handlers to the exceptions generated within the try block. Each
try block may have one or more associated catch blocks.

- If no exception is thrown during execution of the guarded section, the catch clauses that follow the
try block are not executed or bypassed. Execution continues at the statement after the last catch
clause following the try block in which the exception was thrown.

- If an exception is thrown during execution of the guarded section or in any routine the guarded section
calls either directly or indirectly such as functions, an exception object will be created from the object
created by the throw operand.

- At this point, the compiler looks for a catch clause in a higher execution context that can handle an
exception of the type thrown or a catch handler that can handle any type of exception. The
compound-statement after the try keyword is the guarded section of code.

21.4.2 throw

www.tenouk.com

- The throw statement is used to throw an exception and its value to a matching catch exception
handler. A regular throw consists of the keyword throw and an expression. The result type of the
expression determines which catch block receives control.

- Within a catch block, the current exception and value may be re-thrown simply by specifying the
throw keyword alone that is without the expression.

- The throw is syntactically similar to the operand of a return statement but here, it returns to the
catch handler.

21.4.3 catch

- A catch block is a group of C++ statements that are used to handle a specific thrown exception. One
or more catch blocks, or handlers, should be placed after each try block. A catch block is
specified by:

1. The keyword catch
2. A catch parameter, enclosed in parentheses (), which corresponds to a specific type of

exception that may be thrown by the try block
3. A group of statements, enclosed in curly braces { }, whose purpose is to handle the exception

- The compound-statement after the catch keyword is the exception handler, and catches or handles

the exception thrown by the throw-expression.
- The exception-declaration statement part indicates the type of exception the clause handles. The type

can be any valid data type, including a C++ class.
- If the exception-declaration statement part is just an ellipsis (...) such as,

catch(...)

- Then, the catch clause will handle any type of exception, including C exceptions and system or

application generated exceptions such as divide by zero, memory protection and floating-point
violations. Such a handler must be the last handler for its try block acting as default catch.

- The catch handlers are examined in order of their appearance following the try block. If no
appropriate handler is found, the next dynamically enclosing try block is examined. This process
continues until the outermost enclosing try block is examined if there are more than one try block.

- If a matching handler is still not found, or if an exception occurs while unwinding, but before the
handler gets control, the predefined run-time function terminate() is called. If an exception occurs
after throwing the exception, but before the unwinding begins, terminate() is also called.

- The catch block must go right after the try block without any line of codes between them.
- The order in which catch handlers appear is important, because handlers for a given try block are

examined in order of their appearance. For example, it is an error to place the handler for a base class
before the handler for a derived class.

- After a matching catch handler is found, subsequent handlers are not examined. That is why an
ellipsis catch, catch(...) handler must be the last handler for its try block.

- Besides that, catch may be overloaded so that it can accept different types as parameters. In that case
the catch block executed is the one that matches the type of the exception sent through the parameter
of throw

- Program example:

//simple try, throw...catch
#include <iostream.h>

int main()
{
 //declare char pointer
 char* buff;

 //try block...
 try
 {
 //allocate storage for char object...
 buff = new char[1024];

 //do a test, if allocation fails...
 if(buff == 0)
 throw "Memory allocation failure!";

www.tenouk.com

 //if allocation successful, display
 //the following message, bypass
 //the catch block...
 else
 cout<<sizeof(buff)<<" Byte successfully allocated!"<<endl;
 }

 //if allocation fails, catch the type...
 //display message...
 catch(char* strg)
 {
 cout<<"Exception raised: "<<strg<<endl;
 }
 return 0;
}

Output:

- Program example for multiple catch:

//exception: multiple catch blocks
#include <iostream.h>
#include <stdlib.h>

int main ()
{
 try
 {
 char * teststr;
 teststr = new char [10];

 //test, if memory allocation fails then,
 //throws this error to the matching catch...
 if (teststr == NULL) throw "Allocation failure";

 for (int i=0; i<=15; i++)
 {
 //another test, if n>9, throw this error
 //to the respective catch..
 if (i>9) throw i;
 teststr[i]='z';
 cout<<"teststr["<<i<<"] = "<<teststr[i]<<endl;
 }
 }

 //catch the error if, i > 9, by displaying some
 //error message...
 catch (int j)
 {
 cout<<"The exception: ";
 cout<<"index "<<j<<" is out of range"<<endl;
 }
 //catch the error if, allocation fail for *teststr
 //by displaying some error...
 catch (char * strg)
 {
 cout<<"The exception: "<<strg<<endl;
 }
 system("pause");
 return 0;
}

Output:

www.tenouk.com

21.5 Catching Exceptions

- Since exceptions are a run-time and not a compile-time feature, standard C++ specifies the rules for
matching exceptions to catch-parameters is slightly different from those for finding an overloaded
function to match a function call.

- We can define a handler for an object of type named Type several different ways. In the following
examples, the variable test is optional, just as the ordinary functions in C++:

catch(Type test)
catch(const Type test)
catch(Type & test)
catch(const Type& test)

- Such handlers can catch exception objects of type Type1 if:

1. Type and Type1 are the same type, or
2. Type is an accessible base class of Type1 at the throw point, or
3. Type and Type1 are pointer types and there exists a standard pointer conversion from Type1

to Type at the throw point. Type is an accessible base class of Type1 if there is an inheritance
path from Type1 to Type with all public derivations.

- For the third rule, let Type1 be a type pointing to type Type2, and Type be a type that points to type

Type3. Then there exists a standard pointer conversion from Type1 to Type if:

1. Type is the same type as Type1, except it may have added any or both of the qualifiers const
and volatile, or

2. Type is void*, or
3. Type3 is an unambiguous, accessible base class of Type2. Type3 is an unambiguous base class

of Type2 if Type2's members can refer to members of Type3 without ambiguity (this is usually
only a concern with multiple inheritance).

- The C++ type conversion is discussed in next Module, Module 22.
- As conclusion, for these rules, the exceptions and catch parameters must either match exactly, or the

exception caught by pointer or reference must be derived from the type of the catch parameter.
- For example, the following exception is not caught:

//mismatch type, throw integer type
//catch the double type...
#include <iostream.h>

void Funct();

int main()
{
 try
 { Funct(); }
 catch(double)
 { cerr<<"caught a double type..."<<endl; }
 return 0;
}

void Funct()
{

www.tenouk.com

 //3 is not a double but int
 throw 3;
}

Output:

- Change the following statement

throw 3; to throw 4.123;

- Recompile and rerun, the program output should be as follows:

- As a summary, when an exception is thrown, it may be caught by the following types of catch
handlers:

▪ A handler that can accept any type (using the ellipsis syntax).
▪ A handler that accepts the same type as the exception object; because it is a copy, const and

volatile modifiers are ignored.
▪ A handler that accepts a reference to the same type as the exception object.
▪ A handler that accepts a reference to a const or volatile form of the same type as the exception

object.
▪ A handler that accepts a base class of the same type as the exception object; since it is a copy,

const and volatile modifiers are ignored. The catch handler for a base class must not precede the
catch handler for the derived class.

▪ A handler that accepts a reference to a base class of the same type as the exception object.
▪ A handler that accepts a reference to a const or volatile form of a base class of the same type as

the exception object.
▪ A handler that accepts a pointer to which a thrown pointer object can be converted via standard

pointer conversion rules.

- C++ exception is automatically call destructor functions during the stack unwinding process, for all
local objects constructed before the exception was thrown.

- Program example.

//exception, class and destructor
#include <iostream.h>

void TestFunct(void);

//class Test1 declaration...
class Test1
{
 public:
 Test1(){};
 ~Test1(){};
 const char *TestShow() const
 {
 cout<<"In class member function *TestShow():\n";
 return " Exception in Test1 class.";
 }
} ;

//another class declaration, DestrTest...
class DestrTest

www.tenouk.com

{
 public:
 DestrTest();
 ~DestrTest();
} ;

//constructor class implementation
DestrTest::DestrTest()
{
 cout<<"Next, in constructor DestrTest():\n";
 cout<<" Constructing the DestrTest...\n";
}

//destructor class implementation
DestrTest::~DestrTest()
{
 cout<<"Next, in destructor ~DestrTest():\n";
 cout<<" Destructing the DestrTest...\n";
}

void TestFunct()
{
 //instantiate an object, constructor invoked...
 DestrTest p;
 cout<<"Next in TestFunct(): \n Throwing Test1 type exception...\n";
 //first throw...
 throw Test1();
}

int main()
{
 cout<<"Starting in main()...\n";
 try
 {
 cout<<"Now, in the try block: \n Calling TestFunct()...\n";
 TestFunct();
 }
 //instantiate another object, constructor invoked...
 catch(Test1 q)
 {
 cout<<"Next, in catch handler:\n";
 cout<<" Caught Test1 type exception...\n";
 cout<<q.TestShow()<<"\n";
 }
 catch(char *strg)
 {
 cout<<"Caught char pointer type exception: "<<strg<<"\n";
 }

 cout<<"Back in main...\n";
 return 0;
}

Output:

21.6 Exception Processing-Stack Unwinding

www.tenouk.com

- When an exception is thrown, the runtime mechanism first searches for an appropriate matching
handler (catch) in the current scope. If no such handler exists, control is transferred from the current
scope to a higher block in the calling chain or in outward manner.

- Iteratively, it continues until an appropriate handler has been found. At this point, the stack has been
unwound and all the local objects that were constructed on the path from a try block to a throw
expression have been destroyed.

- The run-time environment invokes destructors for all automatic objects constructed after execution
entered the try block. This process of destroying automatic variables on the way to an exception handler
is called stack unwinding.

- During the unwinding the stack , objects on stack are destroyed, local variables, local class objects
destructors are called and program goes back to a normal state.

- The stack unwinding process is very similar to a sequence of return statements, each returning the
same object to its caller.

- In the absence of an appropriate handler, the program terminates. However, C++ ensures proper
destruction of local objects only when the thrown exception is handled. Whether an uncaught exception
causes the destruction of local objects during stack unwinding is implementation-dependent.

- To ensure that destructors of local objects are invoked in the case of an uncaught exception, you can
add a catch(...) statement in main(). For example:

int main()
{
 try
 {
 //throw exceptions...
 throw SomeThing;
 }
 //handle expected exceptions
 catch(TheSomething)
 {
 //handle all the exceptions...
 }
 //ensure proper cleanup in the case
 //of an uncaught exception
 catch(...)
 {
 //catch other things…
 }
}

- A throw expression with no operand re-throws the exception currently being handled. Such an

expression should appear only in a catch handler or in a function called from within a catch handler.
- The re-thrown exception object is the original exception object (not a copy). For example:

try
{
 throw SomeException();
}

//Handle all exceptions
catch(...)
{
 //Respond (perhaps only partially) to exception
 //...
 //re throw without operand...
 //Pass exception to some other handler
 throw;
}

- An empty throw statement tells the compiler that the function does not throw any exceptions. For

example:

//empty throw statement
#include <iostream.h>

//this empty throw will be ignored...
void Nothing() throw()
{ cout<<"In Nothing(), empty throw..."<<endl; }

void SomeType() throw(double)
{
 cout<<"In SomeType, will throw a double type..."<<endl;
 throw(1.234);

www.tenouk.com

}

void main()
{
 try
 {
 Nothing();
 SomeType();
 }
 catch (double)
 { cout<<"Caught a double..."<<endl; }
}

Output:

21.7 Uncaught/Unhandled Exception

- When the system can't find a handler for an exception, it calls the standard library function
terminate(), which by default aborts the program. You can substitute your own termination
function by passing a pointer to it as a parameter to the set_terminate() library function.

- An exception caught by a pointer can also be caught by a void* handler. In the following program
example, exception is caught, since there is a handler for an accessible base class:

#include <iostream.h>
//base class
class Test1 {};
//derived class
class Test2 : public Test1 {};

void Funct();

int main()
{
 try
 {
 //function call, go to Funct()
 Funct();
 }
 catch(const Test1&)
 {
 cerr<<"Caught a Test1 type, base class..."<<endl;
 }
 return 0;
}

//throw function definition
//a throw of Test2 type, derived class...
void Funct()
{
 throw Test2();

 //next, find the catch handler
}

Output:

- Another program example for terminating the try block:

#include <iostream.h>
www.tenouk.com

//exit()
#include <stdlib.h>
//set_terminate()
#include <exception>

void Funct()
{
 cout<<"Funct() was called by terminate()."<<endl;
 //0-normal exit, non zero-exit with some error
 exit(0);
}

int main()
{
 try
 {
 set_terminate(Funct);
 //No catch handler for this exception
 throw "Out of memory!";
 }
 catch(int)
 { cout<<"Integer exception raised."<<endl; }
 return 0;
}

Output:

21.8 Exception Specifications

- Exception specifications are used to provide summary information about what exceptions can be
thrown out of a function. Exceptions not listed in an exception specification should not be thrown from that
function.

- An exception specification consists of the keyword throw after the function's parameter list, followed
by a list of potential exceptions, for example:

void test(int somecode) throw (bad_code, no_auth);

- An exception specification isn't considered a part of a function's type. Therefore, it doesn't affect

overload resolution. That means pointers to functions and pointers to member functions may contain an
exception specification, for example:

void (*PtrFunct)(double) throw(string, double);

- PtrFunct is a pointer to a function that may throw string or double. You can assign to a

function whose exception specification is as restrictive as, or more restrictive than PtrFunct 's
exception specification.

- An exception specification P is said to be more restrictive than an exception specification Q if the set of
exceptions P contains is a subset of Q's exceptions. In other words, P contains every exception in Q but
not vice versa. For example:

void (*PtrFunct)(double) throw(string, double);
…
//more restrictive than PtrFunct:
void One(double) throw (string);
//as restrictive as PtrFunct:
void Two(double) throw (string, double);
//less restrictive than PtrFunct:
void Three(double) throw (string, double, bool);
PtrFunct = One; //OK
PtrFunct = Two; //OK
PtrFunct = Three; //error, Three is not subset of the PtrFunct

- A function with no exception-specification allows all exceptions. A function with an empty exception

specification doesn't allow any exceptions, for example:

www.tenouk.com

class Test
{
 public:
 //may throw any exception
 int One(char *VarPtr);
 //doesn't throw any exception
 int Two(double *VarPtr1) throw();
};

- Exception specifications are enforced at the runtime. When a function violates its exception

specification, unexpected() function is called.
- The unexpected() function invokes a user-defined function that was previously registered by

calling set_unexpected().
- If no function was registered with set_unexpected(), unexpected() calls terminate()

which aborts the program unconditionally.
- The following table summarizes C++'s implementation of exception specifications:

Exception specification Meaning
throw() The function does not throw any exception.
throw(...) The function can throw an exception.
throw(type) The function can throw an exception of type type.

Table 21.2: Exception specification

- The following are examples of the exception specification implementation.

Example Description

void Funct() throw(int) The function may throw an int exception.
void Funct() throw() The function will throw no exceptions.

void Funct() throw(char*, T) The function may throw a char* and/or a T, user
defined type exception.

void Funct() or
void Funct(...) The function may throw anything.

Table 21.3: Exception specification example

- If exception handling is used in an application, there must be one or more functions that handle thrown

exceptions.
- Any functions called between the one that throws an exception and the one that handles the exception

must be capable of throwing the exception. However, explicit exception specifications are not allowed
on C functions.

//exception specification
#include <iostream.h>

//handler function
void handler()
{cout<<"In the handler()\n";}

//int throw...
void Funct1(void) throw(int)
{
 static int x = 1;
 cout<<"Funct1() call #"<<x++<<endl;
 cout<<"About to throw 1\n";
 if (1)
 throw 1;
}
//empty throw...
void Funct5(void) throw()
{
 try
 {Funct1();}
 catch(...)
 {handler();}
}

// invalid, doesn't handle the int exception thrown from Funct1()
// void Funct3(void) throw()
// {

www.tenouk.com

// Funct1();
//}

void Funct2(void)
{
 try
 {Funct1(); }
 catch(int)
 {handler();}
}

//assume extern "C" functions don't throw exceptions
extern "C" void Funct4(void);
void Funct4(void)
{Funct1();}

int main()
{
 Funct2();
 try
 {Funct4();}
 catch(...)
 {cout<<"Caught exception from Funct4()\n";}
 Funct5();
 return 0;
}

Output:

21.9 Exception Handling Overhead

- The extra overhead associated with the C++ exception handling mechanism may increase the size of
executable files and slow your program execution.

- So, exceptions should be used only in truly exceptional situations. Exception handlers should not be
used to redirect the program's normal flow of control.

- For example, an exception should not be thrown in cases of potential logic or user input errors, such as
the overflow of an array boundary. In these cases, simply returning an error code by using for example,
the conditional if statement may be simpler and more concise.

21.10 Standard Exceptions

- The C++ exception class serves as the base class for all exceptions thrown by certain expressions
and by the Standard C++ Library.

Class hierarchy Description

exception
 bad_alloc Thrown by new, an allocation request fails.
 bad_cast Thrown by dynamic_cast when failed cast to a reference type.
 bad_exception Thrown when an exception doesn't match any catch

clause.

 bad_typeid Thrown by typeid operator when the operand for typeid is a NULL
pointer.

The logical errors are normally caused by programmer mistakes.

 logic_error
As the base class for all exceptions thrown to report errors presumably
detectable before the program executes, such as violations of logical
preconditions.

 domain_error As the base class for all exceptions thrown to report a domain error.

www.tenouk.com

 invalid_argument As the base class for all exceptions thrown to report an invalid argument.
 length_error As the base class for all exceptions thrown to report an attempt to generate

an object too long to be specified.
 out_of_range As the base class for all exceptions thrown to report an argument that is

out of its valid range.
The run-time errors normally occur because of mistakes in either the library
functions or in the run-time system

 runtime_error As the base class for all exceptions thrown to report errors presumably
detectable only when the program executes.

 overflow_error As the base class for all exceptions thrown to report an arithmetic
overflow.

 range_error As the base class for all exceptions thrown to report a range error.
 underflow_error As the base class for all exceptions thrown to report an arithmetic

underflow.
 ios_base::failure The member class serves as the base class for all exceptions thrown by the

member function clear() in template class basic_ios.

Table 21.4: exception class

- Logical and run time errors are defined in Standard C++ <stdexcept> header file and this
<stdexcept> is a derived class from the exception class where the Standard C++ header file is
<exception>.

- Do not confuse with the exception class and <exception> header file, they refer to different
thing here. Header is denoted by the angled bracket < >. Exception class definition is shown below:

class exception
{
 public:
 exception() throw();
 exception(const exception& right) throw();
 exception& operator=(const exception& right) throw();
 virtual ~exception() throw();
 virtual const char *what() const throw();
};

- Some functions of the standard C++ library send exceptions that can be caught by including them

within a try block. These exceptions are sent with a class derived from std::exception as their
type. It is better to use these exceptions instead of creating your own, because these exceptions have
been tested.

- Because this is a class hierarchy, if you include a catch block to capture any of the exceptions of this
hierarchy using the argument by reference that is by adding an ampersand, & after the type, you will
also capture all the derived ones.

- Referring to the hierarchy of the exception, exceptions are caught in a bottom-down hierarchy: Specific
derived classes exceptions are handled first, followed by less specific groups of exceptions that is, up to
the base classes and, finally, a catch(...) handler:

- Handlers of the specific derived objects must appear before the handlers of base classes. This is because
handlers are tried in order of appearance. It's therefore possible to write handlers that are never
executed; for example, by placing a handler for a derived class after a handler for a corresponding base
class.

- You can use the classes of standard hierarchy of exceptions to throw your exceptions or derive new
classes from them.

- The following example catches an exception of type bad_typeid (derived from exception) that is
generated when requesting information about the type pointed by a NULL pointer:

//standard exceptions
//program example
#include <iostream.h>
#include <exception>
#include <typeinfo>

class Test1
{
 virtual Funct() {};
} ;

int main ()
{
 try {

www.tenouk.com

 Test1 * var = NULL;
 typeid (*var);
 }
catch (std::exception& typevar)
{
 cout<<"Exception: "<<typevar.what()<<endl;
}
 return 0;
}

Output:

- Another program code segment example:

class out_of_range : public logic_error
{
 public:
 out_of_range(const string& message);
};

- The value returned by what is a copy of message.
- Program example:

//out_of_range example
#include <string>
#include <iostream>

using namespace std;

int main()
{
 try
 {
 string strg1("Test") ;
 string strg2("ing");
 strg1.append(strg2, 4, 2);
 cout<<strg1<<endl;
 }
 catch (exception &e)
 {
 cerr<<"Caught: "<<e.what()<<endl;
 cerr<<"Type: "<<typeid(e).name()<<endl;
 };
 return 0;
}

Output

- Other <exception> header members are listed in the following tables.

typedef Description
terminate_handler A type that describes a pointer to a function suitable for use as a

terminate_handler.

unexpected_handler A type that describes a pointer to a function suitable for use as an
unexpected_handler.

Table 21.5: <exception> typedef

www.tenouk.com

Member function Description
set_terminate() Establishes a new terminate_handler to be called at the

termination of the program.

set_unexpected() Establishes a new unexpected_handler to be when an
unexpected exception is encountered.

terminate() Calls a terminate handler.
uncaught_exception() Returns true only if a thrown exception is being currently processed.
unexpected() Calls an unexpected handler.

Table 21.6: <exception> member function

Class Description
bad_exception The class describes an exception that can be thrown from an

unexpected_handler.

exception The class serves as the base class for all exceptions thrown by certain
expressions and by the Standard C++ Library.

Table 21.7: <exception> class member

- Some simple program examples.

//bad_cast
//Need to enable the Run-Time Type Info,
//rtti of your compiler. You will learn
//Typecasting in another Module…
#include <typeinfo.h>
#include <iostream>
using namespace std;

class Myshape
{
 public:
 virtual void myvirtualfunc() const {}
};

class mytriangle: public Myshape
{
 public:
 virtua void myvirtualfunc() const l
 { };
} ;

int main()
{
 Myshape Myshape_instance;
 Myshape &ref_Myshape = Myshape_instance;

 try {
 //try the run time typecasting, dynamic_cast
 mytriangle &ref_mytriangle = dynamic_cast<mytriangle&>(ref_Myshape);
 }
 catch (bad_cast) {
 cout<<"Can't do the dynamic_cast lor!!!"<<endl;
 cout<<"Caught: bad_cast exception. Myshape is not mytriangle.\n";
 }
}

Output:

//bad_alloc, first version
//the allocation is OK

www.tenouk.com

#include <new>
#include <iostream>
using namespace std;

int main()
{
 har* ptr; c

 unsigned long int Test = sizeof(size_t(0)/3);
 cout<<"The size of variable Test = "<<Test<<endl;
 try
 {
 //try some allocation...
 //size of an array must not exceed certain bytes
 ptr = new cha [size_t(0)/3] r
 delete[] ptr;
 }
 catch(bad_alloc &thebadallocation)
 {
 cout<<thebadallocation.what()<<endl;
 };
 }

Output:

- Let negate/inverse the array size, change the following

sizeof(size_t(0)/3)

- To the following code.

sizeof(~size_t(0)/3)

- Recompile and re run the program, the following output should be expected.

//set_unexpected
#include <exception >
#include <iostream>
using namespace std;

void myfunction()
{
 cout<<"Testing myfunction()."<<endl;
 //terminate() handler
 terminate();
}

int main()
{
 unexpected_handler oldHandler = set_unexpected(myfunction);
 //unexpected() function call
 unexpected();
}

Output:

- Click the Abort button.

www.tenouk.com

- The following example shows the typeid operator throwing a bad_typeid exception.

//bad_typeid
#include <typeinfo.h>
#include <iostream>
using namespace std;

class Test
{
public:
//object for a class needs vtable
//for the rtti...
Test();
virtual ~Test();
} ;

int main()
{
 Test *ptrvar = NULL;

try {
 //the error condition
 cout<<typeid(*ptrvar).name()<<endl;
 }
catch (bad_typeid){
 cout<<"The object is NULL"<<endl;
 }
}

Output:

//domain_error and typeid()
#include <iostream>
using namespace std;

int main()
{
 try
 {
 throw domain_error("Some error with your domain!");
 }
 catch (exception &err)

www.tenouk.com

 {
 cerr<<"Caught: "<<err.what()<<endl;
 cerr<<"Type: "<<typeid(err).name()<<endl;
 };
}

Output:

//invalid_argumen t
#include <bitset>
#include <iostream>
using namespace std;

int main()
{
 try
 {

//binary wrongly represented by char X
//template based…
bitset<32> bitset(string("0101001X01010110000"));

 }
 catch (exception &err)
 {
 cerr<<"Caught "<<err.what()<<endl;
 cerr<<"Type "<<typeid(err).name()<<endl;
 };
}

Output:

//runtime_error
#include <iostream>
using namespace std;

int main()
{
 //runtime_error
 try
 {
 locale testlocale("Something");
 }
 catch(exception &err)
 {
 cerr<<"Caught "<<err.what()<<endl;
 cerr<<"Type "<<typeid(err).name()<<endl;
 };
}

Output:

//overflow_error

www.tenouk.com

//storage reserved is not enough
#include <bitset>
#include <iostream>
using namespace std;

int main()
{
 try
 {
 //template based…
 bitset<100> bitset;
 bitset[99] = 1;
 bitset[0] = 1;
 //to_ulong(), converts a bitset object to the integer
 //that would generate the sequence of bits
 unsigned long Test = bitset.to_ulong();
 }
 catch(exception &err)
 {
 cerr<<"Caught "<<err.what()<<endl;
 cerr<<"Type "<<typeid(err).name()<<endl;
 };
}

Output:

//range_error
#include <iostream>
using namespace std;

int main()
{
 try
 {
 throw range_error("Some error in the range!");
 }
 catch(exception &Test)
 {
 cerr<<"Caught: "<<Test.what()<<endl;
 cerr<<"Type: "<<typeid(Test).name()<<endl;
 };
}

Output:

//underflow_error
//negative storage...
#include <iostream>
using namespace std;

int main()
{
 try
 {
 throw underflow_error("The negative storage?");
 }
 catch(exception &Test)
 {
 cerr<<"Caught: "<<Test.what()<<endl;
 cerr<<"Type: "<<typeid(Test).name()<<endl;
 };

www.tenouk.com

}

Output:

- Program example compiled using g++.

//***********-except.cpp-***********
//exception, class and destructor
#include <iostream>
using namespace std;

void TestFunct(void);

//class Test1 declaration...
class Test1
{
 public:
 Test1(){};
 ~Test1(){};
 const char *TestShow() const
 {
 cout<<"In class member function *TestShow():\n";
 return " Exception in Test1 class.";
 }
} ;

//another class declaration, DestrTest...
class DestrTest
{
 public:
 DestrTest();
 ~DestrTest();
};

//constructor class implementation
DestrTest::DestrTest()
{
 cout<<"Next, in constructor DestrTest():\n";
 cout<<" Constructing the DestrTest...\n";
}

//destructor class implementation
DestrTest::~DestrTest()
{
 cout<<"Next, in destructor ~DestrTest():\n";
 cout<<" Destructing the DestrTest...\n";
}

void TestFunct()
{
 //instantiate an object, constructor invoked...
 DestrTest p;
 cout<<"Next in TestFunct(): \n Throwing Test1 type exception...\n";
 //first throw...
 throw Test1();
}

int main()
{
 cout<<"Starting in main()...\n";
 try
 {
 cout<<"Now, in the try block: \n Calling TestFunct()...\n";
 TestFunct();
 }
 //instantiate another object, constructor invoked...
 catch(Test1 q)
 {
 cout<<"Next, in catch handler:\n";
 cout<<" Caught Test1 type exception...\n";

www.tenouk.com

http://www.tenouk.com/Module000.html

 cout<<q.TestShow()<<"\n";
 }
 catch(char *strg)
 {
 cout<<"Caught char pointer type exception: "<<strg<<"\n";
 }
 cout<<"Back in main...\n";
 return 0;
}

[bodo@bakawali ~]$ g++ except.cpp -o except
[bodo@bakawali ~]$./except

Starting in main()...
Now, in the try block:
 Calling TestFunct()...
Next, in constructor DestrTest():
 Constructing the DestrTest...
Next in TestFunct():
 Throwing Test1 type exception...
Next, in destructor ~DestrTest():
 Destructing the DestrTest...
Next, in catch handler:
 Caught Test1 type exception...
In class member function *TestShow():
 Exception in Test1 class.
Back in main...

--------------------------------------o0o---------------------------------

Further reading and digging:

1. Check the best selling C/C++, Object Oriented and pattern analysis books at Amazon.com.

www.tenouk.com

http://www.tenouk.com/cplusbook.html

