
MODULE 11
TYPE SPECIFIERS

struct, typedef, enum, union

My Training Period: hours

Note: From this Module you can jump to the Object Oriented idea and C++ or proceed to extra C Modules or
Microsoft C: implementation specific to experience how C is used in the real implementation.

Abilities

▪ Able to understand and use structure (struct).
▪ Able to relate structure, functions and array.
▪ Able to understand and use typedef.
▪ Able to understand and use union.
▪ Able to understand and use Enumeration (enum).

11.1 Structure

- We have learned that by using an array, we only can declare one data type per array, and it is same for
other data types. To use the same data type with different name, we need another declaration.

- struct data type overcomes this problem by declaring aggregate data types.
- A structure is a collection of related data items stored in one place and can be referenced by more

than one names. Usually these data items are different basic data types. Therefore, the number of
bytes required to store them may also vary.

- It is very useful construct used in data structure, although in C++, many struct constructs has been
replaced by class construct but you will find it quite a common in the Win32 programming.

- In order to use a structure, we must first declare a structure template. The variables in a structure are
called structure elements or members.

- For example, to store and process a student’s record with the elements id_num (identification
number), name, gender and age, we can declare the following structure.

struct student {
 char id_num[5] ;
 char name[10];
 char gender;
 int age;
 };

- Here, struct is a keyword that tells the compiler that a structure template is being declared and

student is a tag that identifies its data structure. Tag is not a variable; it is a label for the structure’s
template. Note that there is a semicolon after the closing curly brace.

- A structure tags simply a label for the structure’s template but you name the structure tag using the
same rules for naming variables. The template for the structure can be illustrated as follow (note the
different data size):

- Compiler will not reserve memory for a structure until you declare a structure variable same as you
would declare normal variables such as int or float.

- Declaring structure variables can be done in any of the following ways (by referring to the previous
example):

1. struct student{

char id_num[5] ;
char name[10];
char gender;
int age;
} studno_1, studno_2;

2. struct{//no tag

Page 1 of 17 www.tenouk.com

http://www.tenouk.com/Module12.html
http://www.tenouk.com/ModuleX.html
http://www.tenouk.com/ModuleA.html

char id_num[5] ;
char name[10];
char gender;
int age;
}studno_1, studno_2;

3. struct student{

char id_num[5] ;
char name[10];
char gender;
int age;
};

- Then in programs we can declare the structure something like this:

struct student studno_1, studno_2;

- In the above three cases, two structure variables, studno_1 and studno_2, are declared. Each

structure variable has 4 elements that is 3 character variables and an integer variable.
- In (1) and (2), the structure variables are declared immediately after the closing brace in the structure

declaration whereas in (3) they are declared as student. Also in (2) there is no structure tag, this
means we cannot declare structure variables of this type elsewhere in the program instead we have to
use the structure variables studno_1 and studno_2 directly.

- The most widely used may be no (1) and (3) where we put the declaration of the struct in header
files and use it anywhere in programs as follows:

struct student studno_1, studno_2;

- Where the studno_1, studno_2 are variables declared as usual but the type here is struct

student instead of integral type such as int, char and float.
- It is also a normal practice to combine the typedef (will be explained later on) with struct,

making the variables declaration even simpler. For example:

typedef struct TOKEN_SOURCE {
 CHAR SourceName[8];
 LUID SourceIdentifier;
} TOKEN_SOURCE,
*PTOKEN_SOURCE;

- In this example we use typedef with struct. In our program we just declare variable as follows:

TOKEN_SOURCE myToken;

- The TOKEN_SOURCE type is used for a normal variable and the *PTOKEN_SOURCE type is used for a

pointer variable. You will find that these are typical constructs in Win32 programming of Windows.
For more information refers to Module A or Tutorial #2.

11.2 Accessing The Structure Element

- A structure element can be accessed and assigned a value by using the structure variable name, the
dot operator (.) and the element’s name. For example the following statement:

studno_1.name = "jasmine";

- Assigns string "jasmine" to the element name in the structure variable studno_1. The dot

operator simply qualifies that name is an element of the structure variable studno_1. The other
structure elements are referenced in a similar way.

- Unfortunately, we cannot assign string "jasmine" (const char) directly to an array in the structure
(char []). For this reason, we have to use other methods such as receiving the string from user input
or by using pointers.

- Program example.

//A simple structure program example
#include <stdio.h>
#include <stdlib.h>

struct student{

Page 2 of 17 www.tenouk.com

http://www.tenouk.com/ModuleA.html

 char id_num[6] ;
 char name[11];
 char gender;
 int age;
 };

int main(void)
{
struct student studno_1;

//studno_1.id_num = "A3214"; //Illegal, const char to char[]
//studno_1.name = "Smith"; //Illegal, const char to char[]
printf("Enter student ID num (5 max): ");
scanf("%s", studno_1.id_num);
printf("Enter student name (10 max): ");
scanf("%s", studno_1.name);
studno_1.gender = 'M';
studno_1.age = 30;

printf("\n------------------\n");
printf("ID number: %s\n", studno_1.id_num);
printf("Name : %s\n", studno_1.name);
printf("Gender : %c\n", studno_1.gender);
printf("Age : %d\n", studno_1.age);
printf("------------------\n");
system("pause");
return 0;
}

Output:

- The structure pointer operator (→), consisting of a minus (-) sign and a greater than (>) sign with no
intervening spaces, accesses a structure member via a pointer to the structure.

- By assuming that a pointer SPtr has been declared to point to struct Card, and the address of
structure p has been assigned to SPtr. To print member suit of structure Card with pointer SPtr,
use the statement Sptr→suit as shown in the following example.

//accessing structure element
#include <iostream.h>
#include <stdlib.h>

struct Card
{
 char *face; //pointer to char type
 char *suit; //pointer to char type
};

void main()
{
 //declare the struct type variables
 struct Card p;
 struct Card *SPtr;

 p.face = "Ace";
 p.suit = "Spades";
 SPtr = &p;

 cout<<"Accessing structure element:\n";
 cout<<"\n\'SPtr->suit\' = "<<SPtr->suit<<endl;
 cout<<"\'SPtr->face\' = "<<SPtr->face<<endl;
 //for Borland...

Page 3 of 17 www.tenouk.com

 system("pause");
}

Output:

- The expression SPtr->suit is equivalent to (*SPtr).suit which dereferences the pointer and
accesses the member suit using the structure member operator.

- The parentheses are needed here because the structure member operator, the dot (.) has higher
precedence than the pointer dereferencing operator, the asterisk (*).

- Program example:

//Using the structure member and structure
//pointer operators – accessing structure
//elements styles...
#include <iostream.h>
#include <stdlib.h>

struct Card
{
 char *face;
 char *suit;
} ;

int main()
{
 struct Card p;
 struct Card *SPtr;

 p.face = "Ace";
 p.suit = "Spades";
 SPtr = &p;

cout<<"Accessing structure element styles"<<endl;
cout<<"----------------------------------"<<endl;
cout<<"Style #1-use p.face: "<<p.face<<" of "<<p.suit<<endl;
cout<<"Style #2-use Sptr->face: "<<SPtr->face<<" of "<<SPtr->suit<<endl;
cout<<"Style #3-use (*Sptr).face: "<<(*SPtr).face<<" of "<<(*SPtr).suit<<endl;
system("pause");
return 0;
}

Output:

11.3 Arrays Of Structures

- Suppose you would like to store the information of 100 students. It would be tedious and
unproductive to create 100 different student array variables and work with them individually. It would
be much easier to create an array of student structures.

- Structures of the same type can be grouped together into an array. We can declare an array of
structures just like we would declare a normal array of variables.

Page 4 of 17 www.tenouk.com

- For example, to store and manipulate the information contained in 100 student records, we use the
following statement:

struct student{

char id[5];
char name[80];
char gender; int age;
}stud[100];

- Or something like the following statements:

struct ent{ stud

char id[5];
char name[80 ;]
char gender;
};

struct student stud[100];

- These statements declare 100 variables of type student (a structure). As in arrays, we can use a
subscript to reference a particular student structure or record.

- For example, to print the name of the seventh student, we could write the following statement:

cout<<stud[6].name;

- Example of initializing all the student names to blanks and their ages to 0, we could do this simply by
using for loop as shown below:

for(i=0; i<100; i++)
{
 stud[i].name = " ";
 stud[i].age = 0;
}

- Very useful huh! Now let try a program example:

//an array structure of student information
#include <iostream.h>
#include <stdlib.h>
//for C++ replace to the following header
//#include <iostream>
//#include <cstdlib>
//using namespace std;

struct student
{
 char id[6]; //student id number, max. 5 integer number
 char name[50]; //student name, max 49 characters
 char gender; //student gender Male or Female
 int age; //student age
} ;

void main()
{
 //declaring array of 10 element of structure type
 //and some of the element also are arrays
 struct student stud[10];
 int i = 0;

 cout<<"Keying in student data and then display\n";
 cout<<"---------------------------------------\n";
 cout<<"Enter student data\n";

 for(i=0; i<2; i++)
 {
 //Storing the data
 cout<<"\nID number (4 integer number) student #"<<i<<": ";
 cin>>stud[i].id;
 cout<<"First name student #"<<i<<": ";
 cin>>stud[i].name;
 cout<<"Gender (M or F) student #"<<i<<": ";
 cin>>stud[i].gender;
 cout<<"Age student #"<<i<<": ";
 cin>>stud[i].age;
}

Page 5 of 17 www.tenouk.com

 cout<<"\n----------Display the data---------\n";
 cout<<"You can see that the data storage\n";
 cout<<"has been reserved for the structure!\n";
 cout<<"------------------------------------\n";
 for(i=0; i<2; i++)
 {
 //Displaying the stored data
 cout<<"\nID number student # "<<i<<": "<<stud[i].id;
 cout<<"\nFirst name student # "<<i<<": "<<stud[i].name;
 cout<<"\nGender student # "<<i<<": "<<stud[i].gender;
 cout<<"\nAge student # "<<i<<": "<<stud[i].age<<"\n";
 }
 system("pause");
}

Output:

- The structure template for the program example can be illustrated as follows:

Page 6 of 17 www.tenouk.com

11.4 Structures And Function

- Individual structure elements or even an entire structure can be passed to functions as arguments. For
example, to modify the name of the seventh student, let say the function name is modify(), we could
issue the following function call:

modify(stud[6].name);

- This statement passes the structure element name of the seventh student to the function modify().

Only a copy of name is passed to the function. This means any change made to name in the called
function is local; the value of name in the calling program remains unchanged.

- An entire structure can also be passed to a function. We can do this either by passing the structure
itself as argument or by simply passing the address of the structure.

- For structure element example, to modify the seventh student in the list, we could use any of the
following statements.

modify(stud[6]);
modify(&stud[6]);

- In the first statement, a copy of the structure is passed to the function while in the second only the

address of the structure is passed.
- As only a copy of the structure is passed in the first statement, any changes made to the structure within

the called function do not affect the structure in the calling function.
- However in the second statement any changes made to the structure within the called function will

change the structure values in the calling function since the called function directly accesses the
structure and its elements.

- Let take a look at a program example.

//passing structures to functions and
//a function returning a structure
#include <iostream.h>
#include <stdlib.h>
#include <stdio.h>

//-------------structure part-------------
struct vegetable
{
 char name[30];
 float price;
};

Page 7 of 17 www.tenouk.com

//--------------main program-------------
int main()
{
 //declare 2 structure variables
 struct vegetable veg1, veg2;
 //function prototype of type struct
 struct vegetable addname();
 //another function prototype
 int list_func(vegetable);

 //functions call for user input...
 veg1 = addname();
 veg2 = addname();
 cout<<"\nVegetables for sale\n";

 //function call for data display...
 list_func(veg1);
 list_func(veg2);
 cout<<endl;
 //for Borland
 system("pause");
 return 0;
}
//-------------function----------------
//This functions returns a structure
struct vegetable addname()
{
 char tmp[20];
 //declare a structure variable
 struct vegetable vege;

 cout<<"\nEnter name of vegetable: ";
 gets(vege.name);
 cout<<"Enter price (per 100gm): $ ";
 gets(tmp);
 //converts a string to float
 vege.price = atof(tmp);
 return (vege);
}

//structure passed from main()
int list_func(vegetable list)
{
 cout<<"\nVegetable name: "<<list.name;
 cout<<"\nVegetable price: $"<<list.price;
 return 0;
}

Output:

- It is also possible to create structures in a structure.

11.5 typedef

- In contrast to the class, struct, union, and enum declarations, typedef declaration do not introduce
new type but introduces new name or creating synonym (or alias) for existing type.

- The syntax is as follows:

Page 8 of 17 www.tenouk.com

typedef type-declaration the_synonym;

- You cannot use the typedef specifier inside a function definition.
- When declaring a local-scope identifier by the same name as a typedef, or when declaring a member

of a structure or union in the same scope or in an inner scope, the type specifier must be specified.
For example:

typedef float TestType;

int main()
{
}

//function scope...
int MyFunct(int)
{
 //same name with typedef, it is OK
 int TestType;
}

- When declaring a local-scope identifier by the same name as a typedef, or when declaring a member

of a structure or union in the same scope or in an inner scope, the type specifier must be specified.
For example:

//both declarations are different...
typedef float TestType;
const TestType r;

- To reuse the TestType name for an identifier, a structure member, or a union member, the type

must be provided, for example:

const int TestType;

- Typedef names share the name space with ordinary identifiers. Therefore, a program can have a typedef
name and a local-scope identifier by the same name.

//typedef specifier
typedef char FlagType;

void main()
{
}

void myproc(int)
{
 int FlagType;
}

- The following paragraphs illustrate other typedef declaration examples that you will find used a lot

in Win32 programming:

//Character type.
typedef char CHAR;

//Pointer to a string (char *).
typedef CHAR * THESTR;
//Then use it as function parameter...
THESTR strchr(THESTR source, CHAR destination);

typedef unsigned int uint;
//Equivalent to "unsigned long ui;"
uint ui;

- To use typedef to specify fundamental and derived types in the same declaration, you can separate

declarators with comma. For example:

typedef char CHAR, *THESTR;

Page 9 of 17 www.tenouk.com

- The following example provides the type Funct() for a function returning no value and taking two
int arguments:

typedef void Funct(int, int);

- After the above typedef statement, the following is a valid declaration:

Funct test;

- And equivalent to the following declaration:

void test(int, int);

- Names for structure types are often defined with typedef to create shorter and simpler type name.

For example, the following statements:

typedef struct Card Card;
typedef unsigned short USHORT;

- Defines the new type name Card as a synonym for type struct Card and USHORT as a synonym

for type unsigned short. Programmers usually use typedef to define a structure type so a
structure tag is not required. For example, the following definition:

typedef struct{
 char *face;
 char *suit;
} Card;

- Creates the structure type Card without the need for a separate typedef statement. Then Card can

now be used to declare variables of type struct Card. For example, the following declaration:

Card deck[50];

- Declares an array of 50 Card structures. typedef simply creates a new type name which may be
used as an alias for an existing type name.

- Often, typedef is used to create synonyms for the basic data types. For example, a program
requiring 4-byte integers may use type int on one system and type long on another.

- Programs designed for portability often uses typedef to create an alias for 4-byte integers such as, let
say Integer. The alias Integer can be changed once in the program to make the program work on
both systems.

- Program example:

//typedef and struct program example
#include <stdio.h>
#include <stdlib.h>

typedef struct TestStruct
{
 int p ;
 char q;
 double r;
} mine;

void main()
{
 mine testvar; //the declaration becomes simpler
 testvar.p = 200;
 testvar.q = 'T';
 testvar.r = 1.234;
 printf("%d\n%c\n%.4f\n", testvar.p, testvar.q, testvar.r);
 system("pause");
}

Output:

Page 10 of 17 www.tenouk.com

- Another program example.

//typedef specifier
#include <stdio.h>

typedef struct mystructtag
{
 int x;
 double y;
 char* z;
} mystruct;

int main()
{
 mystruct Test1, *Test2;
 Test1.x = 111;
 Test1.y = 1.111;
 printf("Test1.x = %d\nTest1.y = %f\n", Test1.x, Test1.y);

 Test1.z = "This is a string";
 Test2 = &Test1;
 printf("Test1->z = %s\n", Test2->z);
 return 0;
}

Output:

11.6 enum - Enumeration Constants

- This is another user-defined type consisting of a set of named constants called enumerators.
- Using a keyword enum, it is a set of integer constants represented by identifiers.
- The syntax is shown below:

//for definition of enumerated type
enum [tag]
{

enum-list
}
[declarator];

- And

//for declaration of variable of type tag
enum tag declarator;

- These enumeration constants are, in effect, symbolic constants whose values can be set automatically.

The values in an enum start with 0, unless specified otherwise, and are incremented by 1. For
example, the following enumeration:

enum days {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

- Creates a new data type, enum days, in which the identifiers are set automatically to the integers 0 to

6. To number the days 1 to 7, use the following enumeration:

enum days {Mon = 1, Tue, Wed, Thu, Fri, Sat, Sun};

Page 11 of 17 www.tenouk.com

- Or we can re arrange the order:

enum days {Mon, Tue, Wed, Thu = 7, Fri, Sat, Sun};

- Simple program example:

#include <iostream.h>
#include <stdlib.h>

enum days {mon = 1,tue,wed,thu,fri,sat,sun};

void main()
{
 //declaring enum data type
 enum days day_count;

 cout<<" Simple day count\n";
 cout<<" using enum\n";

 for(day_count=mon; day_count<=sun; day_count++)
 cout<<" "<<day_count<<"\n";
 system("pause");
}

Output:

- As said before, by default, the first enumerator has a value of 0, and each successive enumerator is one
larger than the value of the previous one, unless you explicitly specify a value for a particular
enumerator.

- Enumerators needn't have unique values within an enumeration. The name of each enumerator is
treated as a constant and must be unique within the scope where the enum is defined. An enumerator
can be promoted to an integer value.

- Converting an integer to an enumerator requires an explicit cast, and the results are not defined if the
integer value is outside the range of the defined enumeration.

- Enumerated types are valuable when an object can assume a known and reasonably limited set of
values.

- Another program example.

//enum declarations
#include <iostream>
using namespace std;

//Declare enum data type Days
enum Days
{
 monday, //monday = 0 by default
 tuesday = 0, //tuesday = 0 also
 wednesday, //wednesday = 1
 thursday, //thursday = 2
 friday, //an so on.
 saturday,
 sunday
} ;

int main()
{
 //try changing the tuesday constant,

Page 12 of 17 www.tenouk.com

 //recompile and re run this program
 enum Days WhatDay = tuesday;
 switch (WhatDay)
 {
 case 0:
 cout<<"It's Monday"<<endl;
 break;
 default:
 cout<<"Other day"<<endl;
 }
return 0;
}

Output:

- After the enum data type has been declared and defined, in C++ it is legal to use the enum data type
without the keyword enum. From the previous example, the following statement is legal in C++:

//is legal in C++
Days WhatDay = tuesday;

- Enumerators are considered defined immediately after their initializers; therefore, they can be used to

initialize succeeding enumerators.
- The following example defines an enumerated type that ensures any two enumerators can be combined

with the OR operator.
- In this example, the preceding enumerator initializes each succeeding enumerator.

//enum definition
#include <iostream>
using namespace std;

enum FileOpenFlags
{
 //defined here...
 OpenReadOnly = 1,
 //using OpenReadOnly as the next initializer
 //and so on...
 OpenReadWrite = OpenReadOnly,
 OpenBinary = OpenReadWrite,
 OpenText = OpenBinary,
 OpenShareable = OpenText
} ;

int main()
{
 return 0;
}
//No output

- As said and shown in the program example before, enumerated types are integral types, any enumerator

can be converted to another integral type by integral promotion. Consider the following example.

//enumeration data type
#include <iostream>
using namespace std;

enum Days
{

 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,

 Sunday,
 Monday
};

Page 13 of 17 www.tenouk.com

int i;
Days d = Thursday;
int main()
{
 //Converted by integral promotion.
 i = d;
 cout<<"i = "<<i<<"\n";
 return 0;
}

Output:

- However, there is no implicit conversion from any integral type to an enumerated type. Therefore from
the previous example, the following statement is an error:

//Erroneous attempt to set d to Saturday.
d = 5;

- The assignment d = 5, where no implicit conversion exists, must use a cast to perform the conversion:

//Explicit cast-style conversion to type Days.
d = (Days)5;
//Explicit function-style conversion to type Days.
d = Days(4);

- The preceding example shows conversions of values that coincide with the enumerators. There is no

mechanism that protects you from converting a value that does not coincide with one of the
enumerators. For example:

d = Days(30);

- Some such conversions may work but there is no guarantee the resultant value will be one of the

enumerators.
- The following program example uses enum and typedef.

//typedef and enum...
#include <stdio.h>
#include <stdlib.h>

typedef enum {
 FailOpenDisk = 1,
 PathNotFound,
 FolderCannotBeFound,
 FileCannotBeFound,
 FailOpenFile,
 FileCannotBeRead,
 DataCorrupted
} ErrorCode;

int main(void)
{

ErrorCode MyErrorCode;

for(MyErrorCode=FailOpenDisk; MyErrorCode<=DataCorrupted; MyErrorCode++)
 printf(" %d", MyErrorCode);
 printf("\n");

system("pause");
return 0;

}

Output:

Page 14 of 17 www.tenouk.com

11.7 union

- A derived data type, whose members share the same storage space. The members of a union can be
of any type and the number of bytes used to store a union must be at least enough to hold the largest
member.

- Unions contain two or more data types. Only one member, and thus one data type, can be referenced
at a time. It is the programmer’s responsibility to ensure that the data in a union is referenced with the
proper data type and this is the weakness of using union compared to struct.

- A union is declared with the union keyword in the same format as a structure. The following is a
union declaration:

union sample
{
 int p;
 float q;
};

- Indicates that sample is a union type with members’ int p and float q. The union definition

normally precedes the main() in a program so the definition can be used to declare variables in all the
program’s functions.

- Only a value with same type of the first union member can be used to initialize union in declaration
part. For example:

union sample
{
 int p;
 float q;

 };
…
union sample content = {234};

- But, using the following declaration is invalid:

union sample
{
 int p;
 float q;

 };
…
union sample content = {24.67};

- The operations that can be performed on a union are:

▪ Assigning a union to another union of the same type.
▪ Taking the address (&) of a union and
▪ Accessing union member using the structure member operator and the structure pointer operator.

- Program example:

#include <iostream.h>
#include <stdlib.h>

union sample
{
 int p;
 float q;
 double r;
} ;

void main()
{
 //union data type
 union sample content;

Page 15 of 17 www.tenouk.com

 content.p = 37;
 content.q = 1.2765;

 cout<<"Display the union storage content\n";
 cout<<" ONLY one at a time!\n";
 cout<<"---------------------------------\n";
 cout<<"Integer: "<<content.p<<"\n";
 cout<<"Float : "<<content.q<<"\n";
 cout<<"Double : "<<content.r<<"\n";
 cout<<"See, some of the contents are rubbish!\n";

 content.q=33.40;
 content.r=123.94;

 cout<<"\nInteger: "<<content.p<<"\n";
 cout<<"Float : "<<content.q<<"\n";
 cout<<"Double : "<<content.r<<"\n";
 cout<<"See another inactive contents, rubbish!\n";
 cout<<"\nBetter use struct data type!!\n";
 system("pause");
}

Output:

- Program example compiled using VC++/VC++ .Net.

//typedef specifier
#include <cstdio>

//typedef oldname newname
typedef struct mystructtag
{
 int x;
 double y;
 char* z;
} mystruct;

int main()
{
 mystruct Test1, *Test2;
 Test1.x = 111;
 Test1.y = 1.111;
 printf("Test1.x = %d\nTest1.y = %f\n", Test1.x, Test1.y);

 Test1.z = "This is a string";
 Test2 = &Test1;
 printf("Test1->z = %s\n",Test2->z);
 return 0;
}

Output:

Page 16 of 17 www.tenouk.com

http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html

- Previous example compiled using g++.

///////typestruct.cpp///////////
//typedef specifier
#include <cstdio>
using namespace std;

//typedef oldname newname
typedef struct mystructtag
{
 int x;
 double y ;
 char* z;
} mystruct;

int main()
{
 mystruct Test1, *Test2;
 Test1.x = 111;
 Test1.y = 1.111;
 printf("Test1.x = %d\nTest1.y = %f\n", Test1.x, Test1.y);

 Test1.z = "This is a string";
 Test2 = &Test1;
 printf("Test1->z = %s\n", Test2->z);
 return 0;
}

[bodo@bakawali ~]$ g++ typestruct.cpp -o typestruct
[bodo@bakawali ~]$./typestruct

Test1.x = 111
Test1.y = 1.111000
Test1->z = This is a string

---o0o ---

Further reading and digging:

1. Check the best selling C/C++ books at Amazon.com.

Page 17 of 17 www.tenouk.com

http://www.tenouk.com/Module000.html
http://www.tenouk.com/cplusbook.html

