
MODULE 14
INHERITANCE I

My Training Period: hours

Abilities

▪ Able to understand the inheritance concept.
▪ Able to understand and use base class (parent class).
▪ Able to understand and use derived class (child class).
▪ Able to understand the use of the preprocessor directive to avoid the multiple inclusion of the

same file.
▪ Able to understand the class hierarchy.

10.1 Introduction

- Inheritance permits to reuse code from the already available classes, also gives you the flexibility to do
modification if the old code doesn’t exactly fit the task of the new project.

- It doesn’t make sense to start every new project with new classes, from scratch since most of the code
will certainly be repeated in several programs such as common tasks or routines.

- You are less likely to make an error if you leave the original alone and only add new features to it.
Another reason for using inheritance is if the project requires the use of several classes which are very
similar but slightly different.

- In this Module, we will concentrate on the mechanism of inheritance and how to build it into a
program.

- C++ allows you to inherit all or part of the members and methods of classes, modify some, and add new
ones that not available in the base class.

14.2 Starting Point

- Examine the file named vehicle.h for simple class which we will use to begin our study of
inheritance. It consists of four simple methods which can be used to manipulate data pertaining to our
vehicle.

1. //class declaration part, vehicle.h, header file
2. //save and include this file in your project
3. //do not compile or run
4.
5. #ifndef VEHICLE_H //preprocessor directive
6. #define VEHICLE_H
7.
8. //----------class declaration part – the interface----------
9. class Cvehicle
10. {
11. protected: //new keyword
12. int wheels;
13. int weight;
14. public:
15. void initialize(int input_wheels, float input_weight);
16. int get_wheels(void);
17. float get_weight(void);
18. float wheel_load (void);
19. };
20. #endif

20 Lines of codes

Program 14.1: vehicle.h program, declaration of Cvehicle class

- We will eventually refer to this as a base class or parent class, but for the time being, we will simply

use it like any other class to show that it is indeed just a normal class.
- Note that we will explain the added keyword protected shortly. Figure 14.1 is a graphical

representation of the Cvehicle class. Ignore lines 5, 6, and 11, they will be explained in detail
later. This program cannot be compiled or executed because it is only a header file but makes sure
there are no errors such as typing errors.

www.tenouk.com

14.3 The Cvehicle Class Implementation – vehicle.cpp

- Examine the file named vehicle.cpp, and you will find that it is the implementation of the vehicle
class. The initialize() method assigns the values input as parameters to the wheels and
weight variables.

1. //Program vehicle.cpp, implementation part,
2. //compile without error, generating object file, do not run
3. #include "vehicle.h"
4.
5. //---------------class implementation part---------------------
6. //initialize to data input by user
7. void Cvehicle::initialize(int input_wheels, float input_weight)
8. {
9. wheels = input_wheels;
10. weight = input_weight;
11. }
12.
13. //get the number of wheels of this vehicle
14. int Cvehicle::get_wheels()
15. {
16. return wheels;
17. }
18.
19. //return the weight of this vehicle
20. float Cvehicle::get_weight()
21. {
22. return weight;
23. }
24.
25. //return the load on each wheel
26. float Cvehicle::wheel_load()
27. {
28. return (weight/wheels);
29. }

29 Lines of codes

Program 14.2: vehicle.cpp, implementation program of Cvehicle class

- We have methods to return the number of wheels and the weight, and finally, we have one that

does a calculation to return the load on each wheel. At this point, we are more interested in learning
how to implement the interface to the classes.

- We will use it as a base class later. Compile this program without error, generating object file, in
preparation for the next program example, but you cannot execute it because there is no main() entry
point.

14.4 Using The Vehicle Class – The main() program

www.tenouk.com

- The file named transprt.cpp uses the Cvehicle class in similar manner as we have illustrated in
the previous Module. This should be an indication to you that the Cvehicle class is just a normal
class as defined in C++.

1. //program transprt.cpp, the main program,
2. //compile and run
3.
4. #include <iostream.h>
5. #include <stdlib.h>
6. #include "vehicle.h"
7. //user define header file and put it in the same folder as this program
8.
9. void main()
10. {
11. Cvehicle car, motorcycle, truck, sedan_car;
12. //4 objects instantiated
13.
14. //data initialization
15. car.initialize(4,3000.0);
16. truck.initialize(20,30000.0);
17. motorcycle.initialize(2,900.0);
18. sedan_car.initialize(4,3000.0);
19.
20. //Display the data
21. cout<<"The car has "<<car.get_wheels()<< " tires.\n";
22. cout<<"Truck has load "<<truck.wheel_load()<<" kg per tire.\n";
23. cout<<"Motorcycle weight is "<<motorcycle.get_weight()<<" kg.\n";
24. cout<<"Weight of sedan car is "<<sedan_car.get_weight()<<" kg, and has
25. "<<sedan_car.get_wheels()<<" tires.\n";
26.
27. system("pause");
28. }

28 Lines: Output:

Program 14.3: transprt.cpp the main program

- Inheritance uses an existing class and adds new functionalities to the new class, to accomplish another,
possibly more complex task.

- This program declares four objects of the Cvehicle class as shown in the code segment below:

Cvehicle car, motorcycle, truck, sedan_car;
//4 objects instantiated

- Initializes them as shown below:

 //data initialization
 car.initialize(4, 3000.0);
 truck.initialize(20, 30000.0);
 motorcycle.initialize(2,900.0);
 sedan_car.initialize(4, 3000.0);

- And prints out a few of the data values. Compile and run this program.

14.5 Derived Class

- Examine the file named car.h, for our first example of using a derived class. The Cvehicle class is
inherited due to the ":public Cvehicle" code added to line 12 as shown below:

class Ccar : public Cvehicle

1. //another class declaration car.h
2. //save and include this file in your project

www.tenouk.com

3. //do not compile or run.
4.
5. #ifndef CAR_H
6. #define CAR_H
7.
8. #include "vehicle.h"
9.
10. //-----------derived class declaration part------------------
11. //Ccar class derived from Cvehicle class
12. class Ccar : public Cvehicle
13. {
14. int passenger_load;
15. public:
16. //This method will be used instead of the same
17. //method in Cvehicle class - overriding
18. void initialize(int input_wheels, float input_weight, int people = 4);
19. int passengers(void);
20. } ;
21.
22. #endif

22 Lines of codes

Program 14.4: car.h program, declaration of derived class Ccar

- This derived class named Ccar is composed of all the information included in the base class

Cvehicle, and all of its own additional information. Even though we did nothing to the class named
Cvehicle, we made it available in this car.h program.

- In fact, it can be used as a normal class and a base class in the same program.
- A class that inherits another class is called a derived class or a child class.
- Likewise the terminology for the inherited class is called a base class, but parent class and super class

are sometimes used.
- A base class is rather general class which can cover a wide range of objects attributes or behavior or

properties, whereas a derived class is somewhat more specific but at the same time more useful.
- For simple example consider your family. You and your siblings inherited many characteristics of your

mother and/or father such as eye and hair color. Your father and/or mother are base classes, whereas
you and your siblings are derived classes.

- In this case, the Cvehicle base class can be used to declare objects that represent plane, trucks, cars,
bicycles, or any other vehicles you can think up.

- The class named Ccar however can only be used to declare an object that is of type Ccar because we
have limited kinds of data that can be intelligently used with it. The car class is therefore more
restrictive and specific than the Cvehicle class.

- If we wish to get even more specific, we could define a derived class using Ccar as the base class,
name it Csports_car, and include information such as red_line_limit for the tachometer or
turbo_type_engine as new member variables.

- Then, the Ccar class would therefore be used as a derived class and a base class at the same time, so it
should be clear that these names refer to how the class is used.

14.6 Derived Class Declaration

- A derived class is defined by including the header file of the base class as is done in line 8 as shown
below:

#include "vehicle.h"

- And then the name of the base class is given following the name of the derived class separated by a

colon (:) as is illustrated in line 12 as shown below:

class Ccar : public Cvehicle

- Ignore the keyword public immediately following the colon in this line. This defines public
inheritance and we will discuss it later.

- All objects declared as being of class Ccar therefore are composed of the two variables from the
Cvehicle class because they inherit those variables, and the single member variable declared in the
Ccar class named passenger_load, and the total member variable is listed below:

▪ int wheels;

www.tenouk.com

▪ int weight;
▪ int passenger_load;

- An object of this class also will have three of the four methods of Cvehicle as listed below:

▪ get_wheels() { }
▪ get_weight() { }
▪ wheel_load() { }

- And the two new methods

▪ initialize() { }
▪ passengers() { }

- The method named initialize() which is part of the Cvehicle class will not be available here

because it is hidden by the local version of initialize() which is a part of the Ccar class. The
local method will be used if the name is repeated, allowing you to customize your new class.
Figure 14.2 is a graphical representation of an object of this class.

- Note once again that the implementation for the base class only needs to be supplied in its compiled
form of the vehicle.cpp file. The source code for implementation can be hidden.

- The header file for the base class, vehicle.h, must be available as a text file since the class
definitions are required in order to use the class.

- The following figure is an illustration of our simple class hierarchy. Here, car inherits some of the
common vehicle’s properties.

14.7 The Ccar Class Implementation – car.cpp

- Examine the program named car.cpp which is the implementation file for the Ccar class.
- The first thing you should notice, this file has no indication of the fact that it is a derived class of any

other class, and can only be determined by inspecting the preprocessor directive of the header file
#include "car.h".

1. //Implementation file car.cpp for derived Ccar class
2. //compile without error and include in your project,
3. //Do not run
4.

www.tenouk.com

5. #include "car.h"
6.
7. //-------implementation part of the derived class car.h----------
8. void Ccar::initialize(int input_wheels, float input_weight, int people)
9. {
10. passenger_load = people;
11. wheels = input_wheels;
12. weight = input_weight;
13. }
14.
15. int Ccar::passengers(void)
16. {
17. return passenger_load;
18. }

18 Lines of codes

Program 14.5: car.cpp, implementation of the Ccar derived class.

- The implementations for the two new methods are similar as in other class, nothing new. Compile this

program without error, this will generate object file for later use.

14.8 Another Derived Class – Ctruck

- Examine the program named truck.h, an example of another derived class that uses the Cvehicle
class as its based class. This class will specialize in those things that pertain to trucks.

1. //Another class declaration, truck.h,
2. //Save this file in your project
3. //Do not compile or run
4.
5. #ifndef TRUCK_H
6. #define TRUCK_H
7.
8. #include "vehicle.h"
9.
10. //----------class declaration part of derived class truck------------
11. class Ctruck : public Cvehicle
12. {
13. int passenger_load;
14. float payload;
15. public:
16. void init_truck(int how_many = 2, float max_load = 24000.0);
17. float efficiency(void);
18. int passengers(void);
19. };
20. #endif

20 Lines of codes

Program 14.6: truck.h, derived class declaration of Ctruck derived class

- This derived class adds two more variables and three more methods compared to the base class,

Cvehicle, is specific information for truck vehicle. Figure 14.3 is the graphical representation of
the Ctruck class.

www.tenouk.com

- Ccar and Ctruck classes have absolutely nothing to do with each other, they only happen to be
derived classes from the same base class.

- Note that both the Ccar and Ctruck classes have methods named passengers() but this causes
no problems and is perfectly valid. This issue will be discussed later.

- If classes are related in some way, and they certainly are if they are both derived classes of a common
base class, you would expect them to be doing somewhat similar things. In this situation there is a
good possibility that a method name would be repeated in both child classes.

- No need to compile and run this program just makes sure there are no other errors such as typing error.

14.9 The Ctruck Class Implementation – truck.cpp

- Examine the program named truck.cpp for the implementation of the Ctruck class.
- Compile this program without error, generating object file, in preparation for our program example that

uses all the three classes Cvehicle, Ccar, Ctruck, defined in this Module.

1. //Derive class truck.cpp implementation
2. //Compile and include in your project
3. //Do not run
4.
5. #include "truck.h"
6.
7. //--------implementation part of the Ctruck derived class------
8. void Ctruck::init_truck(int how_many, float max_load)
9. {
10. passenger_load = how_many;
11. payload = max_load;
12. }
13.
14. float Ctruck::efficiency(void)
15. {
16. return payload/(payload + weight);
17. }
18.
19. int Ctruck::passengers(void)
20. {
21. return passenger_load;
22. }

22 Lines of codes

Program 4.7: truck.cpp implementation of Ctruck derived class

- Now, our simple class hierarchy is illustrated below. Both car and truck inherit some of the

common vehicle’s properties.

www.tenouk.com

14.10 Using All The Classes

- Examine the program named allvehicle.cpp carefully. This main program uses all three of the
classes we have been discussing in this Module.

- Before compiling and running this program, make sure these files: vehicle.h, vehicle.cpp,
car.h, car.cpp, truck.h, truck.cpp and allvehicle.cpp are in one project. Also, you
have to compile without error the vehicle.cpp, car.cpp and truck.cpp files, generating object
files. Compile and execute the allvehicle.cpp main program.

- Also make sure the first main() program transprt.cpp not in this project. We only need one
main() program.

1. //The new main program for inheritance, allvehicle.cpp
2. //Compile and run this program
3.
4. #include <iostream.h>
5. #include <stdlib.h>
6. #include "vehicle.h" //the interface of the Cvehicle class
7. #include "car.h" //the interface of the Ccar class
8. #include "truck.h" //the interface of the Ctruck class
9.
10. void main()
11. {
12. Cvehicle unicycle; //base class
13.
14. cout<<"Unicycle using the Cvehicle base class\n";
15. cout<<"--------------------------------------\n";
16.
17. unicycle.initialize(1,12.5);
18.
19. cout<<"Unicycle has "<<unicycle.get_wheels()<<" tire.\n";
20. cout<<"Unicycle wheel load is "<<unicycle.wheel_load()<<"kg on one
21. tire.\n";
22. cout<<"Unicycle weight is "<<unicycle.get_weight()<<" kg.\n\n";
23.
24. Ccar sedan; //derived class
25.
26. cout<<"Sedan car using the Ccar derived class\n";
27. cout<<"--------------------------------------\n";
28.
29. sedan.initialize(4,3500.0,5);
30.
31. cout<<"Sedan car carries "<<sedan.passengers()<<" passengers.\n";
32. cout<<"Sedan car weight is "<<sedan.get_weight()<<" kg.\n";
33. cout<<"Sedan car wheel load is "<<sedan.wheel_load()<<"kg per tire.\n\n";
34.
35. Ctruck trailer; //derived class
36.
37. cout<<"Trailer using the Ctruck derived class\n";
38. cout<<"--------------------------------------\n";
39.
40. trailer.initialize(18,12500.0);
41. trailer.init_truck(1,33675.0);
42.
43. cout<<"Trailer weight is "<<trailer.get_weight()<<" kg.\n";
44. cout<<"Trailer efficiency is "<<100.00 * trailer.efficiency()<<"%.\n";
45.
46. system("pause");
47. }

47 Lines:Output:

www.tenouk.com

Program 14.8: allvehicle.cpp, the main program

- It uses the base class Cvehicle and also two derived classes to declare objects. This was done to
illustrate that all three classes can be used in a single program.

- All three of the header files for the classes are included in lines 6 through 8, so the program can use the
components of the classes as shown below:

#include "vehicle.h" // the interface of the Cvehicle class
#include "car.h" // the interface of the Ccar class
#include "truck.h" // the interface of the Ctruck class

- Notice the implementations of the three classes (vehicle.cpp, car.cpp and truck.cpp) are not

in view here and do not need to be in view. We only need these files in compiled form.
- This allows the code to be used without access to the source code for the actual implementation of the

class. However, it should be clear that the header file definition must be available to act as an interface.
- In this program example, only one object of each class is declared and used as an example, but as many

as desired could be declared and used in order to accomplish your programming task.
- You will notice how clean and uncluttered the source code is for this program. The classes were

developed, debugged, and stored away and the interfaces were kept very simple.

14.11 The #ifndef ... #endif

- Look at the directive in lines 5, 6 and 20 in the vehicle.h file as shown below. These directives
have been discussed in Module related to preprocessor directive.

#ifndef VEHICLE_H // preprocessor directive
#define VEHICLE_H
...
...
...
#endif

- When we define the derived class Ccar, we are required to supply it with the full definition of the

interface to the Cvehicle class since Ccar is derived class of Cvehicle and must know all about
its base class.

- We do that by including the vehicle class (vehicle.h) into the Ccar class, and the Ccar class can
be compiled. The Cvehicle class must also be included in the header file of the Ctruck class for
the same reason.

- When we get to the allvehicle.cpp program, we must inform it the details of all three classes, so
all three header files must be included as is done in lines 6 through 8 of allvehicle.cpp, but this
leads to a problem.

- When the preprocessor gets to the Ccar class, it includes the Cvehicle class because it is listed in
the Ccar class header file, but since the Cvehicle class already included in line 6 of
allvehicle.cpp, it is included twice and we attempt to re-declare the class Cvehicle.

www.tenouk.com

- Of course it is the same declaration, but the compiler simply doesn’t allow re-declaration of a class.
We allow the double inclusion of the file (vehicle.h and car.h) and at the same time prevent the
double inclusion of the class (Cvehicle) by building a bridge around it using the word VEHICLE_H.

- If the word is already defined, the declaration is skipped, but if the word is not defined, the declaration
is included and vehicle.h is defined at that time. The end result is the actual inclusion of the class
only once, even though the file is included more than once.

- Even though ANSI-C allows multiple definitions of entities, provided the definitions are identical, C++
does not permit this. The primary reason is because the compiler would have great difficulty in
knowing if it has already made a constructor call for the redefined entity, if any and this also create un
optimize codes.

- A multiple constructor call for a single object could cause great havoc, so C++ was defined to prevent
any multiple constructor calls by making it illegal to redefine any entity.

- The name VEHICLE_H was chosen as the word because it is the name of the file, with the period
replaced by the underline. If the name of the file is used systematically in all of your class definitions,
you cannot have a name clash because the filename of every class must be unique.

- Figure 14.4 and 14.5 has shown that the inheritance concepts will create class hierarchy. From the
top, a base class with general description of the object, traversing down of the derived class levels with
more details description of the objects.

- This class hierarchy provides very powerful ‘tool’ for programming. We can reuse readily available
classes which has been developed and tested. At the same time we can combine with our own new
defined classes.

- This will shorten the program development process and cycle, enhances the software quality and
increase the productivity of the programmers.

- For example, Microsoft Foundation Classes (MFC) have hundreds readily available classes which
arranged in hierarchical manner and you can imagine that there should be thousands of member
variables and methods defined, readily available for us to use.

www.tenouk.com

Program Examples and Experiments

- Let start with a simple program skeleton.

//inheritance
#include <iostream.h>
#include <stdlib.h>

//base class
class Base
{
 //member variables and member
 //functions...
 public:
 Base(){}
 ~Base(){}
 protected:
 private:
} ;

//derived class...
class Derived:public Base
{
 //same as normal class actually...
 //member variables and member function...
 public:
 Derived(){}

www.tenouk.com

 ~Derived(){}
 private:
 protected:
} ;

void main()
{
 cout<<"Testing the program skeleton..."<<endl;
 system("pause");
}

Output:

- Then, let try the real objects.

//inheritance
#include <iostream.h>
#include <stdlib.h>

//---class declaration and implementation------
//base class.. .
class MyFather
{
 //member variables and member
 //functions...
 private:
 char* EyeColor;
 char* HairType;
 double FamSaving;

 protected:
 public:
 MyFather(){}
 ~MyFather(){}
 char* GetEye()
 { return EyeColor = "Brown";}
 char* GetHair()
 { return HairType = "Straight";}
 double GetSaving()
 {return FamSaving = 30000;}
} ;

//derived class...
class MySelf:public MyFather
{
 //same as normal class actually...
 private:
 char* MyEye;
 char* MyHair;

 public:
 MySelf(){}
 ~MySelf(){}
 char* GetMyEye()
 { return MyEye = "Blue";}
 char* GetMyHair()
 {return MyHair = "Curly";}
 protected:
} ;

//another derived class...
class MySister:public MyFather
{
 private:
 char* SisEye;
 char* SisHair;

 public:
 MySister(){}
 ~MySister(){}

www.tenouk.com

 char* GetSisEye()
 {return SisEye = "Black";}
 char* GetSisHair()
 { return SisHair = "Blonde";}
} ;

//-----------main program---------------
int main()
{
 //base class object...
 MyFather Test1;

 cout<<"Testing the inheritance program...\n"<<endl;
 cout<<"My father's eye is = "<<Test1.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test1.GetHair()<<endl;

 //derived class object...
 MySelf Test2;
 cout<<"\nMy eye is = "<<Test2.GetMyEye()<<endl;
 cout<<"My hair is = "<<Test2.GetMyHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test2.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test2.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test2.GetHair()<<endl;

 //another derived class object...
 MySister Test3;
 cout<<"\nMy sister's eye is = "<<Test3.GetSisEye()<<endl;
 cout<<"My sister's hair is = "<<Test3.GetSisHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test3.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test3.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test3.GetHair()<<"\n\n";
 system("pause");
 return 0;
}

Output:

- If you have noticed, the program examples in this Module become smaller, simpler and manageable
compared to what is in the previous Modules.

- Let try compiling in VC++/VC++ .Net.

//inheritance
#include <iostream>
using namespace std;

//---class declaration and implementation------
//base class...
class MyFather
{

 //member variables and member
 //functions...
 private:
 char* EyeColor;

www.tenouk.com

http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html

 char* HairType;
 double FamSaving;

 protected:
 //protected members here…

 public:
 MyFather(){}
 ~MyFather(){}
 char* GetEye()
 { return EyeColor = "Brown";}
 char* GetHair()
 { return HairType = "Straight";}
 double GetSaving()
 {return FamSaving = 30000;}
} ;

//derived class...
class MySelf:public MyFather
{
 //same as normal class actually...
 private:
 char* MyEye;
 char* MyHair;

 public:
 MySelf(){}
 ~MySelf(){}
 char* GetMyEye()
 { return MyEye = "Blue";}
 char* GetMyHair()
 {return MyHair = "Curly";}
 protected:
} ;

//another derived class...
class MySister:public MyFather
{
 private:
 char* SisEye;
 char* SisHair;

 public:
 MySister(){}
 ~MySister(){}
 char* GetSisEye()
 {return SisEye = "Black";}
 char* GetSisHair()
 { return SisHair = "Blonde";}
} ;

//-----------main program---------------
int main()
{
 //base class object...
 MyFather Test1;

 cout<<"Testing the inheritance program...\n"<<endl;
 cout<<"My father's eye is = "<<Test1.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test1.GetHair()<<endl;

 //derived class object...
 MySelf Test2;
 cout<<"\nMy eye is = "<<Test2.GetMyEye()<<endl;
 cout<<"My hair is = "<<Test2.GetMyHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test2.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test2.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test2.GetHair()<<endl;

 //another derived class object...
 MySister Test3;
 cout<<"\nMy sister's eye is = "<<Test3.GetSisEye()<<endl;
 cout<<"My sister's hair is = "<<Test3.GetSisHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test3.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test3.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test3.GetHair()<<"\n\n";
 return 0;
}

www.tenouk.com

Output:

- The following is a previous example compiled using g++. To link more than one object files, it is
better to create makefile.

//**************herit2.cpp************* *
//**************FEDORA 3, g++ x.x.x****
//inheritance
#include <iostream>
using namespace std;

//---class declaration and implementation------
//base class...
class MyFather
{

 //member variables and member
 //functions...
 private:
 char* EyeColor;
 char* HairType;
 double FamSaving;

 protected:
 public:
 MyFather(){}
 ~MyFather(){}
 char* GetEye()
 {return EyeColor = "Brown";}
 char* GetHair()
 {return HairType = "Straight";}
 double GetSaving()
 {return FamSaving = 30000;}

} ;

//derived class...
class MySelf:public MyFather
{

 //same as normal class actually...
 private:
 char* MyEye;
 char* MyHair;

 public:
 MySelf(){}
 ~MySelf(){}
 char* GetMyEye()
 {return MyEye = "Blue";}
 char* GetMyHair()
 {return MyHair = "Curly";}
 protected:
 //...

} ;

www.tenouk.com

http://www.tenouk.com/Module000.html

//another derived class...
class MySister:public MyFather
{

 private:
 char* SisEye;
 char* SisHair;

 public:
 MySister(){}
 ~MySister(){}
 char* GetSisEye()
 {return SisEye = "Black";}
 char* GetSisHair()
 {return SisHair = "Blonde";}

} ;

//-----------main program---------------
int main()
{
 //base classes object...
 MyFather Test1;

 cout<<"Testing the inheritance program...\n"<<endl;
 cout<<"My father's eye is = "<<Test1.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test1.GetHair()<<endl;

 //derived class object...
 MySelf Test2;
 cout<<"\nMy eye is = "<<Test2.GetMyEye()<<endl;
 cout<<"My hair is = "<<Test2.GetMyHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test2.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test2.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test2.GetHair()<<endl;

 //another derived class object...
 MySister Test3;
 cout<<"\nMy sister's eye is = "<<Test3.GetSisEye()<<endl;
 cout<<"My sister's hair is = "<<Test3.GetSisHair()<<endl;
 //the following are inherited from MyFather class...
 cout<<"Our family saving is = $"<<Test3.GetSaving()<<endl;
 cout<<"My father's eye is = "<<Test3.GetEye()<<endl;
 cout<<"My father's hair is = "<<Test3.GetHair()<<"\n\n";
 return 0;
}

[bodo@bakawali ~]$ g++ herit2.cpp -o herit2
[bodo@bakawali ~]$./herit2

Testing the inheritance program...

My father's eye is = Brown
My father's hair is = Straight

My eye is = Blue
My hair is = Curly
Our family saving is = $30000
My father's eye is = Brown
My father's hair is = Straight

My sister's eye is = Black
My sister's hair is = Blonde
Our family saving is = $30000
My father's eye is = Brown
My father's hair is = Straight

---o0o---

Further reading and digging:

1. Check the best selling C/C++ and object oriented books at Amazon.com.

www.tenouk.com

http://www.tenouk.com/cplusbook.html

