
MODULE 1
INTRODUCTION

My Training Period: hours

Notes:
You can remove the system("pause"); and its stdlib.h header file (if applicable) in the program
examples. This code just to capture the console output for Borland C++ that was run through IDE. For Microsoft
Visual C++/.Net, Borland Turbo or running the program using Borland command line, gcc etc. no need to include
this code. For other compilers, please check their documentations.

Abilities

▪ Able to understand the brief history of the C/C++ language.
▪ Able to understand the C/C++ advantageous.
▪ Able to understand the basic program development cycle.
▪ Able to understand the basic structure of C/C++ program.
▪ Able to be familiar with writing codes, compiling and running a program.
▪ Able to recognize a portable main() function.
▪ Able to recognize the C and C++ standards: ANSI C/C++, ISO/IEC C/C++, POSIX and Single Unix

specification.

1.1 Brief History

- C evolved from two previous languages, BCPL (Basic Combined Programming Language) and B.
BCPL was developed in 1967 by Martin Richards as a language for writing operating systems software
and compilers.

- Ken Thompson modeled many features in his language, B, after their counterparts in BCPL and used B
to create early versions of UNIX operating system at bell Laboratories in 1970 on a DEC® PDP-7
computer.

- Both BCPL and B were typeless languages, that means the only data type is machine word and access
to other kinds of objects is by special operators or function calls.

- In C, the fundamental data type includes characters, integers of several sizes and floating point
numbers.

- The derived data types were created with pointers, arrays, structures, unions, functions and classes.
- The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was originally

implemented on a DEC PDP-11 computer in 1972.
- It was named C for new language.
- Initially, C used widely as the development language of the UNIX. Today, virtually all new major OS

are written in C.
- C is hardware independent, so it is portable to most computers without or with little code modification.
- The rapid expansion of C over various types of computers led to many variations. These are similar but

incompatible.
- So, a standard version of C was needed. In 1983, the X3J11 technical committee was created under the

American National Standards Institute (ANSI) Committee on Computer and Information Processing
(X3) to provide an ambiguous and machine-independent definition of the language and approved in
1989, called ANSI C.

- The document is referred to as ANSI/ISO 9899:1990.
- The second edition of Kernighan and Ritchie, published in 1988, reflects this version called ANSI C,

then used worldwide. The more general ANSI then adopted by ISO/IEC, known as ISO/IEC C.
- Because C is a hardware-independent, applications written in C can be run with little or no

modifications on a wide range of different computer systems.

1.2 Advantageous

- Powerful and flexible language - What can be achieved is only limited by your imagination. It is used
for Operating System, compilers, parsers, interpreters, word processors, search engine and graphic
programs.

- Portable programming language - C program written for one computer system (an IBM® PC, for
example) can be compiled and run on another system (a DEC® VAX System perhaps with little or no
modification).

- Is a language of less keyword - Handful of terms called keywords in which the language’s functionality
is built. A lot of keywords doesn’t mean more powerful than C.

Page 1 of 11 www.tenouk.com

- Modular - Written in routines called functions and classes (C++), can be reused in other applications or
programs.

- Preferred by professional programmers - So, a variety of C/C++ resources and helpful supports are
widely available.

- Standardized – Many standards have been documented, maintained and updated for C and C++ as
standard references for solving the portability and many other issues (please refer at the end of this
tutorial).

1.3 Very Basic Program Development

- Computer program is designed to solve problem. Nowadays it makes ease a lot of our works.
- The simple steps to find a solution to problems are the same steps used to write a program and basically

can be defined as follows:

1. Define the problem.
2. Devise a plan to solve it.
3. Implement the plan.
4. Test the result to see whether the problem is solved.

- When creating a program in C/C++:

1. Determine the objective(s) of the program.
2. Decide which method the program will use to solve the problem.
3. Translate this method into a computer program using the C/C++ language.
4. Run and test the program.

- Typical steps might be followed in a program development is listed below:

No Step Description

1 Using an editor to
enter the source
code

From a simple text editor up to complex Integrate Development
Environment (IDE). Examples:
UNIX: ed, ex, edit, emacs and vi.
Window OS: notepad, Microsoft Visual Studio/.Net®, Borland®
C++, Borland Turbo® C++, Borland Builder C++,
BorlandX.
MSDOS®: editor.
OS/2®: E or EPM editor.

2 Using a compiler
Computer can’t understand the roman alphabets like English words.
It only can understand machine language, 0’s and 1’s. The compiler
perform this task, yields an object code (such as.obj or .o).

3 Creating an
executable file

C/C++ has function library that contains object code (codes that has
been compiled) for predefined functions. These codes are ready to
be used and can be called in the main program such as printf()
function. They perform frequently needed tasks. Executable
program can be run or executed. Before the executable program is
created, a program called linker (to link other object and library files
needed by the main program) performs a process called linking.

4 Running/executing
the program

Running the executable file/image. If there is no error, that is your
program! (a running program or a process).

5 Debugging

Debug, debug and debug, finding program bugs, this is in debug
mode.
Alfa version - May still contains bugs, pre-release version.
Beta / RC, Release Candidate version - May still contains bugs, pre-
release version.
Final release – Release mode or release/Retail version (in reality,
still have bugs:o)), but don’t worry Patches and Service Packs will
fix that.)

6 Release/Distribution Creating the installation program for distribution.

- Typically, these basic steps are illustrated in figure 1.1 and quite a complete story can be found in
Module W.

Page 2 of 11 www.tenouk.com

http://www.tenouk.com/ModuleW.html

- Most of the editor used nowadays called Integrated Development Environment (IDE) that combines the
process of compiling, linking, running, debugging, code validation, standard conformance and other
functionalities in one environment such as Borland® C++ Builder and Microsoft Visual
Studio®/.Net®.

- Keep in mind that there are other extensions for the C/C++ program other than the .c, .cpp and .h.
You have to check your compiler documentations or you can read the story in Module W of this
Tutorial.

- Bear in mind also the real program development actually consist of a team of programmers, system
analysts, project leader etc.

- Individually, how many lines of codes that we can write huh? So be real when you use this Tutorial for
learning C and C++ :o).

1.4 Object Oriented Programming

- C++ is a C superset was developed by Bjarne Stroustrup at Bell Laboratories (some call advanced C)
and the ANSI C++ (ISO/IEC C++) standard version is also already available.

- C++ provides a number of features that spruce up the C language mainly in the object-oriented
programming aspects and data type safety (which lack in C language). Though if you have studied the
C++, you will find that the type safety of the C++ also not so safe :o) actually the secure codes depend
on the programmers themselves (C++ discussed in Tutorial #3).

- Object are essentially reusable software components that model items in the real world.

Page 3 of 11 www.tenouk.com

http://www.tenouk.com/ModuleW.html

- Using a modular, object-oriented design and implementation, can speed up the program development
and make the same software development group, up to many times more productive than the
conventional programming techniques.

- Then, the evolution of the C++ continues with the introduction of the Standard Template Library
(STL). STL deal mainly with data structure processing and have introduced the using of templates.
From procedural programming to object oriented programming, STL has introduced generic
programming.

- Then we have Common Language Runtime (CLR) type of the programming language, something
like Java (through the Java Virtual Machine – JVM) and the equivalent one from Microsoft is C#.

1.5 Sample of Simple Program Examples

- Let explore the basic structure of the C/C++ as shown in following section, before we proceed to the
next Module. Don’t worry about what the codes will do; just type or copy-paste and run the program.

- The program start with what is called preprocessor directive, #include.
- Then the main program start, with keyword main(), each program must have a main() function.
- All the coding is included in the body of the main program in the curly braces { } and } end the coding

for the program.
- Try all the sample programs given. Be familiar with the writing codes, compiling, running and your

IDE programming environment.

Program Examples – Warming up!

- Your task is to write the source code, compile and run. Notice that you only have to change some of
the codes in the curly braces { } and adding or deleting the preprocessor directive to complete all the
examples.

- Learn how to modify the program source code and re run the program. You will learn a lot more
things!

- Please refer to the Kick Start: Using Compilers section, in order to write, compile and run your Win32
Console Mode Application program using Borland® or Microsoft Visual Studio®/.Net® product or
whatever compiler you are familiar with.

Example #1

- For starting, first step we just create the program skeleton. Try to compile and run the simple program.

Make sure there is no error. Notice the line of code that span on multiple lines. Keep it on one line.
- Don’t worry about any syntax or standard violation; you will be prompted by your compiler through

warnings and/or errors :o).
- Keep in mind that, typing the codes, is dealing with character set, laid out on your keyboard whether it

is ASCII, EBCDIC, Unicode or proprietary character set :o).
- And C/C++ programs only deal with the characters, strings and mathematical expressions.

//The simplest program example
//preprocessor directives - header files
#include <iostream.h>
#include <stdlib.h>

//main() function with no argument
//and int return value…
int main()
{

 cout<<"testing 1..2..3..\n";
 //system call ‘pause’
 //command to wait temporarily for user action

 //by calling the system pause command
 //pause is Borland specific, for other compilers you may
 //discard this and its header <stdlib.h>

 system("pause");
 //return to Operating System, no error
 return 0;
}

Output:

Page 4 of 11 www.tenouk.com

http://www.tenouk.com/Module24.html

- Next step we add other lines of code. Recompile and rerun.

//Program to calculate total based on the
//given quantity and price
//preprocessor directives - header files
#include <iostream.h>
#include <stdlib.h>

//main() function with no argument
//and int return value…
int main(void)
{

//variables declaration and
//their respective the data types
int quantity;
float price, total;

cout<<"testing 1..2..3..\n";
//standard output - read from user input
cout<<"\nEnter the item's price: RM ";
//standard input - store user's input at variable price
cin>>price;
cout<<"\nEnter the item's quantity: ";
cin>>quantity;

//multiply quantity and price
//store the result at total…
total = quantity * price;
//Print the total value
cout<<"\nTotal price = RM "<<total<<endl;
system("pause");
return 0;

}

Output:

Example #2

//Simple greeting program using an array, pointer and selection
//you will learn more about array, pointer and selection later.
//The following #include … called preprocessor directive/header files .
//Means include the iostream.h file so that the compiler can find the
//definition for the cin and cout, then the cin and cout can function properly
#include <iostream.h>
//for system()
#include <stdlib.h>

int main(void)
{
 //normal variable and array with their respective data type
 char name[10], name1[10], sex;
 cout<<"\nEnter your first name (max 10 characters): ";
 cin>>name;

 cout<<"Enter your last name (max 10 characters): ";
 cin>>name1;

Page 5 of 11 www.tenouk.com

 cout<<"\nEnter your sex (M or F): ";
 cin>>sex;

 //test whether male or female
 if (sex == 'M')
 //array name without brackets is the pointer to the first
 //array's element
 cout<<"\nHow are you, Mr. "<<name<<" "<<name1<<endl;
 else
 cout<<"\nHow are you, Ms/Mrs "<<name<<" "<<name1<<endl;
 system("pause");
 return 0;
}

Output:

Example #3

//one line comment in program, C++
/*multiple lines comment, C - Program to display
square and square root for a given number*/
#include <math.h> /*for sqrt() function*/
#include <stdio.h>
#include <stdlib.h> //for system()

int main()
{
 /*variable named x and floating-point data type*/
 float x;

 /*standard output*/
 printf("\nEnter one positive number (1, 2, 3. . .): ");
 /*standard input*/
 scanf("%f", &x);

 printf("\nx = %f ", x);
 printf("\nSquare for x is = %f", x * x);
 //sqrt() is the predefined function, defined in math.h
 printf("\nSquare root for x is = %f\n", sqrt(x));
 system("pause");
 return 0;
}

Output:

Example #4

/*Simple mathematics calculation*/
//header files…
#include <stdio.h>

Page 6 of 11 www.tenouk.com

#include <stdlib.h>

//main() function…
int main()
{
 //variables declaration
 int x, y, z;

//variables initialization
//assign 20 to variable x…
//or put the value of 20 in memory location labeled by x

 x = 20;
 y = 2;

 printf("Given x = 20, y = 2\n");
 printf("\nx / y = %d", x / y);

//do some calculation
 x = x * y;
 y = y + y;
 printf("\nx = x * y");
 printf("\ny = y + y");
 printf("\nNew value for x / y = %d", x / y);
 z = 20 * y / x;
 printf("\nz = 20 * (y / x) = %d\n", z);
 system("pause");
 return 0;
}

Output:

Example #5

//Another simple mathematics calculation
#include <iostream.h>
#include <stdlib.h>

int main(void)
{
 //variables declaration
 //variable names and type
 float a, b, c;

 //variables initialization
 a = 2.0;
 b = 5.0;
 c = b / a;

 cout<<"\nGiven a = 2.0, b = 5.0, c = b/a";
 cout<<"\nc = "<<c;
 c = c + (a/b);
 cout<<"\nc = c + (a/b) = "<<c<<endl;

 //call the predefined function
 //for Borland...
 system("pause");
 return 0;
}

Output:

Page 7 of 11 www.tenouk.com

Example #6

//another mathematics calculation
#include <iostream.h>
#include <stdlib.h>

int main(void)
{
 float x, y, z;

 //Display for user data on standard output, screen
 cout<<"\nKey in 1st positive integer, then press Enter key: ";
 //Read the data from standard input, keyboard
 cin>>x;
 cout<<"Key in 2nd positive integer, then press Enter key: ";
 cin>>y;
 cout<<"Key in 3rd positive integer, then press Enter key: ";
 cin>>z;
 cout<<"\nAverage for three numbers is \n";
 cout<<"\n = ("<<x<<"+"<<y<<"+"<<z<<")/3 = "<<(x+y+z)/3<<"\n";
 system("pause");

return 0;
}

Output:

- Previous program example compiled using VC++/VC++ .Net. You can discard the system("pause");
and its header file <cstdlib>.

 //Previous example compiled using
 //VC++/VC++ .Net...using C header in C++

#include <iostream>
#include <cstdlib>
using namespace std;

int main(void)
{
float x, y, z;

//Display for user data on standard output, screen
cout<<"\nKey in 1st positive integer, then press Enter key: ";
//Read the data from standard input, keyboard
cin>>x;
cout<<"Key in 2nd positive integer, then press Enter key: ";
cin>>y;
cout<<"Key in 3rd positive integer, then press Enter key: ";
cin>>z;
cout<<"\nAverage for three numbers is \n";
cout<<"\n = ("<<x<<"+"<<y<<"+"<<z<<")/3 = "<<(x+y+z)/3<<"\n";
system("pause");

Page 8 of 11 www.tenouk.com

http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Visualcdotnet.html

return 0;
}

 Output:

- A programming language enforces a set of rules, symbols and special words used to construct a

program.
- A set of rules that precisely state the validity of the instructions used to construct C/C++ program is

called syntax or C/C++ grammar.
- The correctness of the instructions used to write C/C++ program is called semantics.
- These set of rules for instructions validity and correctness are monitored or guarded by the compilers.

1.6 The main() function

- According to the C/C++ standard, only two definitions of main() functions are portable:

int main()
{
 return 0;
}

- And

int main (int argc, char* argv[])
{
 return 0;
}

- Where:

argc Is an argument count that is the number of command line
arguments the program was invoked with.

argv[] Is an argument vector that is a pointer to an array of character
strings that contain the arguments, one per string.

- The following is a program example when you issue echo command at the command prompt.

//echo command-line arguments
//program example
#include <stdio.h>

int main(int argc, char *argv[])
{
 int x;
 for(x = 1; x < argc; x++)
 printf("%s%s", argv[x],(x<argc-1) ? " ": "");

Page 9 of 11 www.tenouk.com

 printf("\n");
 return 0;
}

- Note that the return type int is required because the implicit int is deprecated.
- You may, but are not a mandatory to end main() function with a return statement. Unlike C, for

C++ the standard defines an implicit:

return 0;

- At the end of main() function. Remember that 0 is an integer.
- This means that every program that leaves main() function without a return statement is assumed

successful, that mean returning integer 0 and any value other than 0 represents a failure.
- Note that some compilers might generate a warning or error message regarding this thing and some

compiler may need to explicitly put the void if there is no return or empty return statement as shown
below:

void main()
{...}

- Or something like this:

void main()
{
 return;
}

- The detail discussion of the main() and command line arguments is discussed in ModuleY and

Module 8, section 8.9.
- Steps needed to create a Windows portable executable (PE) file for empty Win32 console mode

application is explained HERE.
- The following example shows the compiling, linking and running a C program using gcc. For

complete commands and examples for gcc, gdb and g++ please refer to Module000. Other utility
and gdb can be found in Module111.

- Whenever needed, program examples compiled using gcc and g++ also included at the end of each
Module of this tenouk.com Tutorial and for this Module is shown in the following example.

[bodo@bakawali ~]$ vi simath.c
/*Simple mathematics calculation-simath.c*/
//header files.
#include <stdio.h>
#include <stdlib.h>

//main() function.
int main()
{
 //variables declaration
 int x, y, z;

 //variables initialization
 //assign 20 to variable x.
 //or put the value of 20 in memory location labeled by x
 x = 20;
 y = 2;

 printf("Given x = 20, y = 2\n");
 printf("\nx / y = %d", x / y);
 //do some calculation
 x = x * y;
 y = y + y;
 printf("\nx = x * y");
 printf("\ny = y + y");
 printf("\nNew value for x / y = %d", x / y);
 z = 20 * y / x;
 printf("\nz = 20 * (y / x) = %d\n", z);
 return 0;
}

[bodo@bakawali ~]$ gcc simath.c -o simath
[bodo@bakawali ~]$./simath
Given x = 20, y = 2

Page 10 of 11 www.tenouk.com

http://www.tenouk.com/ModuleY.html
http://www.tenouk.com/Module8.html
http://www.tenouk.com/Visualc.html
http://www.tenouk.com/Module000.html
http://www.tenouk.com/Module111.html

x / y = 1 0
x = x * y
y = y + y
New value for x / y = 10
z = 20 * (y / x) = 2

- Quite a complete gcc (GNU Compiler Collection), gdb (GNU Debugger) and Gas (GNU assembler)

commands and examples can be found in Module000 and Module111.

--o0o---

Further reading and digging:

1. Check the best selling C/C++ books at Amazon.com.
2. Get the latest C/C++ standards reference. You can download or read online the specifications at the

following links. These links are very useful if you want the update information such as new features,
obsolete items etc. ISO/IEC is covering ANSI and is more general.

i. ISO/IEC 9899 (ISO/IEC 9899:1999) - C Programming language.
ii. ISO/IEC 9945:2002 POSIX standard.
iii. ISO/IEC 14882:1998 on the programming language C++.
iv. ISO/IEC 9945:2003, The Single UNIX Specification, Version 3.
v. Get the GNU C library information here.
vi. Read online the GNU C library here.

3. For the use of the standard and non-standard header files with different compilers and mixing C and C++

codes and libraries, please refer to Module 23, mainly Section 23.3 and above. If you are a beginner, it is
better for you to read this chunk first.

Page 11 of 11 www.tenouk.com

http://www.tenouk.com/Module000.html
http://www.tenouk.com/Module111.html
http://www.tenouk.com/cplusbook.html
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG15/
http://www.open-std.org/JTC1/SC22/WG21/
http://www.unix.org/version3/
http://www.gnu.org/software/libc/manual/
http://www.gnu.org/software/libc/manual/html_mono/libc.html
http://www.tenouk.com/Module23.html

