
MODULE 2
PROGRAM STRUCTURE
AND BASIC DATA TYPES

My Training Period: hours

Note: ANSI C refers to ISO/IEC C.

Abilities

▪ Able to understand the basic structure of the C / C++ program.
▪ Able to understand and use the basic data types.
▪ Able to recognize and use the keywords and variables.
▪ Able to understand and use the constant, character and escape sequence.
▪ Able to understand and use the C typecasting/promotion.

2.1 A Program

- C / C++ programs consist of functions, one of which must be main(). Every C / C++ program begins
execution at the main() function.

2.2 Program Keywords / Reserved Words

- The keywords used in C / C++ have special meaning to the compiler. The programmer can’t use these
words for identifiers such as variable names.

- The following table is a list of keywords used in ANSI C.

Keyword Description

auto An automatic storage class for automatic variable. Normally not explicitly
used.

break Used to force an immediate exit from while, for, do loops and switch-
case statement.

case A label used together with switch statement for selection.
char A single byte data type, capable holding one character in the character set.

const A qualifier used to declare variable to specify that its value will not be
changed.

continue Related to break statement, causes the next iteration of the enclosing for,
while or do loop to begin. Applies only to loops, not to switch statement.

default An optional label used together with case label. When there is no case
expression matched, default label expression will be executed.

do Used in do-while loop, repetition where the test condition is at the end of
the loop body.

double A double-precision floating point.
elif #elif. Preprocessor statement for else-if.
else Used together with if (if-else) for conditional execution.
endif #endif. Preprocessor statement for end-if.

enum Used in declaring enumeration constant. Enumeration is a list of constant
integer values.

extern External storage class. External to all function or globally accessible variable.
Variable declared with extern can be accessed by name by any function.

float Used when declaring floating-point data type.
for Used in the repetition loop.
goto A program control statement for branching/jumping to.

if Used for conditional execution, standalone or with else. #if used for
conditional inclusion of the preprocessor directive.

ifdef #ifdef, if defined; test whether a name is defined.
ifndef #ifndef, if not defined; test whether a name is not defined.
int An integer data type, the size of normal integers.

long A qualifier (long and short) applied to basic data types. short – 16 bits,
long-32 bits, int either 16 or 32 bits.

Page 1 of 29 www.tenouk.com

register
Another storage class specifier. Used to advise the compiler to place the
variables in machine’s processor register instead of machine’s memory but it is
not a mandatory for the compiler.

return

Used to return a value from the called function to its caller. Any expression
can follow return. The calling function is free to ignore the returned value
and can be no expression after return (no value is returned). For main(),
return will pass to system environment, operating system if there is no error.

short A qualifier (long and short) applied to basic data types. short – 16 bits,
long-32 bits, int either 16 or 32 bits.

signed

A qualifier may be applied to char or any integer. For example, signed
int. Including the positive and negative integers. For example, integer
equivalent range for signed char is -128 and 127 (2’s complement
machine).

sizeof
An operator. Shows the number of bytes (occupied or) required to store an
object of the type of its operand. The operand is either an expression or a
parenthesized type name.

static

A storage class specifier. Local variables (internal variables) that retain their
values throughout the lifetime of the program. Also can be applied to external
variables as well as functions. Functions declared as static, its name is
invisible outside of the file in which it is declared. For an external variables or
functions, static will limit the scope of that objects to the rest of the source file
being compiled.

struct A structure specifier for an object that consist a sequence of named members of
various types.

switch
Used in a selection program control. Used together with case label to test
whether an expression matches one of a member of case’s constant integer
and branches accordingly.

typedef Used to create new data type name.

union A variable that may hold (at different time) objects of different types and
sizes. If at the same time, use struct.

unsigned
A qualifier may be applied to char or any integer. For example, unsigned
int. Including the positive integers or zero. For example, integer equivalent
range for unsigned char is 0 and 255.

void
Data type that specifies an empty set of values or nonexistence value but
pointers (pointers to void) may be assigned to and from pointers of type
void *.

volatile A qualifier used to force an implementation to suppress optimization that could
otherwise occur.

while Used for conditional loop execution. Normally together with the do.

Table 2.1: ANSI C Keywords

- The following table is a list of C++ keywords; most of the keywords will be used in Tutorial #2 and #3.

Keywords Brief descriptions

asm Using or inserting assembly language in C++, refer to your
compiler documentation support.

catch Exception handling generated by a throw keyword.

bool To declare Boolean logic variables; that is, variables which can be
either true or false.

class Define a new class then objects of this class can be instantiated.
const_cast To add or remove the const or volatile modifier from a type.

delete Destroy an object in memory dynamically, created by using
keyword new.

dynamic_cast
Convert a pointer or reference to one class into a pointer or
reference to another class using run time type information (rtti).
(Converts a pointer to a desired type.

explicit Used to avoid a single argument constructor from defining an
automatic type conversion in class declaration.

Page 2 of 29 www.tenouk.com

false The Boolean value of "false".

friend Declare a function or class to be a friend of another class providing
the access of all the data members and member function of a class.

inline Asking the compiler that certain function should be generated or
executed inline instead of function call.

mutable The mutable keyword overrides any enclosing const statement. A
mutable member of a const object can be modified.

namespace Keyword used to create a new scope.

new
Dynamically allocate a memory object on a free store, that is an
extra memory that available to the program at execution time and
automatically determine the object's size in term of byte.

operator Declare an overloaded operator.

private A class member accessible to member functions and friend
functions of the private member's class.

protected protected members may be accessed by member functions of
derived classes and friends of derived classes.

public A class member accessible to any function.

reinterpret_cast Replaces casts for conversions that are unsafe or implementation
dependent.

static_cast Converts types between related types.
template Declare how to construct class or function using variety of types.

this
A pointer implicitly declared in every non-static member
function of a class. It points to the object for which this member
function has been invoked.

throw Transfer control to an exception handler or terminate program
execution if appropriate handler cannot be located.

true The Boolean value of "true".

try

Creates a block that containing a set of statements that may
generate exceptions, and enables exception handling for any
exceptions generated (normally used together with throw and
catch).

typeid Gets run-time identification of types and expressions.

typename Used to qualify an identifier of a template as being a type instead of
a value.

using Used to import a namespace into the current scope.
virtual Declare a virtual function.
wchar_t Used to declare wide character variables.

Table 2.2: C++ Keywords

- One way to master C/C++ programming is to master the keywords and usages :o).

2.3 Identifiers

- Simply references to memory locations, which can hold values (data).
- Are formed by combining letters (both upper and lowercase), digits (0–9) and underscore (_).
- Rules for identifier naming are:

1. The first character of an identifier must be a letter, an underscore (_) also counts as a letter.
2. The blank or white space character is not permitted in an identifier.
3. Can be any length. Internal identifier (do not have the external linkage) such as preprocessor

macro names at least the first 31 characters are significant, also implementation dependent.
4. Reserved words/keywords and characters such as main and # also cannot be used.

2.4 Variables

- Identifier that value may change during the program execution.
- Every variable stored in the computer’s memory has a name, a value and a type.
- All variable in a C / C++ program must be declared before they can be used in the program.
- A variable name in C / C++ is any valid identifier, and must obey the rules mentioned above.

Page 3 of 29 www.tenouk.com

- Initializing a variable means, give a value to the variable, that is the variable’s initial value and can be
changed later on.

- Variable name are said to be lvalue (left value) because they can be used on the left side of an
assignment operator.

- Constant are said to be rvalue (right value) because they only can be used on the right side of an
assignment operator. For example:

x = 20;
x is lvalue, 20 is rvalue.

- Note that lvalue can also be used as rvalue, but not vice versa.
- Notation used in C / C++ can be Hungarian Notation or CamelCase Notation. The information for

these notations can be found HERE.

Example of the variable declaration

int x, y, z;
short number_one;
long Type0fCar;
unsigned int positive_number;
char Title;
float commission, yield;

General form:

data_type variable_list;

Note the blank space.

Declaring and initializing variables examples:

int m, n = 10;
char * ptr = "TESTING";
float total, rate = 0.5;
char user_response = ‘n’;
char color[7] = "green";

Or declare and then initialize:

int m, n;
float total, rate;
char user_response;
char color[7];

n = 20;
rate = 4.5;
user_response = ‘n’;
color = "green";

2.5 Basic Data types

- Why we need to learn data types? Every variable used in program hold data, and every data must have
their own type. It is the way how we can ‘measure’ the variable’s data value as exist in the real world.
Further more by knowing the data range, we can use data efficiently in our program in term of memory
management (storage allocation) aspects.

- For example, no need for us to reserve a lot of storage space such as a long data type if we just want
to store a small amount of data, let say, int data type.

- Every data in C / C++ has their own type. There are basic data type and derived data type. This
Module deals with basic data type.

- There are two kinds of basic data type: integral (integer value) and floating (real number). char data
type classified in integral type.

- Derived data types will be presented in another Module. Derived data type including the aggregate
data type is constructed from basic data type such as arrays, functions, pointers, structures, unions and
other user defined data types. Basic data type (int, char and float) and their variation are shown
in Table 2.3. 2.4 and 2.5.

Page 4 of 29 www.tenouk.com

http://www.tenouk.com/cnotation.html

Data type Keyword Bits Range
integer int 16 -32768 to 32767
long
integer long 32 -4294967296 to 4294967295

short
integer short 8 -128 to 127

unsigned
integer unsigned 16 0 to 65535

character char 8 0 to 255
floating
point float 32 approximately 6 digits of

precision
double
floating
point

double
64 approximately 12 digits

of precision

Table 2.3: Basic data type

- The following tables list the sizes and resulting ranges of the data types based on IBM PC compatible

system. For 64 bits, the size and range may not valid anymore :o).

Type Size (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC

character set
char 8 -128 to 127 Very small numbers and ASCII

characters
enum 16 -32,768 to 32,767 Ordered sets of values
unsigned int 16 0 to 65,535 Larger numbers and loops
short int 16 -32,768 to 32,767 Counting, small numbers, loop

control
int 16 -32,768 to 32,767 Counting, small numbers, loop

control
unsigned long 32 0 to 4,294,967,295 Astronomical distances
long 32 -2,147,483,648 to

2,147,483,647 Large numbers, populations

float 32 3.4-1038 to 3.41038 Scientific (7-digit precision)

double 64 1.7-10308 to 1.710308 Scientific (15-digit
precision)

long double 80 3.4-104932 to 1.1104932 Financial (18-digit precision)
near pointer 16 Not applicable Manipulating memory addresses
far pointer 32 Not applicable Manipulating addresses outside

current segment

Table 2.4: C++ 16-bit data types, sizes, and ranges

Type Size (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC

character set
char 8 -128 to 127 Very small numbers and ASCII

characters
short int 16 -32,768 to 32,767 Counting, small numbers, loop

control
unsigned int 32 0 to 4,294,967,295 Large numbers and loops
int 32 -2,147,483,648 to

2,147,483,647
Counting, small numbers, loop
control

unsigned long 32 0 to 4,294,967,295 Astronomical distances
enum 32 -2,147,483,648 to

2,147,483,647 Ordered sets of values

long 32 -2,147,483,648 to
2,147,483,647 Large numbers, populations

float 32 3.4 -1038 to 1.71038 Scientific (7-digit)
precision)

double 64 1.7 -10308 to 3.410308 Scientific (15-digit
precision)

long double 80 3.4 -104932 to Financial (18-digit

Page 5 of 29 www.tenouk.com

1.1104932 precision)

Table 2.5: C++ 32-bit data types, sizes, and ranges

- We are very familiar with integer constants that are the base 10 numbers, 0 – 9. There are other bases
such as 16, 8 and 2 numbers that we will encounter when learning programming.

- Octal integer constants must start with 0 followed by any combination of digits taken from 0 through
7. For examples:

0 07 0713 ← represent octal numbers

- Hexadecimal integer constants must start with 0x or 0X (capital hexadecimal) followed by any

combination of digits taken from 0 through 9 and uppercase letters A through F. For examples:

0x 0x8 0XADC 0X2FD ← represent hexadecimal numbers

- The literal data-type qualifiers bring different means for same constant data. For example:

▪ 75 mean the integer 75, but 75L represents the long integer 75.
▪ 75U means the unsigned integer 75.
▪ 75UL means the unsigned long integer 75.
▪ 4.12345 mean the double value 4.12345, but 4.12345F represents the float value

4.12345.

2.6 Escape Sequence

- The backslash (\) is called an escape character. When the backslash is encountered, function such as
printf() for example, will look ahead at the next character and combines it with the backslash to
form an escape sequence, used in functions printf() and scanf().

- Table 2.6 is the list of the escape sequence.

Code Code Meaning
\a Audible bell
\t Horizontal tab
\b Backspace
\\ Backslash character
\f Formfeed
\’ Single quote character
\n Newline
\" Double quote character
\r Carriage return
\0 NULL, ASCII 0

Table 2.6: Escape sequence

- For general C++ escape sequences are given in the following table. Besides using the sequence, we

also can use their value representation (in hexadecimal) for example \0x0A for newline.

Sequence Value (hex) Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (linefeed)
\r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
\\ 0x5c \ Backslash
\' 0x27 ' Single quote (apostrophe)
\" 0x22 " Double quote
\? 0x3F ? Question mark
\o any o=a string of up to three octal digits
\xH any H=a string of hex digits

Page 6 of 29 www.tenouk.com

\XH any H=a string of hex digits

Table 2.7: Example of Borland C++ escape sequence

2.7 Constants

- Values that do not change during program execution.
- Can be integer, character or floating point type.
- To declare a constant, use keyword const as shown in the following variable declaration example:

const int day_in_week = 7;
const float total_loan = 1100000.35;

2.8 Character and String Constants

- A character constant is any character enclosed between two single quotation marks (' and ').
- When several characters are enclosed between two double quotation marks (" and "), it is called a

string.
- Examples:

Character constants:

'$' '*' ' ' 'z' 'P'

String constants, note that the blank space(s) considered as string:

"Name: "
"Type of Fruit"
"Day: "

 " "

- You will learn other aggregate or derived data type specifiers such as struct, union, enum and
typedef in other Modules or in the program examples.

2.9 C Typecasting and Type Promotion

- During the program development, you may encounter the situations where you need to convert to the
different data type from previously declared variables, as well as having mixed data type in one
expression.

- For example, let say you have declared the following variables:

int total, number;
float average;

- But in the middle of your program you encountered the following expression:

average = total / number;

- This expression has mixed data type, int and float. The value of the average will be truncated, and

it is not accurate anymore. Many compilers will generate warning and some do not, but the output will
be inaccurate.

- C provides the unary (take one operand only) typecast operator to accomplish this task. The previous
expression can be re written as

average = (float) total / number;

- This (float) is called type cast operator, which create temporary floating-point copy of the total

operand. The construct for this typecast operator is formed by placing parentheses around a data type
name as:

(type) such as (int), (float) and (char).

- In an expression containing the data types int and float for example, the ANSI C standard specifies

that copies of int operands are made and promoted to float.

Page 7 of 29 www.tenouk.com

- The cast operator normally used together with the conversion specifiers heavily used with printf()
and scanf(). C’s type promotion rules specify how types can be converted to other types without
losing the data accuracy.

- The promotion rules automatically apply to expressions containing values of two or more different data
type in mixed type expression. The type of each value in a mixed-type expression is automatically
promoted to the highest type in the expression.

- Implicitly, actually, only a temporary version of each new value (type) is created and used for the
mixed-type expression, the original value with original type still remain unchanged.

- Table 2.8 list the data types in order from highest to lowest type with printf and scanf conversion
specifications for type promotion

- From the same table, type demotion, the reverse of type promotion is from lowest to highest. Type
demotion will result inaccurate value such as truncated value. Program examples for this section are
presented in formatted file input/output Module.

- This issue is very important aspect to be taken care when developing program that use mathematical
expressions as well as when passing argument values to functions.

- C++ has some more advanced features for typecasting and will be discussed in Typecasting Module.

Data type printf conversion
specification

scanf conversion
specification

long double %Lf %Lf
double %f %lf
float %f %f
unsigned long int %lu %lu
long int %ld %ld
unsigned int %u %u
int %d %d
short %hd %hd
char %c %c

Table 2.8: type promotion precedence, top = highest

- A length modifier is listed in the following table.

Modifier Description
l (letter ell) Indicates that the argument is a long or unsigned long.
L Indicates that the argument is a long double.

h Indicates that the corresponding argument is to be printed as a short or
unsigned short.

Table 2.9: Length modifier

- The following table is a list of the ANSI C formatted output conversion of the printf() function,

used with %. The program examples are presented in Module 5.

Character Argument type Converted to
c int single character, after conversion to unsigned char.

d, i int Signed decimal notation.

e, E double

Decimal notation of the form [-]m.de±xx or [-
]m.dE±xx, where the number of d is specified by the
precision. 6 is the default precision, 0 suppresses the decimal
point. Example: -123.434E-256.

f double
Decimal notation of the form [-]m.d, where the d is
specified by the precision. 6 is the default precision, 0
suppresses the decimal point. Example: 234.123456.

g, G double
%e or %E is used if the exponent is less than -4 or greater than
or equal to the precision; otherwise %f is used. Trailing zeros
or a trailing decimal point is not printed.

n int *
The number of characters written so far by this call to
printf() is written into the argument. No argument is
converted.

o int Unsigned octal notation (without a leading zero).
p void Print as a pointer (implementation dependent).

Page 8 of 29 www.tenouk.com

http://www.tenouk.com/Module5.html

s char *
Characters from the string are printed until ‘\0’ is reached or
until the number of characters indicated by the precision has
been printed.

u int Unsigned decimal notation.

x, X int Unsigned hexadecimal notation (without a leading 0x or 0X),
use abcd for 0x or ABCD for 0X.

% - No argument is converted; just print a %.

Table 2.10: printf() formatted output conversion

- The following table is a list of ANSI C formatted input conversion of the scanf() function.

Character Input Data Argument Type

c Characters.

char *. The next input characters are placed in the
indicated array, up to the number given by the width
field; 1 is the default. No ‘\0’ is added. The normal
skip over white space characters is suppressed in this
case; use %1s to read the next non-white space
character.

d Decimal integer. int *

i Integer. int *. The integer may be in octal (with leading 0)
or hexadecimal (with leading 0x or 0X).

n
Writes into the argument
the number of characters
read so far by this call.

int *. No input is read. The converted item count is
not incremented.

o Octal integer, with or
without leading zero. int *.

p Pointer value as printed by
printf("%p"). void *.

s String of non-white space
characters, not quoted.

char *. Pointing to an array of characters large
enough to hold the string and a terminating ‘\0’ that
will be appended.

u Unsigned decimal integer. unsigned int *

x
Hexadecimal integer, with
or without leading 0x or
0X.

int *.

e, f, g Floating-point number.

float *. The input format for float’s is an optional
sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E
or e followed by a possibly signed integer.

[…]

Matches the longest non-
empty string of input
characters from the set
between brackets.

char *. A ‘\0’ is appended. []…] will include]
in the set.

[^…]

Matches the longest non-
empty string of input
characters not from the set
between brackets.

char *. A ‘\0’ is appended. [^]…] will include]
in the set.

% Literal %. No assignment is made.

Table 2.11: scanf() formatted input conversion

Program Examples and Experiments

Example #1

//Data types program example
#include <iostream.h>
#include <stdlib.h>

int main() //main() function
{

Page 9 of 29 www.tenouk.com

 int a = 3000; //positive integer data type
 float b = 4.5345; //float data type
 char c = 'A'; //char data type
 long d = 31456; //long positive integer data type
 long e = -31456; //long -ve integer data type
 int f = -145; //-ve integer data type
 short g = 120; //short +ve integer data type
 short h = -120; //short -ve integer data type
 double i = 5.1234567890; //double float data type
 float j = -3.24; //float data type

cout<<"Welcome Ladies and Gentlemen!!\n";
cout<<"Here are the list of the C/C++ data type\n";
cout<<"\n1. This is positive integer number (int):\t\t"<<a;
cout<<"\n2. This is positive float number (float):\t\t"<<b ;
cout<<"\n3. This is negative float number(float):\t\t"<<j;
cout<<"\n4. This is character data (char):\t\t\t"<<c;
cout<<"\n5. This is long positive integer number(long):\t\t"<<d;
cout<<"\n6. This is long negative integer number(long):\t\t"<<e;
cout<<"\n7. This is negative integer number(int):\t\t"<<f;
cout<<"\n8. This is short positive integer number(short):\t"<<g;
cout<<"\n9. This is short negative integer number(short):\t"<<h;
cout<<"\n10. This is double positive float number(double):\t"<<i;
cout<<"\n11.\'This is lateral string\'";
cout<<"\n\t---do you understand?----\n ";
system("pause");
return 0;

}

Output:

Example #2

//Another data type program example
#include <iostream.h>
#include <stdlib.h>

void main() //main() function
{
 int p = 2000; //positive integer data type
 short int q = -120; //variation
 unsigned short int r = 121; //variation
 float s = 21.566578; //float data type
 char t = 'r'; //char data type
 long u = 5678; //long positive integer data type
 unsigned long v = 5678; //variation
 long w = -5678; //-ve long integer data type
 int x = -171; //-ve integer data type
 short y = -71; //short -ve integer data type
 unsigned short z = 99; //variation
 double a = 88.12345; //double float data type
 float b = -3.245823; //float data type

cout<<"\t--Data type again--\n";
cout<<"\t-------------------\n";
cout<<"\n1. \"int\" sample: \t\t"<<p;

Page 10 of 29 www.tenouk.com

cout<<"\n2. \"short\" int sample: \t"<<q;
cout<<"\n3. \"unsigned short int\" sample: "<<r;
cout<<"\n4. \"float\" sample: \t\t"<<s ;
cout<<"\n5. \"char\" sample: \t\t"<<t;
cout<<"\n6. \"long\" sample: \t\t"<<u;
cout<<"\n7. \"unsigned long\" sample: \t"<<v;
cout<<"\n8. negative \"long\" sample: \t"<<w ;
cout<<"\n9. negative \"int\" sample: \t"<<x;
cout<<"\n10. negative \"short\" sample: \t"<<y;
cout<<"\n11. unsigned \"short\" sample: \t"<<z;
cout<<"\n12. \"double\" sample: \t\t"<<a;
cout<<"\n13. negative \"float\" sample: \t"<<b<<endl;
system("pause");
}

Output:

Example#3

//Program to calculate the circumference and area of circle
#include <iostream.h>
#include <stdlib.h>
//define identifier PI with constant
#define PI 3.14159
//define identifier TWO with constant
#define TWO 2.0

int main()
{
 float area, circumference, radius;

 cout<<"\nEnter the radius of the circle in meter: ";
 cin>>radius;

 area = PI * radius * radius;
 //circle area = PI*radius*radius

 circumference = TWO * PI * radius;
 //circumference = 2*PI*radius
 cout<<"\nCircumference = "<<circumference<<" meter";
 //circle circumference
 cout<<"\nCircle area = "<<area<<" square meter"<<endl;
 //circle area
 system("pause");
 return 0;
 }

Output:

Page 11 of 29 www.tenouk.com

Example #4

//Using cout from iostream.h header file
#include <iostream.h>
#include <stdlib.h>

int main()
{
 cout<<"Hello there.\n";
 cout<<"Here is 7: "<<7<<"\n";
 //other than escape sequence \n used for new line, endl...
 cout<<"\nThe manipulator endl writes a new line to the screen.\n"<<endl;
 cout<<"Here is a very big number:\t" << 10000 << endl;
 cout<<"Here is the sum of 10 and 5:\t" << (10+5) << endl;
 cout<<"Here's a fraction number:\t" << (float) 7/12 << endl;
 //simple type casting, from int to float
 cout<<"And a very very big number:\t" << (double) 7000 * 7000<< endl;
 //another type casting, from int to double
 cout<<"\nDon't forget to replace existing words with yours...\n";
 cout<<"I want to be a programmer!\n";
 system("pause");
 return 0;
}

Output:

Example #5

//Comment in C/C++, using /* */ or //
//the // only for C++ compiler
#include <iostream.h>
#include <stdlib.h>

int main()
{
 /* this is a comment
 and it extends until the closing
 star-slash comment mark */
 cout<<"Hello World! How are you?\n";
 //this comment ends at the end of the line
 //so, new comment line need new double forward slash
 cout<<"That is the comment in C/C++ program!\n";
 cout<<"They are ignored by compiler!\n";
 //double slash comments can be alone on a line
 /* so can slash-star comments */
 /********************************/
 system("pause");
 return 0;

Page 12 of 29 www.tenouk.com

}

Output:

Example #6

//By using predefined sizeof() function,
//displaying the data type size, 1 byte = 8 bits
#include <iostream.h>
#include <stdlib.h>

int main()
{
 cout<<"The size of an int is:\t\t"<<sizeof(int)<<" bytes.\n";
 cout<<"The size of a short int is:\t"<<sizeof(short)<<" bytes.\n";
 cout<<"The size of a long int is:\t"<<sizeof(long)<<" bytes.\n";
 cout<<"The size of a char is:\t\t"<<sizeof(char)<<" bytes.\n";
 cout<<"The size of a float is:\t\t"<<sizeof(float)<<" bytes.\n";
 cout<<"The size of a double is:\t"<<sizeof(double)<<" bytes.\n";
 cout<<"The size of a bool is:\t\t"<<sizeof(bool)<<" bytes.\n";
 system("pause");
 return 0;
}

Output:

Example #7

//Demonstration the use of variables
#include <iostream.h>
#include <stdlib.h>

int main()
{

 unsigned short int Width = 7, Length;
 Length = 10;

 //create an unsigned short and initialize with result
 //of multiplying Width by Length
 unsigned short int Area = Width * Length;

 cout<<"Width:\t"<<Width<<"\n";
 cout<<"Length: "<<Length<<endl;
 cout<<"Area: \t"<<Area<<endl;
 system("pause");
 return 0;

}

Output:

Page 13 of 29 www.tenouk.com

Example #8

//To calculate the total amount of money earned in n days
#include <iostream.h>
#include <stdlib.h>

int main()
{
 int n;
 int total, rate= 20;

 cout<<"Enter number of days worked: ";
 cin>>n;
 total = n * rate;
 cout<<"\n----------------------------";
 cout<<"\n| For rate RM20 per day |";
 cout<<"\n----------------------------";
 cout<<"\n";
 cout<<"\nFor "<<n<<" days of work, you have earned $ ";
 cout<<total<<endl;
 system("pause");
 return 0;
}

Output:

Example #9

//Printing characters base on their
//respective integer numbers
#include <iostream.h>
#include <stdlib.h>

int main()
{
 cout<<"For integer number from 32 till 127,\n";
 cout<<"their representation for\n";
 cout<<"characters is shown below\n\n";
 cout<<"integer character\n";
 cout<<"-------------------\n";
 for (int i = 32; i<128; i++)
 //display up to 127...
 cout<<i<<" "<<(char) i<<"\n";
 //simple typecasting, from int to char
 system("pause");
 return 0;
}

Output:

Page 14 of 29 www.tenouk.com

- Boolean, bool is a lateral true or false. Use bool and the literals false and true to make Boolean logic
tests.

- The bool keyword represents a type that can take only the value false or true. The keywords false and
true are Boolean literals with predefined values. false is numerically zero and true is numerically one.
These Boolean literals are rvalues (right value); you cannot make an assignment to them.

- Program example:

/*Sample Boolean tests with bool, true, and false.*/
#include <iostream.h>
#include <stdlib.h>

//non main function
bool func()
{
 //Function returns a bool type
 return NULL;
 //NULL is converted to Boolean false, same
 //as statement 'return false;'
}

int main()
{
 bool val = false; // Boolean variable
 int i = 1; // i is neither Boolean-true nor Boolean-false
 int g = 5;
 float j = 3.02; // j is neither Boolean-true nor Boolean-false

 cout<<"Given the test value: "<<endl;
 cout<<"bool val = false "<<endl;
 cout<<"int i = 1 "<<endl;
 cout<<"int g = 5 "<<endl;
 cout<<"float j = 3.02 "<<endl;
 cout<<"\nTESTING\n";

 //Tests on integers
 if(i == true)

cout<<"True: value i is 1"<<endl;
 if(i == false)

cout<<"False: value i is 0"<<endl;

 if(g)

cout << "g is true."<<endl;
 else

cout << "g is false."<<endl;

 //To test j's truth value, cast it to bool type.
 if(bool(j) == true)

cout<<"Boolean j is true."<<endl;

 //Test Boolean function returns value

Page 15 of 29 www.tenouk.com

 val = func();
 if(val == false)

cout<<"func() returned false."<<endl;
 if(val == true)

cout<<"func() returned true."<<endl;
 system("pause");
 return false;
 //false is converted to 0

}

Output:

Example #10

//Testing the escape sequences
#include <stdio.h>
#include <stdlib.h>

int main()
{

printf("Testing the escape sequences:\n");
printf("-----------------------------\n");

printf("The audible bell --->\'\\a\' \a\a\a\n");
printf("The backspace --->\'\\b\' \bTesting\n");
printf("The formfeed, printer --->\'\\f\' \fTest\n");
printf("The newline --->\'\\n\' \n\n");
printf("The carriage return --->\'\\r\' \rTesting\n");
printf("The horizontal tab --->\'\\t\' \tTesting\t\n");
printf("The vertical tab --->\'\v\' \vTesting\n");
printf("The backslash --->\'\\\\' \\Testing\\\n");
printf("The single quote --->\'\'\' \'Testing\'\'\'\n");
printf("The double quote --->\'\"\' \"Testing\"\"\n");
printf("The question mark --->\'\?\' \?Testing\?\n");
printf("Some might not working isn't it?\n");
system("pause");
return 0;
}

Output:

Page 16 of 29 www.tenouk.com

Example #11

#include <stdio.h>
#include <stdlib.h>

int main()
{
int num;

printf("Conversion...\n");
printf("Start with any character and\n");
printf("Press Enter, EOF to stop\n");
num = getchar();
printf("Character Integer Hexadecimal Octal\n");
while(getchar() != EOF)
{
printf(" %c %d %x %o\n",num,num,num,num);
++num;
}

system("pause");
return 0;
}

Output:

Example #12

#include <stdio.h>
#include <stdlib.h>

/*convert decimal to binary function*/

Page 17 of 29 www.tenouk.com

void dectobin();

int main()
{
char chs = 'Y';
do
{
dectobin();
printf("Again? Y, others to exit: ");
chs = getchar();
scanf("%c", &chs);
}while ((chs == 'Y') || (chs == 'y'));
return 0;
}

void dectobin()
{
int input;
printf("Enter decimal number: ");
scanf("%d", &input);
if (input < 0)
printf("Enter unsigned decimal!\n");

/*for the mod result*/
int i;
/*count the binary digits*/
int count = 0;
/*storage*/
int binbuff[64];
do
{
/* Modulus 2 to get the remainder of 1 or 0*/
i = input%2;
/* store the element into the array */
binbuff[count] = i;
/* Divide the input by 2 for binary decrement*/
input = input/2;
/* Count the number of binary digit*/
count++;
/*repeat*/
}while (input > 0);
/*prints the binary digits*/
printf ("The binary representation is: ");
do
{
printf("%d", binbuff[count - 1]);
count--;
if(count == 8)
printf(" ");
} while (count > 0);
printf ("\n");
}

Output:

Example #13

#include <stdio.h>
#include <stdlib.h>
/*for strlen*/
#include <string.h>

Page 18 of 29 www.tenouk.com

/*convert bin to decimal*/
void bintodec()
{
char buffbin[100];
char *bin;
int i=0;
int dec = 0;
int bcount;

printf("Please enter the binary digits, 0 or/and 1.\n");
printf("Your binary digits: ");
bin = gets(buffbin);

i=strlen(bin);
for (bcount=0; bcount<i; ++bcount)
/*if bin[bcount] is equal to 1, then 1 else 0 */
dec=dec*2+(bin[bcount]=='1'? 1:0);
printf("\n");
printf("The decimal value of %s is %d\n", bin, dec);
}

int main(void)
{
bintodec();
return 0;
}

Output:

Example #14

/*Playing with binary, decimal, hexadecimal
and octal conversion*/
#include <stdio.h>
#include <stdlib.h>
/*strlen*/
#include <string.h>

/*octal conversion function*/
void octal(char *octa, int *octares);
/*hexadecimal conversion function */
void hexadecimal(char *hexa, int *hexares);
/*decimal conversion function */
void decimal(char *deci, int *decires);

/*convert binary to decimal*/
void bintodec(void);
/* convert decimal to binary*/
void decnumtobin (int *dec);
int main()
{
/* Yes or No value to continue with program */
char go;
/* Yes or No value to proceed to Binary to Decimal function */
char binY;

char choice1;
char choice2;
/* numtest, value to test with, and pass to functions*/
int numtest;
/* value to convert to binary, and call decnumtobin function*/
in bintest; t

int flag;
flag = 0;
go = 'y';

Page 19 of 29 www.tenouk.com

d o
{
printf("Enter the base of ur input(d=dec, h=hex, o=octal): ");
scanf("%c", &choice1);
getchar();
printf("\n");
printf("The entered Number: ");
/*If decimal number*/
if ((choice1 == 'd') || (choice1 == 'D'))
{
scanf("%d", &numtest);
getchar();
}
/*If hexadecimal number*/
else if ((choice1 == 'h') || (choice1 == 'H'))
{
scanf("%x", &numtest);
getchar();
}
/*If octal number*/
else if ((choice1 == 'o') || (choice1 == 'O'))
{
scanf("%o", &numtest);
getchar();
}
/*If no match*/
else
{
flag = 1;
printf("Only d, h or o options!\n");
printf("Program exit...\n");
exit(0);
}

/*Firstly convert the input 'number' to binary*/
bintest = numtest;
decnumtobin(&bintest);

/*output the hex, decimal or octal*/
printf("\n");
printf("Next, enter the base of ur output (d=dec, h=hex, o=octal):
");
scanf("%c", &choice2);
getchar();
/*If decimal number*/
if ((choice2 == 'd') || (choice2 == 'D'))
decimal (&choice1, &numtest);
/*If hexadecimal number*/
else if ((choice2 == 'h') || (choice2 == 'H'))
hexadecimal (&choice1, &numtest);
/*If octal number*/
else if ((choice2 == 'o') || (choice2 == 'O'))
octal (&choice1, &numtest);
/*if nothing matched*/
else
{
flag = 1;
system("cls");
printf("Only d, h or o options!");
printf("\nProgram exit...");
exit(0);
}

printf("\n\nAn OPTION\n");
printf("=========\n");
printf("Do you wish to do the binary to decimal conversion?");
printf("\n Y for Yes, and N for no : ");
scanf("%c", &binY);
getchar();
/*If Yes...*/
if ((binY == 'Y') || (binY == 'y'))
/*Do the binary to decimal conversion*/
bintodec();
/*If not, just exit*/
else if ((binY != 'y') || (binY != 'Y'))
{
flag = 1;
printf("\nProgram exit...\n");
exit(0);
}

Page 20 of 29 www.tenouk.com

printf("\n\n");
printf("The program is ready to exit...\n");
printf("Start again? (Y for Yes) : ");
scanf("%c", &go);
getchar();
/*initialize to NULL*/
numtest = '\0';
choice1 = '\0';
choice2 = '\0';
}
while ((go == 'y') || (go == 'Y'));
printf("-----FINISH-----\n");
return 0;
}

/*===*/
void decimal(char *deci, int *decires)
{
int ans = *decires;
char ch = *deci;
if ((ch == 'd') || (ch == 'D'))
printf("\nThe number \"%d\" in decimal is equivalent to \"%d\" in
decimal.\n", ans, ans);
else if ((ch == 'h') || (ch == 'H'))
printf("\nThe number \"%X\" in hex is equivalent to \"%d\" in
decimal.\n", ans, ans);
else if ((ch == 'o') || (ch == 'O'))
printf("\nThe number \"%o\" in octal is equivalent to \"%d\" in
decimal.\n", ans, ans);
}

/*==*/
void hexadecimal(char *hexa, int *hexares)
{
int ans = *hexares;
char ch = *hexa;
if ((ch == 'd') || (ch == 'D'))
printf("\nThe number \"%d\" in decimal is equivalent to \"%X\" in
hexadecimal.\n", ans, ans);
else if ((ch == 'h') || (ch == 'H'))
printf("\nThe number \"%X\" in hex is equivalent to \"%X\" in
hexadecimal.\n", ans, ans);
else if ((ch == 'o') || (ch == 'O'))
printf("\nThe number \"%o\" in octal is equivalent to \"%X\" in
hexadecimal.\n", ans, ans);
}

/*==*/
void octal(char *octa, int *octares)
{
int ans = *octares;
char ch = *octa;
if ((ch == 'd') || (ch == 'D'))
printf ("\nThe number \"%d\" in decimal is equivalent to \"%o\" in
octal.\n", ans, ans);
else if ((ch == 'h') || (ch == 'H'))
printf("\nThe number \"%X\" in hex is equivalent to \"%o\" in
octal. \n", ans, ans);
else if ((ch == 'o') || (ch == 'O'))
printf("\nThe number \"%o\" in octal is equivalent to \"%o\" in
octal.\n", ans, ans);
}

void bintodec(void)
{
char buffbin[1024];
char *binary;
int i=0;
int dec = 0;
int z;
printf("Please enter the binary digits, 0 or 1.\n");
printf("Your binary digits: ");
binary = gets(buffbin);

i=strlen(binary);
for(z=0; z<i; ++z)
/*if Binary[z] is equal to 1, then 1 else 0 */
dec=dec*2+(binary[z]=='1'? 1:0);
printf("\n");

Page 21 of 29 www.tenouk.com

printf("The decimal value of %s is %d", binary, dec);
printf("\n");
}

void decnumtobin (int *dec)
{
int input = *dec;
int i;
int count = 0;
int binary[64];
do
{
/* Modulus 2 to get 1 or a 0*/
i = input%2;
/* Load Elements into the Binary Array */
binary[count] = i;
/* Divide input by 2 for binary decrement */
input = input/2;
/* Count the binary digits*/
count++;
} hile (input > 0); w

/* Reverse and output binary digits */
printf ("The binary representation is: ");
do
{
printf ("%d", binary[count - 1]);
count--;
} while (count > 0);
printf ("\n");
}

Output:

Example #15

/*Playing with binary, decimal, hexadecimal
and octal conversion*/
#include <stdio.h>
#include <stdlib.h>
/*strlen*/
#include <string.h>

/*decimal conversion function */
void decimal(char *deci, int *decires);

/* convert decimal to binary*/
void decnumtobin (int *dec);
int main()

Page 22 of 29 www.tenouk.com

{
/* Yes or No value to continue with program */
char go;

char choice1;
char choice2;
/*numtest, value to test with, and pass to functions*/
int numtest;
/*value to convert to binary, and call decnumtobin function*/
int bintest;

int flag;
flag = 0;
go = 'y';
d o
{
printf ("Enter the h for hex input: ");
scanf("%c", &choice1);
getchar();
printf ("\n");
printf ("Enter your hex number lor!: ");

/*If hexadecimal number*/
if ((choice1 == 'h') || (choice1 == 'H'))
{
scanf ("%x", &numtest);
getchar();
}
else
{
flag = 1;
printf ("Only h!\n");
printf("Program exit...\n");
exit(0);
}

/*Firstly convert the input 'number' to binary*/
bintest = numtest;
decnumtobin(&bintest);

/*output the hex, decimal or octal*/
printf ("\n");
printf ("Enter the d for decimal output: ");
scanf ("%c", &choice2);
getchar();
/*If decimal number*/
if ((choice2 == 'd') || (choice2 == 'D'))
decimal(&choice1, &numtest);
/*else...*/
else
{
flag = 1;
printf("Only d!");
printf("\nProgram exit...");
exit(0);
}

printf ("\n\n");
printf ("The program is ready to exit...\n");
printf ("Start again? (Y for Yes) : ");
scanf ("%c", &go);
getchar();
/*initialize to NULL*/
numtest = '\0';
choice1 = '\0';
choice2 = '\0';
}
while ((go == 'y') || (go == 'Y'));
printf ("-----FINISH-----\n");
return 0;
}

/*===*/
void decimal(char *deci, int *decires)
{
int ans = *decires;
char ch = *deci;

if ((ch == 'h') || (ch == 'H'))

Page 23 of 29 www.tenouk.com

printf ("\nThe number \"%X\" in hex is equivalent to \"%d\" in
decimal.\n", ans, ans);
}

void decnumtobin (int *dec)
{
int input = *dec;
int i;
int count = 0;
int binary[128];
do
{
/* Modulus 2 to get 1 or a 0*/
i = input%2;
/* Load Elements into the Binary Array */
binary[count] = i;
/* Divide input by 2 for binary decrement */
input = input/2;
/* Count the binary digits*/
count++;
} hile (input > 0); w

/* Reverse and output binary digits */
printf ("The binary representation is: ");
do
{
printf ("%d", binary[count - 1]);
count--;
if(count == 4)
printf(" ");
} while (count > 0);
printf ("\n");
}

Output:

Example #16

/*Playing with hexadecimal and ascii*/
#include <stdio.h>
#include <stdlib.h>
/*strlen*/
#include <string.h>

/*decimal conversion function */
void decimal(int *decires);
/*convert decimal to binary*/
void decnumtobin (int *dec);

int main()
{
/*Program continuation...*/
char go;

/* numtest, value to test with, and pass to functions*/
int numtest;
/* value to convert to binary, and call decnumtobin function*/
int bintest;
int flag = 0;

Page 24 of 29 www.tenouk.com

go = 'y';
d o
{
printf("Playing with hex and ASCII\n");
printf("==========================\n");
printf("For hex, 0(0) - 1F(32) are non printable/control
characters!\n");
printf("For hex > 7F(127) they are extended ASCII characters that
are\n");
printf("platform dependent!\n\n");
printf("Enter the hex input: ");
scanf("%x", &numtest);
getchar();

/*Firstly convert the input 'number' to binary*/
bintest = numtest;
decnumtobin(&bintest);

decimal (&numtest);
printf("\nStart again? (Y for Yes) : ");
scanf ("%c", &go);
getchar();
/*initialize to NULL*/
numtest = '\0';
}
while ((go == 'y') || (go == 'Y'));
printf("-----FINISH-----\n");
return 0;
}

/*===*/
void decimal(int *decires)
{
int ans = *decires;
/*If < decimal 32...*/
i (ans < 32) f
{
printf("hex < 20(32) equivalent to non printable/control ascii
characters\n");
switch(ans)
{
case 0:{printf("hex 0 is NULL ascii");}break;
case 1:{printf("hex 1 is SOH-start of heading ascii");}break;
case 2:{printf("hex 2 is STX-start of text ascii");}break;
case 3:{printf("hex 3 is ETX-end of text ascii");}break;
case 4:{printf("hex 4 is EOT-end of transmission ascii");}break;
case 5:{printf("hex 5 is ENQ-enquiry ascii");}break;
case 6:{printf("hex 6 is ACK-acknowledge ascii"); break; }
case 7:{printf("hex 7 is BEL-bell ascii");}break;
case 8:{printf("hex 8 is BS-backspace ascii");}break;
case 9:{printf("hex 9 is TAB-horizontal tab ascii");}break;
case 10:{printf("hex A is LF-NL line feed, new line ascii");}break;
case 11:{printf("hex B is VT-vertical tab ascii");}break;
case 12:{printf("hex C is FF-NP form feed, new page ascii"); break; }
case 13:{printf("hex D is CR-carriage return ascii");} reak; b
case 14:{printf("hex E is SO-shift out ascii");}break ;
case 15:{printf("hex F is SI-shift in ascii");}break;
case 16:{printf("hex 10 is DLE-data link escape ascii");}break;
case 17:{printf("hex 11 is DC1-device control 1 ascii");}break;
case 18:{printf("hex 12 is DC2-device control 2 ascii");}break;
case 19:{printf("hex 13 is DC3-device control 3 ascii");}break;
case 20:{printf("hex 14 is DC4-device control 4 ascii");}break;
case 21:{printf("hex 15 is NAK-negative acknowledge ascii");}break;
case 22:{printf("hex 16 is SYN-synchronous idle ascii");}break;
case 23:{printf("hex 17 is ETB-end of trans. block ascii");}break;
case 24:{printf("hex 18 is CAN-cancel ascii");}break;
case 25:{printf("hex 19 is EM-end of medium ascii");}brea ; k
case 26:{printf("hex 1A is SUB-substitute ascii");}break;
case 27:{printf("hex 1B is ESC-escape ascii");}break;
case 28:{printf("hex 1C is FS-file separator ascii");}break;
case 29:{printf("hex 1D is GS-group separator ascii");}break;
case 30:{printf("hex 1E is RS-record separator ascii");}break;
case 31:{printf("hex 1F is US-unit separator ascii");}break;
}
}
else
printf ("\nThe number \"%X\" in hex is equivalent to \"%c\" ascii
character.\n", ans, ans);
}

Page 25 of 29 www.tenouk.com

void decnumtobin (int *dec)
{
int input = *dec;
int i;
int count = 0;
in binary[128]; t
d o
{
/* Modulus 2 to get 1 or a 0*/
i = input%2;
/* Load Elements into the Binary Array */
binary[count] = i;
/* Divide input by 2 for binary decrement */
input = input/2;
/* Count the binary digits*/
count++;
} hile (input > 0); w

/* Reverse and output binary digits */
printf("The binary representation is: ");
d o
{
printf("%d", binary[count - 1]);
count--;
if(count == 4)
printf(" ");
} while (count > 0);
printf("\n");
}

Output:

Example #17

- Program example compiled using VC++/VC++ .Net.

//Using C code and header in C++...
#include <cstdio>

int main()
{

int num;

printf("Conversion...\n");
printf("Start with any character and\n");
printf("Press Enter, EOF to stop\n");
num = getchar();

Page 26 of 29 www.tenouk.com

http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html

printf("Character Integer Hexadecimal Octal\n");
while(getchar() != EOF)
{

printf(" %c %d %x %o\n", num, num, num, num);
++num;

}
return 0;

}

Output:

- Program examples compiled using gcc.

/*Another data type program example*/
#include <stdio.h>

/*main function*/
int main()
{
 int p = 2000; /*positive integer data type*/
 short int q = -120; /*variation*/
 unsigned short int r = 121; /*variation*/
 float s = 21.566578; /*float data type*/
 char t = 'r'; /*char data type*/
 long u = 5678; /*long positive integer data type*/
 unsigned long v = 5678; /*variation*/
 long w = -5678; /*-ve long integer data type*/
 int x = -171; /*-ve integer data type*/
 short y = -71; /*short -ve integer data type*/
 unsigned short z = 99; /*variation*/
 double a = 88.12345; /*double float data type*/
 float b = -3.245823; /*float data type*/

printf("\t--Data type again--\n");
printf("\t-------------------\n");
printf("\n1. \"int\" sample: \t\t %d, the data size: %d bytes", p, sizeof(p));
printf("\n2. \"short\" int sample: \t %d, the data size: %d bytes", q, sizeof(q));
printf("\n3. \"unsigned short int\" sample: %d, the data size: %d bytes", r, sizeof(r));
printf("\n4. \"float\" sample: \t\t %.7f, the data size: %d bytes", s, sizeof(s));
printf("\n5. \"char\" sample: \t\t %c, the data size: %d byte", t, sizeof(t));
printf("\n6. \"long\" sample: \t\t %d, the data size: %d bytes", u, sizeof(u));
printf("\n7. \"unsigned long\" sample: \t %d, the data size: %d bytes", v, sizeof(v));
printf("\n8. negative \"long\" sample: \t %d, the data size: %d bytes", w, sizeof(w));
printf("\n9. negative \"int\" sample: \t %d, the data size: %d bytes", x, sizeof(x));
printf("\n10. negative \"short\" sample: \t %d, the data size: %d bytes", y, sizeof(y));
printf("\n11. unsigned \"short\" sample: \t %d, the data size: %d bytes", z, sizeof(z));
printf("\n12. \"double\" sample: \t\t %.4f, the data size: %d bytes", a, sizeof(a));
printf("\n13. negative \"float\" sample: \t %.5f, the data size: %d bytes\n", b,
sizeof(b));
return 0;
}

Page 27 of 29 www.tenouk.com

http://www.tenouk.com/Module000.html

[bodo@bakawali ~]$ gcc datatype.c -o datatype
[bodo@bakawali ~]$./datatype

 --Data type again--

1. "int" sample: 2000, the data size: 4 bytes
2. "short" int sample: -120, the data size: 2 bytes
3. "unsigned short int" sample: 121, the data size: 2 bytes
4. "float" sample: 21.5665779, the data size: 4 bytes
5. "char" sample: r, the data size: 1 byte
6. "long" sample: 5678, the data size: 4 bytes
7. "unsigned long" sample: 5678, the data size: 4 bytes
8. negative "long" sample: -5678, the data size: 4 bytes
9. negative "int" sample: -171, the data size: 4 bytes
10. negative "short" sample: -71, the data size: 2 bytes
11. unsigned "short" sample: 99, the data size: 2 bytes
12. "double" sample: 88.1235, the data size: 8 bytes
13. negative "float" sample: -3.24582, the data size: 4 bytes

#include <stdio.h>
#include <stdlib.h>

/*convert decimal to binary function*/
void dectobin();

int main()
{
char chs = 'Y';
d o
{
dectobin();
printf("Again? Y, others to exit: ");
chs = getchar();
scanf("%c", &chs);
}while ((chs == 'Y') || (chs == 'y'));
return 0;
}

void dectobin()
{
int input;
printf("Enter decimal number: ");
scanf("%d", &input);
if (input < 0)
printf("Enter unsigned decimal!\n");

/*for the mod result*/
int i;
/*count the binary digits*/
int count = 0;
/*storage*/
int binbuff[64];
do
{
/* Modulus 2 to get the remainder of 1 or 0*/
i = input%2;
/* store the element into the array */
binbuff[count] = i;
/* Divide the input by 2 for binary decrement*/
input = input/2;
/* Count the number of binary digit*/
count++;
/*repeat*/
}while (input > 0);
/*prints the binary digits*/
printf("The binary representation is: ");
do
{
printf("%d", binbuff[count - 1]);
count--;
if(count == 8)
printf(" ");
} while (count > 0);
printf ("\n");
}

Page 28 of 29 www.tenouk.com

[bodo@bakawali ~]$ gcc binary.c -o binary
[bodo@bakawali ~]$./binary

Enter decimal number: 64
The binary representation is: 1000000
Again? Y, others to exit: Y
Enter decimal number: 128
The binary representation is: 10000000
Again? Y, others to exit: Y
Enter decimal number: 32
The binary representation is: 100000
Again? Y, others to exit: Y
Enter decimal number: 100
The binary representation is: 1100100
Again? Y, others to exit: N
[bodo@bakawali ~]$ cat binary.c

--o0o---

Further reading and digging:

1. The ASCII, EBCDIC and UNICODE character sets reference Table can be found here: Character sets
Table.

2. Check the best selling C / C++ books at Amazon.com.

Page 29 of 29 www.tenouk.com

http://www.lookuptables.com/
http://www.lookuptables.com/
http://www.tenouk.com/cplusbook.html

