
Module 4: The Graphics Device Interface (GDI), Colors, and Fonts

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

The Graphics Device Interface (GDI), Colors, and Fonts
The Device Context Classes
The Display Context Classes CClientDC and CWindowDC
Constructing and Destroying CDC Objects
The State of the Device Context
The CPaintDC Class
For Win32 Programmers
GDI Objects
Constructing and Destroying GDI Objects
Tracking GDI Objects
Stock GDI Objects
The Lifetime of a GDI Selection
Windows Color Mapping
Standard Video Graphics Array Video Cards
256-Color Video Cards
16-Bit-Color Video Cards
24-Bit-Color Video Cards
Fonts
Fonts Are GDI Objects
Choosing a Font
Printing with Fonts
Displaying Fonts
Logical Inches and Physical Inches on the Display
Computing Character Height
The MYMFC4 Example
Setting the Mapping Mode in the OnPrepareDC() Function
The ShowFont() Private Member Function
The MYMFC5 Example
The MYMFC5 Program Elements
The OnDraw() Member Function
The TraceMetrics() Helper Function
The MYMFC6 Example: CScrollView Revisited
The MYMFC6 Program Elements
The m_sizeEllipse and m_pointTopLeft Data Members
The m_sizeOffset Data Member
The m_bCaptured Data Member
The SetCapture() and ReleaseCapture() Functions
The SetCursor() and LoadCursor() Win32 Functions
The CScrollView::OnPrepareDC Member Function
The OnMouseMove() Coordinate Transformation Code
The OnDraw() Function
The CScrollView SetScaleToFitSize() Mode
Using the Logical Twips Mapping Mode in a Scrolling View

The Graphics Device Interface (GDI), Colors, and Fonts

http://www.tenouk.com/cnwin32tutorials.html

You've already seen some elements of the Graphics Device Interface (GDI). Anytime your program draws to the
display or the printer, it must use the GDI functions. The GDI provides functions for drawing points, lines, rectangles,
polygons, ellipses, bitmaps, and text. You can draw circles and squares intuitively once you study the available
functions, but text programming is more difficult. This module gives you the information you need to start using the
GDI effectively in the Microsoft Visual C++ environment. You'll learn how to use fonts on both the display and the
printer.

The Device Context Classes

In the previous Modules, the view class's OnDraw() member function was passed a pointer to a device context object.
OnDraw() selected a brush and then drew an ellipse. The Microsoft Windows device context is the key GDI element
that represents a physical device. Each C++ device context object has an associated Windows device context, identified
by a 32-bit handle of type HDC.
MFC Library version 6.0 provides a number of device context classes. The base class CDC has all the member functions
(including some virtual functions) that you'll need for drawing. Except for the oddball CMetaFileDC class, derived
classes are distinct only in their constructors and destructors. If you (or the application framework) construct an object of
a derived device context class, you can pass a CDC pointer to a function such as OnDraw(). For the display, the usual
derived classes are CClientDC and CWindowDC. For other devices, such as printers or memory buffers, you construct
objects of the base class CDC. The "virtualness" of the CDC class is an important feature of the application framework. In
Module 13, you'll see how easy it is to write code that works with both the printer and the display. A statement in
OnDraw() such as:

// Print "Hello" at (0, 0) location
pDC->TextOut(0, 0, "Hello");

Sends text to the display, the printer, or the Print Preview window, depending on the class of the object referenced by the
CView::OnDraw() function's pDC parameter. For display and printer device context objects, the application
framework attaches the handle to the object. For other device contexts, such as the memory device context, you must
call a member function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC

Recall that a window's client area excludes the border, the caption bar, and the menu bar. If you create a CClientDC
object, you have a device context that is mapped only to this client area - you can't draw outside it. The point (0, 0)
usually refers to the upper-left corner of the client area. As you'll see later, an MFC CView object corresponds to a child
window that is contained inside a separate frame window, often along with a toolbar, a status bar, and scroll bars. The
client area of the view, then, does not include these other windows. If the window contains a docked toolbar along the
top, for example, (0, 0) refers to the point immediately under the left edge of the toolbar.
If you construct an object of class CWindowDC, the point (0, 0) is at the upper-left corner of the non-client area of the
window. With this whole-window device context, you can draw in the window's border, in the caption area, and so forth.
Don't forget that the view window doesn't have a non-client area, so CWindowDC is more applicable to frame windows
than it is to view windows.

Constructing and Destroying CDC Objects

After you construct a CDC object, it is important to destroy it promptly when you're done with it. Microsoft Windows
limits the number of available device contexts, and if you fail to release a Windows device context object, a small
amount of memory is lost until your program exits. Most frequently, you'll construct a device context object inside a
message handler function such as OnLButtonDown(). The easiest way to ensure that the device context object is
destroyed (and that the underlying Windows device context is released) is to construct the object on the stack in the
following way:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;
 // constructs dc on the stack
 CClientDC dc(this);
 // retrieves the clipping rectangle

http://www.tenouk.com/visualcplusmfc/visualcplusmfc13.html

 dc.GetClipBox(rect);
} // dc automatically released

Notice that the CClientDC constructor takes a window pointer as a parameter. The destructor for the CClientDC
object is called when the function returns. You can also get a device context pointer by using the CWnd::GetDC
member function, as shown in the following code. You must be careful here to call the ReleaseDC() function to
release the device context.

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CDC* pDC = GetDC(); // a pointer to an internal dc
 pDC->GetClipBox(rect); // retrieves the clipping rectangle
 ReleaseDC(pDC); // Don't forget this
}

You must not destroy the CDC object passed by the pointer to OnDraw(). The application framework handles the
destruction for you.

The State of the Device Context

You already know that a device context is required for drawing. When you use a CDC object to draw an ellipse, for
example, what you see on the screen (or on the printer's hard copy) depends on the current "state" of the device context.
This state includes the following:

▪ Attached GDI drawing objects such as pens, brushes, and fonts.
▪ The mapping mode that determines the scale of items when they are drawn. You've already experimented

with the mapping mode in the previous Module.
▪ Various details such as text alignment parameters and polygon filling mode.

You have already seen, for example, that choosing a gray brush prior to drawing an ellipse results in the ellipse having a
gray interior. When you create a device context object, it has certain default characteristics, such as a black pen for
shape boundaries. All other state characteristics are assigned through CDC class member functions. GDI objects are
selected into the device context by means of the overloaded SelectObject() functions. A device context can, for
example, have one pen, one brush, or one font selected at any given time.

The CPaintDC Class

You'll need the CPaintDC class only if you override your view's OnPaint() function. The default OnPaint() calls
OnDraw() with a properly set up device context, but sometimes you'll need display-specific drawing code. The
CPaintDC class is special because its constructor and destructor do housekeeping unique to drawing to the display.
Once you have a CDC pointer, however, you can use it as you would any other device context pointer. Here's a sample
OnPaint() function that creates a CPaintDC object:

void CMyView::OnPaint()
{
 CPaintDC dc(this);
 OnPrepareDC(&dc); // explained later
 dc.TextOut(0, 0, "for the display, not the printer");
 OnDraw(&dc); // stuff that's common to display and printer
}

For Win32 Programmers

The CPaintDC constructor calls BeginPaint() for you, and the destructor calls EndPaint(). If you construct
your device context on the stack, the EndPaint() call is completely automatic.

GDI Objects

http://www.tenouk.com/cnwin32tutorials.html

A Windows GDI object type is represented by an MFC library class. CGdiObject is the abstract base class for the
GDI object classes. A Windows GDI object is represented by a C++ object of a class derived from CGdiObject.
Here's a list of the GDI derived classes:

Derived Class Description

CBitmap A bitmap is an array of bits in which one or more bits correspond to each display pixel.
You can use bitmaps to represent images, and you can use them to create brushes.

CBrush A brush defines a bitmapped pattern of pixels that is used to fill areas with color.

CFont A font is a complete collection of characters of a particular typeface and a particular size.
Fonts are generally stored on disk as resources, and some are device-specific.

CPalette A palette is a color mapping interface that allows an application to take full advantage of
the color capability of an output device without interfering with other applications.

CPen A pen is a tool for drawing lines and shape borders. You can specify a pen's color and
thickness and whether it draws solid, dotted, or dashed lines.

CRgn A region is an area whose shape is a polygon, an ellipse, or a combination of polygons and
ellipses. You can use regions for filling, clipping, and mouse hit-testing.

Table 1.

Constructing and Destroying GDI Objects

You never construct an object of class CGdiObject; instead, you construct objects of the derived classes. Constructors
for some GDI derived classes, such as CPen and CBrush, allow you to specify enough information to create the object
in one step. Others, such as CFont and CRgn, require a second creation step. For these classes, you construct the C++
object with the default constructor and then you call a create function such as the CreateFont() or
CreatePolygonRgn() function.
The CGdiObject class has a virtual destructor. The derived class destructors delete the Windows GDI objects that are
attached to the C++ objects. If you construct an object of a class derived from CGdiObject, you must delete it prior to
exiting the program. To delete a GDI object, you must first separate it from the device context. You'll see an example of
this in the next section. Failure to delete a GDI object was a serious offense with Win16. GDI memory was not released
until the user restarted Windows. With Win32, however, the GDI memory is owned by the process and is released when
your program terminates. Still, an unreleased GDI bitmap object can waste a significant amount of memory.

Tracking GDI Objects

OK, so you know that you have to delete your GDI objects and that they must first be disconnected from their device
contexts. How do you disconnect them? A member of the CDC::SelectObject family of functions does the work of
selecting a GDI object into the device context, and in the process it returns a pointer to the previously selected object
(which gets deselected in the process). Trouble is, you can't deselect the old object without selecting a new object. One
easy way to track the objects is to "save" the original GDI object when you select your own GDI object and "restore" the
original object when you're finished. Then you'll be ready to delete your own GDI object. Here's an example:

void CMyView::OnDraw(CDC* pDC)
{
 // black pen, 2 pixels wide
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0);
 CPen* pOldPen = pDC->SelectObject(&newPen);

 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 // newPen is deselected
 pDC->SelectObject(pOldPen);
} // newPen automatically destroyed on exit

When a device context object is destroyed, all its GDI objects are deselected. Thus, if you know that a device context
will be destroyed before its selected GDI objects are destroyed, you don't have to deselect the objects. If, for example,
you declare a pen as a view class data member (and you initialize it when you initialize the view), you don't have to

deselect the pen inside OnDraw() because the device context, controlled by the view base class's OnPaint() handler,
will be destroyed first.

Stock GDI Objects

Windows contains a number of stock GDI objects that you can use. Because these objects are part of Windows, you
don't have to worry about deleting them. Windows ignores requests to delete stock objects. The MFC library function
CDC::SelectStockObject selects a stock object into the device context and returns a pointer to the previously
selected object, which it deselects. Stock objects are handy when you want to deselect your own non-stock GDI object
prior to its destruction. You can use a stock object as an alternative to the "old" object you used in the previous example,
as shown here:

void CMyView::OnDraw(CDC* pDC)
{
 // black pen, 2 pixels wide
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0);

 pDC->SelectObject(&newPen);
 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 // newPen is deselected
 pDC->SelectStockObject(BLACK_PEN);
} // newPen destroyed on exit

The Microsoft Foundation Class Reference lists, under CDC::SelectStockObject, the stock objects available for
pens, brushes, fonts, and palettes.

The Lifetime of a GDI Selection

For the display device context, you get a "fresh" device context at the beginning of each message handler function. No
GDI selections (or mapping modes or other device context settings) persist after your function exits. You must,
therefore, set up your device context from scratch each time. The CView class virtual member function
OnPrepareDC() is useful for setting the mapping mode, but you must manage your own GDI objects.
For other device contexts, such as those for printers and memory buffers, your assignments can last longer. For these
long-life device contexts, things get a little more complicated. The complexity results from the temporary nature of GDI
C++ object pointers returned by the SelectObject() function. The temporary "object" will be destroyed by the
application framework during the idle loop processing of the application, sometime after the handler function returns the
call. You can't simply store the pointer in a class data member; instead, you must convert it to a Windows handle (the
only permanent GDI identifier) with the GetSafeHdc() member function. Here's an example:

// m_pPrintFont points to a CFont object created in CMyView's constructor
// m_hOldFont is a CMyView data member of type HFONT, initialized to 0
void CMyView::SwitchToCourier(CDC* pDC)
{
 m_pPrintFont->CreateFont(30, 10, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN,
 "Courier New"); // TrueType
 CFont* pOldFont = pDC->SelectObject(m_pPrintFont);

 // m_hOldFont is the CGdiObject public data member that stores
 // the handle
 m_hOldFont = (HFONT) pOldFont->GetSafeHandle();
}

void CMyView:SwitchToOriginalFont(CDC* pDC)
{
 // FromHandle is a static member function that returns an
 // object pointer
 if (m_hOldFont)
 {

http://msdn.microsoft.com/visualc/

 pDC->SelectObject(CFont::FromHandle(m_hOldFont));
 }
}
// m_pPrintFont is deleted in the CMyView destructor

Be careful when you delete an object whose pointer is returned by SelectObject(). If you've allocated the object
yourself, you can delete it. If the pointer is temporary, as it will be for the object initially selected into the device
context, you won't be able to delete the C++ object.

Windows Color Mapping

The Windows GDI provides a hardware-independent color interface. Your program supplies an "absolute" color code,
and the GDI maps that code to a suitable color or color combination on your computer's video display. Most
programmers of applications for Windows try to optimize their applications' color display for a few common video card
categories.

Standard Video Graphics Array Video Cards

A standard Video Graphics Array (VGA) video card uses 18-bit color registers and thus has a palette of 262,144 colors.
Because of video memory constraints, however, the standard VGA board accommodates 4-bit color codes, which means
it can display only 16 colors at a time. Because Windows needs fixed colors for captions, borders, scroll bars, and so
forth; your programs can use only 16 "standard" pure colors. You cannot conveniently access the other colors that the
board can display. Each Windows color is represented by a combination of 8-bit "red," "green," and "blue" values. The
16 standard VGA "pure" (non-dithered) colors are shown in the table below.
Color-oriented GDI functions accept 32-bit COLORREF parameters that contain 8-bit color codes each for red, green,
and blue. The Windows RGB macro converts 8-bit red, green, and blue values to a COLORREF parameter. The
following statement, when executed on a system with a standard VGA board, constructs a brush with a dithered color
(one that consists of a pattern of pure-color pixels):

CBrush brush(RGB(128, 128, 192));

16 standard VGA colors
Red Green Blue Color
0 0 0 Black
0 0 255 Blue
0 255 0 Green
0 255 255 Cyan
255 0 0 Red
255 0 255 Magenta
255 255 0 Yellow
255 255 255 White
0 0 128 Dark blue
0 128 0 Dark green
0 128 128 Dark cyan
128 0 0 Dark red
128 0 128 Dark magenta
128 128 0 Dark yellow
128 128 128 Dark gray
192 192 192 Light gray

Table 2: The R (Red), G (Green) and B (Blue)

color combination..

The following statement (in your view's OnDraw() function) sets the text background to red:

pDC->SetBkColor(RGB(255, 0, 0));

The CDC functions SetBkColor() and SetTextColor() don't display dithered colors as the brush-oriented
drawing functions do. If the dithered color pattern is too complex, the closest matching pure color is displayed.

256-Color Video Cards

Most video cards can accommodate 8-bit color codes at all resolutions, which means they can display 256 colors
simultaneously. This 256-color mode is now considered to be the "lowest common denominator" for color
programming.
If Windows is configured for a 256-color display card, your programs are limited to 20 standard pure colors unless you
activate the Windows color palette system as supported by the MFC library CPalette class and the Windows API, in
which case you can choose your 256 colors from a total of more than 16.7 million. In this Module, we'll assume that the
Windows default color mapping is in effect. With an SVGA 256-color display driver installed, you get the 16 VGA
colors listed in the previous table plus 4 more, for a total of 20. The following table lists the 4 additional colors.

4 extra SVGA 256-color
Red Green Blue Color
192 220 192 Money green
166 202 240 Sky blue
255 251 240 Cream
160 160 164 Medium gray

Table 3: Extra RGB combination for SVGA 256

colors.

The RGB macro works much the same as it does with the standard VGA. If you specify one of the 20 standard colors for
a brush, you get a pure color; otherwise, you get a dithered color. If you use the PALETTERGB macro instead, you don't
get dithered colors; you get the closest matching standard pure color as defined by the current palette.

16-Bit-Color Video Cards

Most modern video cards support a resolution of 1024-by-768 pixels, and 1 MB of video memory can support 8-bit
color at this resolution. If a video card has 2 MB of memory, it can support 16-bit color, with 5 bits each for red, green,
and blue. This means that it can display 32,768 colors simultaneously. That sounds like a lot, but there are only 32
shades each of pure red, green, and blue. Often, a picture will look better in 8-bit-color mode with an appropriate palette
selected. A forest scene, for example, can use up to 236 shades of green. Palettes are not supported in 16-bit-color mode.

24-Bit-Color Video Cards

High-end cards (which are becoming more widely used) support 24-bit color. This 24-bit capability enables the display
of more than 16.7 million pure colors. If you're using a 24-bit card, you have direct access to all the colors. The RGB
macro allows you to specify the exact colors you want. You'll need 2.5 MB of video memory, though, if you want 24-bit
color at 1024-by-768-pixel resolution.

Fonts

Old-fashioned character-mode applications could display only the boring system font on the screen. Windows provides
multiple device-independent fonts in variable sizes. The effective use of these Windows fonts can significantly energize
an application with minimum programming effort. TrueType fonts, first introduced with Windows version 3.1, are even
more effective and are easier to program than the previous device-dependent fonts. You'll see several example programs
that use various fonts later in this Module.

Fonts Are GDI Objects

Fonts are an integral part of the Windows GDI. This means that fonts behave the same way other GDI objects do. They
can be scaled and clipped, and they can be selected into a device context as a pen or a brush can be selected. All GDI
rules about de-selection and deletion apply to fonts.

Choosing a Font

Choosing a Windows font used to be like going to a fruit stand and asking for "a piece of reddish-yellow fruit, with a
stone inside, that weighs about 4 ounces." You might have gotten a peach or a plum or even a nectarine, and you could
be sure that it wouldn't have weighed exactly 4 ounces. Once you took possession of the fruit, you could weigh it and
check the fruit type. Now, with TrueType, you can specify the fruit type, but you still can't specify the exact weight.
Today you can choose between two font types - device-independent TrueType fonts and device-dependent fonts such as
the Windows display System font and the LaserJet LinePrinter font or you can specify a font category and size and let
Windows select the font for you. If you let Windows select the font, it will choose a TrueType font if possible. The
MFC library provides a font selection dialog box tied to the currently selected printer, so there's little need for printer
font guesswork. You let the user select the exact font and size for the printer, and then you approximate the display the
best you can.

Printing with Fonts

For text-intensive applications, you'll probably want to specify printer font sizes in points (1 point = 1/72 inch). Why?
Most, if not all, built-in printer fonts are defined in terms of points. The LaserJet LinePrinter font, for example, comes in
one size, 8.5 point. You can specify TrueType fonts in any point size. If you work in points, you need a mapping mode
that easily accommodates points. That's what MM_TWIPS is for. An 8.5-point font is 8.5 × 20, or 170, twips, and that's
the character height you'll want to specify.

Displaying Fonts

If you're not worried about the display matching the printed output, you have a lot of flexibility. You can choose any of
the scalable Windows TrueType fonts, or you can choose the fixed-size system fonts (stock objects). With the TrueType
fonts, it doesn't much matter what mapping mode you use; simply choose a font height and go for it. No need to worry
about points.
Matching printer fonts to make printed output match the screen presents some problems, but TrueType makes it easier
than it used to be. Even if you're printing with TrueType fonts, however, you'll never quite get the display to match the
printer output. Characters are ultimately displayed in pixels (or dots), and the width of a string of characters is equal to
the sum of the pixel widths of its characters, possibly adjusted for kerning. The pixel width of the characters depends on
the font, the mapping mode, and the resolution of the output device. Only if both the printer and the display were set to
MM_TEXT mode (1 pixel or dot = 1 logical unit) would you get an exact correspondence. If you're using the
CDC::GetTextExtent function to calculate line breaks, the screen breakpoint will occasionally be different from
the printer breakpoint.
In the MFC Print Preview mode, line breaks occur exactly as they do on the printer, but the print quality in the preview
window suffers in the process. If you're matching a printer-specific font on the screen, TrueType again makes the job
easier. Windows substitutes the closest matching TrueType font. For the 8.5-point LinePrinter font, Windows comes
pretty close with its Courier New font.

Logical Inches and Physical Inches on the Display

The CDC member function GetDeviceCaps() returns various display measurements that are important to your
graphics programming. The six described below provide information about the display size. The values listed are for a
typical display card configured for a resolution of 640-by-480 pixels with Microsoft Windows NT 4.0.

Index Description Value

HORZSIZE Physical width in
millimeters 320

VERTSIZE Physical height in
millimeters 240

HORZRES Width in pixels 640

VERTRES Height in raster
lines 480

LOGPIXELSX Horizontal dots per
logical inch 96

LOGPIXELSY Vertical dots per
logical inch 96

Table 4.

The indexes HORZSIZE and VERTSIZE represent the physical dimensions of your display. These indexes might not be
true since Windows doesn't know what size display you have connected to your video adapter. You can also calculate a
display size by multiplying HORZRES and VERTRES by LOGPIXELSX and LOGPIXELSY, respectively. The size
calculated this way is known as the logical size of the display. Using the values above and the fact that there are 25.4
millimeters per inch, we can quickly calculate the two display sizes for a 640-by-480 pixel display under Windows NT
4.0. The physical display size is 12.60-by-9.45 inches, and the logical size is 6.67-by-5.00 inches. So the physical size
and the logical size need not be the same.
For Windows NT 4.0, it turns out that HORZSIZE and VERTSIZE are independent of the display resolution, and
LOGPIXELSX and LOGPIXELSY are always 96. So the logical size changes for different display resolutions, but the
physical size does not. For Windows 95, the logical size and the physical size are equal, so both change with the display
resolution. At a resolution of 640-by-480 pixels with Windows 95, HORZSIZE is 169 and VERTSIZE is 127. Whenever
you use a fixed mapping mode such as MM_HIMETRIC or MM_TWIPS, the display driver uses the physical display size
to do the mapping. So, for Windows NT, text is smaller on a small monitor; but that's not what you want. Instead, you
want your font sizes to correspond to the logical display size, not the physical size. You can invent a special mapping
mode, called logical twips, for which one logical unit is equal to 1/1440 logical inch. This mapping mode is independent
of the operating system and display resolution and is used by programs such as Microsoft Word. Here is the code that
sets the mapping mode to logical twips:

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(1440, 1440);
pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX), -pDC-
>GetDeviceCaps(LOGPIXELSY));

From the Windows Control Panel, you can adjust both the display font size and the display resolution through the
Appearance and Settings of the Display Properties shown below. If you change the display font size from the default
100 percent to 200 percent, HORZSIZE becomes 160, VERTSIZE becomes 120, and the dots-per-inch value becomes
192. In that case, the logical size is divided by 2, and all text drawn with the logical twips mapping mode is doubled in
size.

Figure 1: Adjusting the display’s font size and resolution.

Computing Character Height

Five font height measurement parameters are available through the CDC function GetTextMetrics(), but only
three are significant. Figure 2 shows the important font measurements. The tmHeight parameter represents the full
height of the font, including descenders (for the characters g, j, p, q, and y) and any diacritics that appear over capital
letters. The tmExternalLeading parameter is the distance between the top of the diacritic and the bottom of the
descender from the line above. The sum of tmHeight and tmExternalLeading is the total character height. The
value of tmExternalLeading can be 0.

Figure 2: Font height measurements.

You would think that tmHeight would represent the font size in points. Wrong! Another GetTextMetrics()
parameter, tmInternalLeading, comes into play. The point size corresponds to the difference between tmHeight
and tmInternalLeading. With the MM_TWIPS mapping mode in effect, a selected 12-point font might have a
tmHeight value of 295 logical units and a tmInternalLeading value of 55. The font's net height of 240
corresponds to the point size of 12.

The MYMFC4 Example

This example sets up a view window with the logical twips mapping mode. A text string is displayed in 10 point sizes
with the Arial TrueType font. Here are the steps for building the application:

Run AppWizard to generate the MYMFC4 project. Start by choosing New from the File menu and then select MFC
AppWizard (exe) on the Project tab. Select Single Document and deselect Printing And Print Preview and ActiveX
Controls; accept all the other default settings. The options and the default class names are shown in the following
Figure.

Figure 3: MYMFC4 project summary.

Use ClassWizard to override the OnPrepareDC() function in the CMymfc4View class. By clicking the Edit Code
button, edit the code in mymfc4View.cpp as follows:

Figure 4: Using ClassWizard to override the OnPrepareDC() function.

void CMymfc4View::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1440, 1440);
 pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));
}

Listing 1.

Add a private ShowFont() helper function to the view class as shown below. In the ClassView, select the
CMymfc4View class and right click your mouse. Select Add Member Function… context menu and fill up the
Function Type and Function Declaration. As usual, you can add manually by opening the mymfc4View.h:

Figure 5: Adding a member function using ClassView.

Figure 6: Member function type and declaration.

private:
 void ShowFont(CDC* pDC, int& nPos, int nPoints);

Then add the function itself in mymfc4View.cpp:

void CMymfc4View::ShowFont(CDC* pDC, int& nPos, int nPoints)
{
 TEXTMETRIC tm;
 CFont fontText;
 CString strText;
 CSize sizeText;

 fontText.CreateFont(-nPoints * 20, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&fontText);
 pDC->GetTextMetrics(&tm);
 TRACE("points = %d, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", nPoints, tm.tmHeight,

 tm.tmInternalLeading, tm.tmExternalLeading);
 strText.Format("This is %d-point Arial", nPoints);
 sizeText = pDC->GetTextExtent(strText);
 TRACE("string width = %d, string height = %d\n", sizeText.cx, sizeText.cy);
 pDC->TextOut(0, nPos, strText);
 pDC->SelectObject(pOldFont);
 nPos -= tm.tmHeight + tm.tmExternalLeading;
}

Listing 2.

Edit the OnDraw() function in mymfc4View.cpp. AppWizard always generates a skeleton OnDraw() function for
your view class. Find the function, and replace the code with the following:

void CMymfc4View::OnDraw(CDC* pDC)
{
 int nPosition = 0;

 for (int i = 6; i <= 24; i += 2)
 {
 ShowFont(pDC, nPosition, i);
 }
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
 TRACE("HORZRES = %d, VERTRES = %d\n",
 pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
}

Listing 3.

Build and run the MYMFC4 program. You must run the program from the debugger if you want to see the output from
the TRACE statements. You can choose Go from the Start Debug submenu of the Build menu in Visual C++, or click

the following button on the Build toolbar, .

Figure 7: The Visual C++ program debug menu, tracing the TRACE.

The output (assuming the use of a standard VGA card) looks like the following.

Figure 8: MYMFC4 program output.

Notice that the output string sizes don't quite correspond to the point sizes. This discrepancy results from the font
engine's conversion of logical units to pixels. The program's trace output, partially shown below, shows the printout of
font metrics. The numbers depend on your display driver and your video driver.

Figure 9: The Visual C++ Debug window messages generated using the TRACE.

The following is a discussion of the important elements in the MYMFC4 example.

Setting the Mapping Mode in the OnPrepareDC() Function

The application framework calls OnPrepareDC() prior to calling OnDraw(), so the OnPrepareDC() function is
the logical place to prepare the device context. If you had other message handlers that needed the correct mapping mode,
those functions would have contained calls to OnPrepareDC().

The ShowFont() Private Member Function

ShowFont() contains code that is executed 10 times in a loop. With C, you would have made this a global function,
but with C++ it's better to make it a private class member function, sometimes known as a helper function. This function
creates the font, selects it into the device context, prints a string to the window, and then deselects the font. If you choose
to include debug information in the program, ShowFont() also displays useful font metrics information, including the
actual width of the string.

Calling CFont::CreateFont

This call includes lots of parameters, but the important ones are the first two: the font height and width. A width value of
0 means that the aspect ratio of the selected font will be set to a value specified by the font designer. If you put a nonzero
value here, as you'll see in the next example, you can change the font's aspect ratio. If you want your font to be a specific
point size, the CreateFont() font height parameter (the first parameter) must be negative. If you're using the
MM_TWIPS mapping mode for a printer, for example, a height parameter of -240 ensures a true 12-point font, with
tmHeight - tmInternalLeading = 240. A +240 height parameter gives you a smaller font, with tmHeight
= 240.

The MYMFC5 Example

This program is similar to MYMFC4 except that it shows multiple fonts. The mapping mode is MM_ANISOTROPIC,
with the scale dependent on the window size. The characters change size along with the window. This program
effectively shows off some TrueType fonts and contrasts them with the old-style fonts. Here are the steps for building
the application:

Run AppWizard to generate the MYMFC5 project. The options and the default class names are shown here and it is
similar to the MYMFC4.

Figure 10: MYMFC5 project summary.

Use ClassWizard to override the OnPrepareDC() function in the CMymfc5View class. Edit the code in
mymfc5View.cpp as shown below.

Figure 11: Using ClassWizard to override the OnPrepareDC() function.

void CMymfc5View::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 CRect clientRect;

 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ANISOTROPIC); // +y = down
 pDC->SetWindowExt(400, 450);
 pDC->SetViewportExt(clientRect.right, clientRect.bottom);
 pDC->SetViewportOrg(0, 0);
}

Listing 4.

Add a private TraceMetrics() helper function to the view class. Add the following prototype in mymfc5View.h:

Figure 12: Adding a private TraceMetrics() helper function.

private:
 void TraceMetrics(CDC* pDC);

Then add the function itself in mymfc5View.cpp:

void CMymfc5View::TraceMetrics(CDC* pDC)
{
 TEXTMETRIC tm;
 char szFaceName[100];

 pDC->GetTextMetrics(&tm);
 pDC->GetTextFace(99, szFaceName);
 TRACE("font = %s, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", szFaceName, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
}

Listing 5.

Edit the OnDraw() function in mymfc5View.cpp. AppWizard always generates a skeleton OnDraw() function for
your view class. Find the function, and edit the code as follows:

void CMymfc5View::OnDraw(CDC* pDC)
{
 CFont fontTest1, fontTest2, fontTest3, fontTest4;

 fontTest1.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&fontTest1);
 TraceMetrics(pDC);
 pDC->TextOut(0, 0, "This is Arial, default width");

 fontTest2.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "Courier");
 // not TrueType
 pDC->SelectObject(&fontTest2);
 TraceMetrics(pDC);
 pDC->TextOut(0, 100, "This is Courier, default width");

 fontTest3.CreateFont(50, 10, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_ROMAN, NULL);
 pDC->SelectObject(&fontTest3);
 TraceMetrics(pDC);
 pDC->TextOut(0, 200, "This is generic Roman, variable width");

 fontTest4.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "LinePrinter");
 pDC->SelectObject(&fontTest4);
 TraceMetrics(pDC);
 pDC->TextOut(0, 300, "This is LinePrinter, default width");
 pDC->SelectObject(pOldFont);
}

Listing 6.

Build and run the MYMFC5 program. Run the program from the debugger to see the TRACE output. The program's
output window is shown here.

Figure 13: MYMFC5 program output.

Resize the window to make it smaller, and watch the font sizes change. Compare this window with the previous one.

Figure 14: MYMFC5 program output when the window is resized.

If you continue to downsize the window, notice how the Courier font stops shrinking after a certain size and how the
Roman font width changes.

The MYMFC5 Program Elements

Following is a discussion of the important elements in the MYMFC5 example.

The OnDraw() Member Function

The OnDraw() function displays character strings in four fonts, as follows:

Fonts Description
fontTest1 The TrueType font Arial with default width selection.

fontTest2 The old-style font Courier with default width selection. Notice how jagged the font
appears in larger sizes.

fontTest3
The generic Roman font for which Windows supplies the TrueType font Times New
Roman with programmed width selection. The width is tied to the horizontal window
scale, so the font stretches to fit the window.

fontTest4
The LinePrinter font is specified, but because this is not a Windows font for the
display, the font engine falls back on the FF_MODERN specification and chooses the
TrueType Courier New font.

Table 5.

The TraceMetrics() Helper Function

The TraceMetrics() helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get the
current font's parameters, which it prints in the Debug window.

The MYMFC6 Example: CScrollView Revisited

You saw the CScrollView class in previous Module. The MYMFC6 program allows the user to move an ellipse with
a mouse by "capturing" the mouse, using a scrolling window with the MM_LOENGLISH mapping mode. Keyboard
scrolling is left out, but you can add it by borrowing the OnKeyDown() member function from MYMFC3 example in
previous Module. Instead of a stock brush, we'll use a pattern brush for the ellipse: a real GDI object. There's one
complication with pattern brushes: you must reset the origin as the window scrolls; otherwise, strips of the pattern don't
line up and the effect is ugly. As with the MYMFC3 program, this example involves a view class derived from
CScrollView. Here are the steps to create the application:

Run AppWizard to generate the MYMFC6 project. Be sure to set the view base class to CScrollView in step 6. The
options and the default class names are shown here.

Figure 15: Step 6 of the MYMFC6 project, using CScrollView as the View base class.

Figure 16: MYMFC6 project summary.

Edit the CMymfc6View class header in the file mymfc6View.h. Add the following lines in the class CMymfc6View
declaration:

private:
 const CSize m_sizeEllipse;
 CPoint m_pointTopLeft; // logical, top left of ellipse rectangle
 CSize m_sizeOffset; // device, from rect top left

 // to capture point
 BOOL m_bCaptured;

Listing 7.

Use ClassWizard to add three message handlers to the CMymfc6View class. Add the message handlers as follows:

Message Member Function
WM_LBUTTONDOWN OnLButtonDown()
WM_LBUTTONUP OnLButtonUp()
WM_MOUSEMOVE OnMouseMove()

Table 6.

Figure 17: Adding three message handlers using ClassWizard.

Edit the CMymfc6View message handler functions by clicking the Edit Code button. ClassWizard generated the
skeletons for the functions listed in the preceding step. Find the functions in mymfc6View.cpp, and code them as
follows.

void CMymfc6View::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rectEllipse(m_pointTopLeft, m_sizeEllipse); // still logical
 CRgn circle;

 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(rectEllipse); // Now it's in device coordinates
 circle.CreateEllipticRgnIndirect(rectEllipse);
 if (circle.PtInRegion(point)) {
 // Capturing the mouse ensures subsequent LButtonUp message
 SetCapture();
 m_bCaptured = TRUE;
 CPoint pointTopLeft(m_pointTopLeft);
 dc.LPtoDP(&pointTopLeft);
 m_sizeOffset = point - pointTopLeft; // device coordinates
 // New mouse cursor is active while mouse is captured
 ::SetCursor(::LoadCursor(NULL, IDC_CROSS));
 }
}

Listing 8.

void CMymfc6View::OnLButtonUp(UINT nFlags, CPoint point)
{
 if (m_bCaptured)
 {
 ::ReleaseCapture();
 m_bCaptured = FALSE;
 }
}

void CMymfc6View::OnMouseMove(UINT nFlags, CPoint point)
{
 if (m_bCaptured)
 {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectOld(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectOld);
 InvalidateRect(rectOld, TRUE);
 m_pointTopLeft = point - m_sizeOffset;
 dc.DPtoLP(&m_pointTopLeft);
 CRect rectNew(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectNew);
 InvalidateRect(rectNew, TRUE);
 }
}

Listing 9.

Edit the CMymfc6View constructor, the OnDraw() function, and the OnInitialUpdate() function. AppWizard
generated these skeleton functions. Find them in mymfc6View.cpp, and code them as follows:

CMymfc6View::CMymfc6View() : m_sizeEllipse(100, -100),
 m_pointTopLeft(0, 0),
 m_sizeOffset(0, 0)
{
 m_bCaptured = FALSE;
}

Listing 10.

void CMymfc6View::OnDraw(CDC* pDC)
{
 CBrush brushHatch(HS_DIAGCROSS, RGB(255, 0, 0));
 // logical (0, 0)
 CPoint point(0, 0);

 // In device coordinates, align the brush with the window origin
 pDC->LPtoDP(&point);
 pDC->SetBrushOrg(point);

 pDC->SelectObject(&brushHatch);
 pDC->Ellipse(CRect(m_pointTopLeft, m_sizeEllipse));
 pDC->SelectStockObject(BLACK_BRUSH); // Deselect brushHatch
 pDC->Rectangle(CRect(100, -100, 200, -200)); // Test invalid rect
}

Listing 11.

void CMymfc6View::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
}

Listing 12.

Build and run the MYMFC6 program. The program allows an ellipse to be dragged with the mouse, and it allows the
window to be scrolled through. The program's window should look like the one shown here. As you move the ellipse,
observe the black rectangle. You should be able to see the effects of invalidating the rectangle.

Figure 18: MYMFC6 program output with horizontal and vertical scroll bar.

Figure 19: MYMFC6 program output, dragging an ellipse.

The MYMFC6 Program Elements

Following is a discussion of the important elements in the MYMFC6 example.

The m_sizeEllipse and m_pointTopLeft Data Members

Rather than store the ellipse's bounding rectangle as a single CRect object, the program separately stores its size
(m_sizeEllipse) and the position of its top left corner (m_pointTopLeft). To move the ellipse, the program
merely recalculates m_pointTopLeft, and any round-off errors in the calculation won't affect the size of the ellipse.

The m_sizeOffset Data Member

When OnMouseMove() moves the ellipse, the relative position of the mouse within the ellipse must be the same as it
was when the user first pressed the left mouse button. The m_sizeOffset object stores this original offset of the
mouse from the top left corner of the ellipse rectangle.

The m_bCaptured Data Member

The m_bCaptured Boolean variable is set to TRUE when mouse tracking is in progress.

The SetCapture() and ReleaseCapture() Functions

SetCapture() is the CWnd member function that "captures" the mouse, such that mouse movement messages are
sent to this window even if the mouse cursor is outside the window. An unfortunate side effect of this function is that the
ellipse can be moved outside the window and "lost." A desirable and necessary effect is that all subsequent mouse
messages are sent to the window, including the WM_LBUTTONUP message, which would otherwise be lost. The Win32
ReleaseCapture() function turns off mouse capture.

The SetCursor() and LoadCursor() Win32 Functions

The MFC library does not "wrap" some Win32 functions. By convention, we use the C++ scope resolution operator (::)
when calling Win32 functions directly. In this case, there is no potential for conflict with a CView member function, but
you can deliberately choose to call a Win32 function in place of a class member function with the same name. In that
case, the :: operator ensures that you call the globally scoped Win32 function. When the first parameter is NULL, the
LoadCursor() function creates a cursor resource from the specified predefined mouse cursor that Windows uses. The
SetCursor() function activates the specified cursor resource. This cursor remains active as long as the mouse is
captured.

The CScrollView::OnPrepareDC Member Function

The CView class has a virtual OnPrepareDC() function that does nothing. The CScrollView class implements the
function for the purpose of setting the view's mapping mode and origin, based on the parameters that you passed to
SetScrollSizes() in OnCreate(). The application framework calls OnPrepareDC() for you prior to calling
OnDraw(), so you don't need to worry about it. You must call OnPrepareDC() yourself in any other message
handler function that uses the view's device context, such as OnLButtonDown() and OnMouseMove().

The OnMouseMove() Coordinate Transformation Code

As you can see, this function contains several translation statements. The logic can be summarized by the following
steps:

1. Construct the previous ellipse rectangle and convert it from logical to device coordinates.
2. Invalidate the previous rectangle.
3. Update the top left coordinate of the ellipse rectangle.
4. Construct the new rectangle and convert it to device coordinates.
5. Invalidate the new rectangle.

The function calls InvalidateRect() twice. Windows "saves up" the two invalid rectangles and computes a new
invalid rectangle that is the union of the two, intersected with the client rectangle.

The OnDraw() Function

The SetBrushOrg() call is necessary to ensure that all of the ellipse's interior pattern lines up when the user scrolls
through the view. The brush is aligned with a reference point, which is at the top left of the logical window, converted to
device coordinates. This is a notable exception to the rule that CDC member functions require logical coordinates.

The CScrollView SetScaleToFitSize() Mode

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the view window. The
Windows MM_ANISOTROPIC mapping mode comes into play, with one restriction: positive y values always increase in

the down direction, as in MM_TEXT mode. To use the stretch-to-fit mode, make the following call in your view's
function in place of the call to SetScrollSizes():

SetScaleToFitSize(sizeTotal);

You can make this call in response to a Shrink To Fit menu command. Thus, the display can toggle between scrolling
mode and shrink-to-fit mode.

Using the Logical Twips Mapping Mode in a Scrolling View

The MFC CScrollView class allows you to specify only standard mapping modes. You can use a new class,
CLogScrollView to accommodate the logical twips mode.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

