Module 5: The Modal Dialog and Windows Common Controls

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

The Modal Dialog and Windows Common Controls
Modal vs. Modeless Dialogs
Resources and Controls
Programming a Modal Dialog
The MYMFC7 Example
Building the Dialog Resource
Keyboard Accelerator

Aligning Controls
Selecting a Group of Controls
ClassWizard and the Dialog Class
Connecting the Dialog to the View
Understanding the MYMFC7 Application
Enhancing the Dialog Program
Taking Control of the OnOK() Exit
For Win32 Programmers
OnCancel () Processing
Hooking Up the Scroll Bar Controls
Identifying Controls: CWnd Pointers and Control IDs
Setting the Color for the Dialog Background and for Controls
For Win32 Programmers
Painting Inside the Dialog Window
Adding Dialog Controls at Runtime
Using Other Control Features
For Win32 Programmers
Windows Common Controls
The Progress Indicator Control
The Trackbar Control
The Spin Button Control
The List Control
The Tree Control
The WM_NOTIFY Message
The MYMFC8 Example
About Icons
Other Windows Common Controls

The Modal Dialog and Windows Common Controls

Almost every Windows-based program uses a dialog window to interact with the user. The dialog might be a simple OK
message box, or it might be a complex data entry form. Calling this powerful element a dialog "box" is an injustice. A
dialog is truly a window that receives messages, that can be moved and closed, and that can even accept drawing
instructions in its client area. The two kinds of dialogs are modal and modeless.

Modal vs. Modeless Dialogs

The CDialog base class supports both modal and modeless dialogs. With a modal dialog, such as the Open File
dialog, the user cannot work elsewhere in the same application more correctly, in the same user interface thread until the
dialog is closed. With a modeless dialog, the user can work in another window in the application while the dialog
remains on the screen. Microsoft Word's Find and Replace dialog is a good example of a modeless dialog; you can edit
your document while the dialog is open. Your choice of a modal or a modeless dialog depends on the application. Modal
dialogs are much easier to program, which might influence your decision.

Resources and Controls

So now you know a dialog is just a window. What makes the dialog different from the CView windows you've seen
already? For one thing, a dialog window is almost always tied to a Windows resource that identifies the dialog's
elements and specifies their layout. Because you can use the dialog editor that is one of the resource editors to create and
edit a dialog resource, you can quickly and efficiently produce dialogs in a visual manner.

A dialog contains a number of elements called controls. Dialog controls include edit controls (aka text boxes), buttons,
list boxes, combo boxes, static text (aka labels), tree views, progress indicators, sliders, and so forth. Windows manages
these controls using special grouping and tabbing logic and that relieves you of a major programming burden. The
dialog controls can be referenced either by a CWnd pointer (because they are really windows) or by an index number
(with an associated #deTine constant) assigned in the resource. A control sends a message to its parent dialog in
response to a user action such as typing text or clicking a button.

The MFC Library and ClassWizard work together to enhance the dialog logic that Windows provides. ClassWizard
generates a class derived from CDialog and then lets you associate dialog class data members with dialog controls.
You can specify editing parameters such as maximum text length and numeric high and low limits. ClassWizard
generates statements that call the MFC data exchange and data validation functions to move information back and
forth between the screen and the data members.

Programming a Modal Dialog

Modal dialogs are the most frequently used dialogs. A user action (a menu choice, for example) brings up a dialog on
the screen, the user enters data in the dialog, and then the user closes the dialog. Here's a summary of the steps to add a
modal dialog to an existing project:

1. Use the dialog editor to create a dialog resource that contains various controls. The dialog editor updates the
project's resource script (RC) file to include your new dialog resource, and it updates the project's resource.h
file with corresponding #define constants.

2. Use ClassWizard to create a dialog class that is derived from CDialog and attached to the resource created in
step 1. ClassWizard adds the associated code and header file to the Microsoft Visual C++ project.

When ClassWizard generates your derived dialog class, it generates a constructor that invokes a CDialog
modal constructor, which takes a resource ID as a parameter. Your generated dialog header file contains a class
enumerator constant I1DD that is set to the dialog resource ID. In the CPP file, the constructor implementation
looks something like this:

CMyDialog: :CMyDialog(CWnd* pParent /*=NULL*/) : CDialog(CMyDialog::IDD,
pParent)
{

}

// initialization code here

The use of enum 1DD decouples the CPP file from the resource IDs that are defined in the project's resource.h

file.

Use ClassWizard to add data members, exchange functions, and validation functions to the dialog class.

Use ClassWizard to add message handlers for the dialog's buttons and other event-generating controls.

5. Write the code for special control initialization (in OnInitDialog()) and for the message handlers. Be sure
the CDialog virtual member function ONOK() is called when the user closes the dialog unless the user
cancels the dialog). The ONOK () is called by default.

6. Write the code in your view class to activate the dialog. This code consists of a call to your dialog class's
constructor followed by a call to the DoModal () dialog class member function. DoModal () returns only
when the user exits the dialog window.

W

Now we'll proceed with a real example, one step at a time.

The MYMFC7 Example

http://www.tenouk.com/Module10.html

Let's not mess around with wimpy little dialogs. We'll build a monster dialog that contains almost every kind of control.
The job will be easy because Visual C++'s dialog editor is there to help us. The finished product is shown in the
following Figure.

Dialog box MFC example

Hame |F'|:|rter, Harry Skill [Simple comba box) Dept [List bowx)

|E:-:e-:utive

Cancel

Aocounting

55N |123455?s M anager Hoar Balations Special
. Security
Eia Like to da Prograrmmer

4l

progrannming far fun

*
Education [Dropdown combo] Language [Droplist comba) l;g

|High School j | Frenich j

Cateqary
" Hourly

{+ Salamy

Insurance Loyalty

[Life ﬂ J ﬂ

H iy Rieliahilty

[+ Medical ﬂ J ﬂ

Figure 1: The finished dialog of the MYMFC7 project.

As you can see, the dialog supports a human resources application. These kinds of business programs are fairly boring,
so the challenge is to produce something that could not have been done with 80-column punched cards. The program is
brightened a little by the use of scroll bar controls for "Loyalty" and "Reliability." Here is a classic example of direct
action and visual representation of data! Later on, ActiveX controls could add more interest.

Building the Dialog Resource
Here are the steps for building the dialog resource:
Run AppWizard to generate a project called MYMFC7. Choose New from Visual C++'s File menu, and then click the

Projects tab and select MFC AppWizard (exe). Accept all the defaults but two: select Single Document and deselect
Printing And Print Preview. The options and the default class names are shown here.

Mew Project Information E|

Apptafizard will create a new skeleton praject with the fallowing specifications:

Application tepe of mymfc?
Single Document Interface Application targeting:
Win32

Clazzes to be created:
Application: Ckymfc/a&pp in mymfc?.h and mymfc?.cpp
Frame: CMainFrame in MainFrm b and kainFrm.cpp
Document: Cymfc?Doc in mymfc?Doc. b and mymfc 70 oc.cpp
Wiew: Chymfc?iew in mymfc®iew.h and memfc ?iew. cpp

Features:
+ [nihal toalbar in main frame
+ |nitial ztatus bar in main frame
+ 30 Controls
+ Uszes shared DLL implement ation [MFC42.0LL)
+ Activer Controlz zupport enabled
+ Localizable test in:
Englizh [United States]

Froject Directory:
F:\mfcprojectsmymfcy

Cancel

Figure 2: MYMFC?7 project summary.
As usual, AppWizard sets the new project as the current project.

Create a new dialog resource with ID 1DD_DIALOG1 (the default given ID). Choose Resource from Visual C++'s
Insert menu. The Insert Resource dialog appears. Click on Dialog, and then click New. Visual C++ creates a new
dialog resource, as shown here.

Insert Project Build Tools

Mew Class. ..

Mew Farm. ..

Resource... Chkrl+R

ofm] Mews ATL Object...

Figure 3: Creating a new dialog resource through the Insert menu.

Insert Resource

Fezource type:
B Accelerator
EI Bitrnap Import...
+ B Cursor
- Dialag
IDD_DIALOGEAR Carizel
IDD_FORMYIEW
IDD_OLE_PROPPAGE_LARGE
IDD_OLE_PROPPAGE_SMaLL
IDD_PROPPAGE_LARGE
IDD_PROPPAGE_MEDILM =
IDD_PROPPAGE_SMaLL
[&] HTML

(9 leon -
== . —_

(>

I

Cuztom...

Figure 4: Inserting new dialog resource.

|

tomymfc? - Microsoft Visual C++ - [mymifcf.rc - IDD_DIALOGT (Dialog)] E@| B3
Betle £dt view Insert Project Buld Layout Tools Window Help - 1= x|
S SEH@ R s MEE | G winmain 2™
| x|

alx

= ' mymicT resowmces *
+ (2] Accelesator
=i {23 Dialog
=] 0D ABOUTBOX
= 100_DaLoGT
1123 leon
(2] Mery
[z} Strng Table
[Toolbe
(23 Vesion

B Ol Igﬁm.. |__i'| Fibe_..

3

2
4

+ 4+ O+ o+ 4

e b banal ..|.r

L
AHEGLToEEALE

Blido7iB=EaQ0 &
r]l <

A F T Build /Detwg FrdinFles1) FndinFles2 3 Resuls % SGL Debuogng / | 4 |

W g 5 ' B [f | EE i

Ready + 0.0 7 186«

Figure 5: Dialog resource editor.

The dialog editor assigns the resource 1D 1DD_DIALOG1 to the new dialog. Notice that the dialog editor inserts OK
and Cancel buttons for the new dialog.

Resize the dialog and assign a MyDialog caption. Enlarge the dialog box to about 5-by-7 inches.
When you right-click on the new dialog and choose Properties from the pop-up menu, the Dialog Properties dialog
appears. Type in the caption for the new dialog as shown in the screen below.

O e e P P PP P P PR B P o o
4 M Dialog box MFC example

Dialog Properties

%]
< ? General | Styles | bore Styles | Exstended Styles I r{ EE
: 1D: |IDD_DI£-‘~LEIG1 = | Captior: | Dialog box MFC exampld
n
: Font name: M5 Sans Serif M I ;I
Font zize: 8
Faont... | # Poz IEI ¥ Pos: IEI Clagzz narme: I

OF.

Cancel

Figure 6: Dialog’s properties.

The state of the pushpin button in the upper-left corner determines whether the Dialog Properties dialog stays on top

of other windows. When the pushpin is "pushed," the dialog stays on top of other windows.

Dialog Properties
(9

IC: IIDD_DI.-“—‘-.LEIG

General

Figure 7: The pushpin button, making the Dialog Properties staying on top.

Click the Toggle Grid button (on the Dialog toolbar) to reveal the grid and to help align controls.

JJEII[\Buim £ Debug % FindinFiles 1 % FindinFiles 2 5 Resuts % SOL Debugging / [4| |
|8 |peal b B | 2 = @ &
Feady

Figure 8: The dialog grid, helping the controls alignment on the dialog.

Dialog box MFC example

Ce Cancel .

_H
. N Ea
| IS < |

Figure 9: Dialog with grid.

You can test your dialog during the design stage by clicking the Test switch in the Dialog toolbar.

[s]

Figure 10: The dialog Test switch, testing your dialog during the design process.

Similar buttons and other utilities can also be accessed through the Layout menu.

Layout Tools ‘Window Help

Align
Space Evenly
Make Same Size

Arrange Buktbons

v ¥ v v v

Center in Dialog

Size to Comtent Shift+F7

At Size k
Flip

Tab Crder Chel+D

GuUide Setkings. ..

N Test Chrl+T

Figure 11: Accessing dialog’s editing utilities through Layout menu.

Set the dialog style. Click on the Styles tab at the top of the Dialog Properties dialog, and then set the style properties
as shown in the following illustration.

Dialog Properties X]

44 B Generl gSt_l,lles | More Styles | Extended Styles | k EE

Chyle: [v Title bar [Clip siblings
|P':'F"-‘F' :" v Systern mernu [Clip children
Border: [Minimize box I Horizontal zcrall

|Di‘3‘|':'El Frame :" [Magimize bos [Yertical scrall

Figure 12: Setting the dialog style.

Set additional dialog styles. Click on the More Styles tab at the top of the Dialog Properties dialog, and then set the
style properties as shown here.

Dialog Propetties X

4 B Generl | Stles More Styles | Extended Styles | k EE

[Spstem modal | Set foreground [Control

[Absolute align [3D-look [Center

v "J I:nla [Mo fail create [Center mouse
[Digabled [Moide message [Local edit

[Context Help

Figure 13: Setting additional dialog styles.

Add the dialog's controls. Use the control palette to add each control. If the control palette is not visible, right-click any
toolbar and choose Controls from the list. Drag controls from the control palette (shown below) to the new dialog and
then position and size the controls, as shown in Figure 1. Here are the control palette's controls.

Cont. F3)
Select=1 k E&-— Picture
Static Text ==4a abl-— Edit Box
Group Box =[] D=— Button
Check Box ==X ® =— Radjo Button
Combo Box —=EE EB=— List Box
Horizontal Scroll Bar =—=E B == Vertical Scroll Bar
Spin =—=% WE=— Progress
Slider == Ef=—Hot Key
List Control =i [E=— Tree Control
Tab Control == B *=— Animate
Rich Edit=—=28 == Date Time Picker*
Month Calendar* =& ==— |P Address®

Custom Control =% - Extended Combo Baox*

*Indicates a new Internet Explorer 4 common control introduced
in Visual C+ 6.0,

Figure 14: Available controls from Visual C++ control palette.

The dialog editor displays the position and size of each control in the status bar. The position units are special "dialog
units," or DLUs, not device units. A horizontal DLU is the average width of the dialog font divided by 4. A vertical
DLU is the average height of the font divided by 8. The dialog font is normally 8-point MS Sans Serif.

Here's a brief description of the dialog's controls, use drag and drop for the controls:

. The static text control for the Name field. A static text control simply paints characters on the screen. No
user interaction occurs at runtime. You can type the text after you position the bounding rectangle, and you
can resize the rectangle as needed. This is the only static text control you'll see listed in text, but you should
also create the other static text controls as shown earlier in Figure 6-1. Follow the same procedure for the
other static text controls in the dialog. All static text controls have the same ID, but that doesn't matter because
the program doesn't need to access any of them.

Text Propetties [

| Shyles | Extended Styles |

ID: |IDC_STATIC | Caption: [&Name

[v Wisible [Group [HelplD
| Dizabled | Tab stop

Figure 15: Setting The static text control.
Keyboard Accelerator

A static text control (such as Name or Skill) has an ampersand (&) embedded in the text for its caption. At
runtime, the ampersand will appear as an underscore under the character that follows. This keyboard
accelerator or short cut key, enables the user to jump to selected controls by holding down the Alt key (or Ctrl
or Shift) and pressing the key corresponding to the underlined character. The related control must
immediately follow the static text in the tabbing order. Thus, Al't-N jumps to the Name edit control and
Alt-K jumps to the Skill combo box. Needless to say, designated jump characters should be unique within
the dialog. The Skill control uses Alt-K because the SSN control uses Al't-S. Unfortunately the keyboard
accelerator not works in this example because we need extra step to make it function and will be shown in
another Module. The extra step is setting the key through the Accelerator resource as shown below.

2lx [ID | Key | Type
o ID_EDIT_COPY Cil+C VIRTKEY
B oosirator ID_FILE_MEW Chrl + N VIRTKEY
Qs KTy | | ID_FILE_OPEN Cirl + 0 VIRTKEY
g |DEMAIHEEih ID_FILE_SA&VE Ctl+5 VIRTKEY
+- (] Dialag ID_EDIT_PASTE Chl + VIRTKEY
+-(leon ID_EDIT_LUNDQ Al + WK_BACK VIRTKEY
[0 Meru ID_EDIT_CUT Shift +4¥_DELETE VIRTKEY
+- [String Table ID_MEXT_PAME WE_FE VIRTKEY
-5 Tookar ID_PREY PAME Shift +WK_FE VIRTKEY
-5 Version ID_EDIT_COPY Ctrl + WE_INSERT VIRTKEY
ID_EDIT_PASTE Shift +WK_INSERT VIRTKEY
ID_EDIT_CUT Cirl + VIRTKEY
ID_EDIT_LUNDQ Crl + 2 VIRTKEY

Figure 16: Assigning the keyboard accelerator through the ResourceView.

The Name edit control. An edit control is the primary means of entering text in a dialog. Right-click the
control, and then choose Properties. Change this control's ID from 1DC_EDIT1 to IDC_NAME. Accept the
defaults for the rest of the properties. Notice that the default sets Auto HScrol 1, which means that the text
scrolls horizontally when the box is filled.

The SSN (social security number) edit control. As far as the dialog editor is concerned, the SSN control is
exactly the same as the Name edit control. Simply change its ID to IDC_SSN. Later you will use ClassWizard
to make this a numeric field.

Edit Properties [

A ? | Styles | Extended Stulez |
ID: |IDC_55M |

[v Wisible [Group [HelplD
| Dizabled Iv Tab stop

Figure 17: Modifying the SSN edit control properties.

The Bio (biography) edit control. This is a multiline edit control. Change its ID to IDC_B10, and then set its

properties as shown here.

Edit Properties E
4 B General | Extended Styles |

Align text: [Horigontal serall [v Border

Left T [AuwoHScral T Mohide selection [Uppercase

[v Multiline [Wertical serall T OEM convert [Lowercaze

[Mumber [AutoYScral [wiant returm [Read-only

Figure 18: Modifying the Bio (biography) edit control properties.

The Category group box. This control serves only to group two radio buttons visually. Type in the caption
Category. The default ID is sufficient.

The Hourly and Salary radio buttons. Position these radio buttons inside the Category group box. Set the
Hourly button's ID to IDC_CAT and set the other properties as shown here.

Radio Button Properties IEI
= ? General | Styles | Estended Stules |

ID: |IDC_CAT | Captior: |Hourly

v “izible [HelplD

[Disabled

Figure 19: Modifying the radio button properties.

e}

Radio Button Properties

—a ? eneral | Styles | Estended Stules |

ID: |IDC_R&DIOZ | Captior: |Salary

v izible [Group [HelplD
[Disabled :

Figure 20: Modifying the second radio button properties.

Be sure that both buttons have the Auto property (the default) on the Styles tab set and that only the Hourly
button has the Group property set. When these properties are set correctly, Windows ensures that only one of
the two buttons can be selected at a time. The Category group box has no effect on the buttons' operation.

The Insurance group box. This control holds three check boxes. Type in the caption Insurance.
Later, when you set the dialog's tab order, you'll ensure that the Insurance group box follows the last radio
button of the Category group. Set the Insurance control's Group property now in order to "terminate" the
previous group. If you fail to do this, it isn't a serious problem, but you'll get several warning messages when
you run the program through the debugger.

Group Box Properties E
@ B General | Shles | Extended Styles |

ID: |IDC_STATIC | Caption: |#Insurance

v izible
[Disabled

[~ HelplID

Figure 21: Modifying the Insurance group box properties.

The Life, Disability, and Medical check boxes. Place these controls inside the Insurance group box. Accept
the default properties, but change the IDs to IDC_LIFE, IDC_DIS, and I1DC_MED. Unlike radio buttons,
check boxes are independent; the user can set any combination.

Check Box Propetties [

ID: |IDC_LIFE | Caption: |Life

[v Wisible [Group [HelplD
| Dizabled Iv Tab stop

Figure 22: Modifying the Life, Disability, and Medical check boxes properties.

The Skill combo box. This is the first of three types of combo boxes. Change the ID to IDC_SKILL, and
then click on the Styles tab and set the Type option to Simple. Click on the Data tab, and add three skills
(terminating each line with Ctrl-Enter) in the Enter Listbox Items box.

)

Comhbo Box Properties

—a ? General | Drata | Extended Styles |
Type:
- [Sort [Auto HScroll
Simple -
[Wertical scrall [Dizable no zcroll
Dwner draw:
Mo - [Mointegral height [Uppercase
r [OEM corwvert [Lowercaze

Figure 23: Modifying the SKill combo box properties.

Ed)

Combo Box Properties

4 R General gData | Styles | Extended Styles |

E nker b anager
listhax |Executive
ikermns: Prograrmrmer

Figure 24: Adding the listbox item.

This is a combo box of type Simple. The user can type anything in the top edit control; use the mouse to select
an item from the attached list box, or use the Up or Down direction key to select an item from the attached list
box.

The Educ (education) combo box. Change the ID to 1DC_EDUC; otherwise, accept the defaults. Add the
three education levels in the Data page, as shown in Figure 25. In this Dropdown combo box, the user can
type anything in the edit box, click on the arrow, and then select an item from the drop-down list box or use
the Up or Down direction key to select an item from the attached list box.

Comhbo Box Properties IE
—a ? General Data | Styles | Extended Styles |

E nker Colleqe
listhax |Grad School
itemns; High School

Figure 25: Modifying the Educ (education) combo box.
Aligning Controls

To align two or more controls, select the controls by clicking on the first control and then Shift-clicking on the
other controls you want to align. Next choose one of the alignment commands (Left, Horiz.Center, Right, Top,
Vert.Center, or Bottom) from the Align submenu on the dialog editor's Layout menu. To set the size for the
drop-down portion of a combo box, click on the box's arrow and drag down from the center of the bottom of
the rectangle.

- - Skill [Simple comba boxl - - - -
. O R AR [SOOI OO TIF

s =

e Sy a- -

- ; Education [Dropdonn combo)

g = EARR AR | R fu)
i =

Figure 26: Aligning controls on the dialog.

Layout Tools Window Help

S
Space Evenly r Hariz. Center Shift+F3
[Make Same Size ¥ 23 Right Chrl+Right Arrow
Arrange Buttons P22 Top ChrlH-Up Arro
Center in Dialog » vert, Center Fa
E Botkom ChrlH-Doven Arrow
Auto Size L R
Fip - Bkl [Simple combo box]
Tab Order Chrl+D oo :j:j|
Guide Settings. .. 20 oo o0
Y Test Chrl+T e

Figure 27: Using sub menus under the Layout menu for controls alignment etc.

The Dept (department) list box. Change the ID to 1DC_DEPT; otherwise, accept all the defaults. In this list
box, the user can select only a single item by using the mouse, by using the Up or Down direction key, or by
typing the first character of a selection. Note that you can't enter the initial choices in the dialog editor. You'll
see how to set these choices later.

Lisk Box Properties E
4 ® Genesl | Shles | Extended Styles |

[InBICC DEPT -

v izible [~ Group [~ HelplID
[Disabled I Tab stop

Figure 28: Modifying the Dept (department) list box properties.

The Lang (language) combo box. Change the ID to 1DC_LANG, and then click on the Styles tab and set the
Type option to Drop List. Add three languages (English, French, and Spanish) in the Data page. With this
Drop List combo box, the user can select only from the attached list box. To select, the user can click on the

arrow and then select an entry from the drop-down list or the user can type in the first letter of the selection
and then refine the selection using the Up or Down direction key.

Combo Box Properties IE
i ? General | Drata | Styles | Extended Styles |

ID: |IDC_LANG -

v izible [Group [HelplID
[Dizabled Iv Tab stop

Figure 29: Moditying the Lang (language) combo box.

The Loyalty and Reliability scroll bars. Do not confuse scroll bar controls with a window's built-in scroll
bars as seen in scrolling views. A scroll bar control behaves in the same manner as do other controls and can
be resized at design time. Position and size the horizontal scroll bar controls as shown previously in Figure 1,
and then assign the IDs 1DC_LOYAL and IDC_RELY.

Scroll Bar Properties X
4 B Genersl | Shyles |

ID: |IDC_RELY] |
v izible I Group [HelplID
[Dizabled [Tabstop

Figure 30: Modifying the Loyalty and Reliability scroll bar properties.

Selecting a Group of Controls

To quickly select a group of controls, position the mouse cursor above and to the left of the group. Hold down
the left mouse button and drag to a point below and to the right of the group, as shown here.

— @ Mowve the mouse cursor hera.
Hold down the left mouse button, and...

Lonalty

< |—
Beliability

| |—

! 3, ...drag the mouse cursor here.

Figure 31: How to select a group of controls on the dialog.

. The OK, Cancel, and Special pushbuttons. Be sure the button captions are OK, Cancel, and Special, and
then assign the ID 1DC_SPECIAL to the Special button. Later you'll learn about special meanings that are
associated with the default IDs IDOK and IDCANCEL.

Push Button Properties [
A ? General | Styles | Extended Stulez |

ID: |IDC_SPECIAL | Caption: |Stpecial

[v Wisible [Group [HelplD
| Dizabled Iv Tab stop

Figure 32: Modifying the Special pushbutton properties.

. Any icon. (The MFC icon is used as an example.) You can use the Picture control to display any icon or
bitmap in a dialog, as long as the icon or bitmap is defined in the resource script. We'll use the program's MFC
icon, identified as IDR_MAINFRAME. Set the Type option to Icon, and set the Image option to
IDR_MAINFRAME. Leave the ID as IDC_STATIC.

Picture Properties EI
| Styles | Estended Stules |
ID: [IDE_STATIC | Twpe icon Ea
v Wisible [Group Image: |IDR_MAINFRAME +|
[Disabled [Tabstop | J
[HelplID

Figure 33: Using the Picture control to display any icon.

Check the dialog's tabbing order. Choose Tab Order from the dialog editor's Layout menu. Use the mouse to set the
tabbing order shown below. Click on each control in the order shown, and then press Enter.

Layout Tools ‘wWindow Help

Aligr 3
Space Evenly k
Make Same Size »
Arrange Butkons L4
Center in Dialog »
Auta Size 4
Flip
Tab Crder Chrl+D
Guide Settings. ..
¥ Test Chrl+T

Figure 34: Viewing and setting the tab order.

M Dialog box MFC example

OF.

me % %[Simple combo box) [List bo] Earcel
h | mSEEEiaI

m:aticun [Dropdoven combio) E“guage [Drroplist cornbo) %

Eﬁw |
ourly

malar_u

mance ﬂlt}l
| IfE »
!ﬂ)isahility -'!

bility

edical _tJ

Figure 35: The tab order of the controls.

If you mess up the tab sequence partway through, you can recover with a Ctrl-left mouse click on the last correctly
sequenced control. Subsequent mouse clicks will start with the next sequence number.

Save the resource file on disk. For safety, choose Save from the File menu or click the Save button on the toolbar to
save mymfc7.rc. Keep the dialog editor running, and keep the newly built dialog on the screen.

ClassWizard and the Dialog Class
You have now built a dialog resource, but you can't use it without a corresponding dialog class. (The section titled
"Understanding the MYMFC7 Application" explains the relationship between the dialog window and the underlying

classes.) ClassWizard works in conjunction with the dialog editor to create that class as follows:

Choose ClassWizard from Visual C++'s View menu (or press Ctrl-W). Be sure that you still have the newly built dialog,
IDD_DIALOG1, selected in the dialog editor and that MYMFC?7 is the current Visual C++ project.

Add the CMymFfc7Dialog class. ClassWizard detects the fact that you've just created a dialog resource without an
associated C++ class. It politely asks whether you want to create a class, as shown below.

Adding a Class

IDD_DIALOGT iz a new rezource. Sinceitis a
dialog resource you probably want to create a
new clazs for it You can alzo select an existing

Cancel
classz.

i

[Select an exizting class

Figure 36: A new class creation dialog prompt.

Accept the default selection of Create A New Class, and click OK. Fill in the top field of the New Class dialog, as
shown here.

Clazz infarmatian
Harme: Chdymfc?Dialog
Cancel

File name: tyrfc7Dialog. cpp

LChange. ..
Baze class: |I:Dia||:|g j
Dialog 1D: |IDD_DISLOG1 -]
Autamation
* Mone

" Autarnation
~

Figure 37: New class information dialog.

Add the CMymFc7Dialog variables. After ClassWizard creates the CMymFc7Dial og class, the MFC ClassWizard
dialog appears. Click on the Member Variables tab, and the Member Variables page appears, as shown here.

MFEC ClassWizard

tMezzage Maps: Member Yanables | Autamation | Activer Events | Clazz Info |

Project: Clazs name: Add Clazs. =

mymfcy | Chymic?alog j
) . Add Vaniable...
F:h Amymfe@Mombc fDialog b, Fhsmymfc Abomfc 7Dialog.cpp

Contral |De: Type bl ember

Lepe 3
oo |

J

IDC_DEFT
IDC_DIS
IDC_EDU
IDC_LANG
IDC_LIFE -
IDC_LOvaL
IDC_MED
IDC_NAME

IDC SCROLLBAR:Z

54

Description:

ak. | Cancel

Figure 38: Adding the CMymFfc7Dialog variables through the Member Variables page of the ClassWizard.

You need to associate data members with each of the dialog's controls. To do this, click on a control ID and then click
the Add Variable button. The Add Member Variable dialog appears, as shown in the following illustration.

Add Member Variable

kember variable name;

m_| i
__Cencel |

Cancel
LCategony:

|‘Jalue j

Y ariable type:

| CString ﬂ

Description:

CString with length vvalidation

Figure 39: Adding member variable’s category and type.

Type in the member variable name, and choose the variable type according to the following table. Be sure to type in the
member variable name exactly as shown; the case of each letter is important. For the Category, select Value for all the

member variable. When you're done, click OK to return to the MFC ClassWizard dialog. Repeat this process for each of
the listed controls.

Control ID Data Member | Type
IDC BIO m_strBio CString
IDC_CAT m_nCat int
IDC_DEPT | m_strDept CString
IDC_DIS m_blInsDis BOOL
IDC_EDUC | m_strEduc CString
IDC_LANG | m_nLang int
IDC LIFE | m blInsLife | BOOL
IDC_LOYAL | m_nLoyal int
IDC_MED m_blInsMed BOOL
IDC_NAME | m_strName CString
IDC_RELY | m_nRely int
IDC_SKILL | m_strSkill | CString
IDC_SSN m_nSsn int

Table 1: Member variables for MYMFC?7 controls

MFEC ClassWizard

tMezzage Maps: Member Yanables | Autamation | Activer Events | Clazz Info |

Project; Clazz name:

mymfc7 ~| |CMymic7Dialog |
F:h Amymfe@Mombc fDialog b, Fhsmymfc Abomfc 7Dialog.cpp

Add Clazs.. =
Add Vaniable...

Contral |0 Type bdember Delete Variable |
IDC_RBIO C5tring m_strBio ”
IDC_CAT it m_niCat
IDC_DEPT CString m_zstrDept
IDC_DIS BooL m_blnzDis
IDC_EDU CString rn_ztiE duc
IDC_LAMG ift m_nLang
IDC_LIFE BooL m_blnsLife
IDC_LOYAL itk rn_nLayal
IDC_MED BOOL m_blnskded
IDC_MAME CString m_ztit ame
IDC RELY ikt m nRely v

Description: it with walidation

Minirnurm W alue:

—
—

b airnum W alue:

ak. | Cancel

Figure 40: Member variables added when seen through the ClassWizard’s Member Variables page.

As you select controls in the MFC ClassWizard dialog, various edit boxes appear at the bottom of the dialog. If you
select a CString variable, you can set its maximum number of characters; if you select a numeric variable, you can set
its high and low limits. Set the minimum value for IDC_SSN to 0 and the maximum value to 999999999.

IDC S5 rm_nS sn

Description: int with walidation

Pinimum ' alue; 1
b axirurn Y allie: 939339339

Figure 41: Setting the minimum and maximum value of the member variable for data validation.

Most relationships between control types and variable types are obvious. The way in which radio buttons correspond to
variables is not so intuitive, however. The CDialog class associates an integer variable with each radio button group,
with the first button corresponding to value 0, the second to 1, and so forth.

Add the message-handling function for the Special button. CMymFc7Dialog doesn't need many message-handling
functions because the CDialog base class, with the help of Windows, does most of the dialog management. When you
specify the ID 1DOK for the OK button (ClassWizard's default), for example, the virtual CDialog function ONOK()
gets called when the user clicks the button. For other buttons, however, you need message handlers.

Click on the Message Maps tab. The ClassWizard dialog should contain an entry for IDC_SPECIAL in the Object IDs
list box. Click on this entry, and double-click on the BN_CL ICKED message that appears in the Messages list box.
ClassWizard invents a member function name, OnSpecial (), and opens the Add Member Function dialog, as

shown here.

Meszage Maps b ember Y ariables 1 Autamation] Active Events] Clazz Info 1

Praject: Clazs name: AddClass.. =

mymfc? | |CMymfc7Dialog | T
b, ..

F:h . smprnfe MMymfcDialog b, B mymfc P Mumfc 7 Dialog.cpp m
Object 10 Messages: Lielete Function

IDC_MAME ~ T

IDE_OK ~ |BN_DOUBLECLICKED Ehiee

IDC_RaDIOZ2

IDC_RELY '

IDC_SKILL Add Member Function

IDC_S5M o] tember function name; ITI
bember funchions:
. Y DoDataExchange Lo I
tMeszage; BM_CLICKED
Object 1D: IDC_SPECIAL
Description: |ndicates the uzer clicked a buttan

0k, Canicel

Figure 42: Adding the message-handling function for the Special button.

You could type in your own function name here, but this time accept the default and click OK. Click the Edit Code
button in the MFC ClassWizard dialog. This opens the file mymfc7Dialog.cpp and moves to the OnSpecial ()

function. Insert a TRACE statement in the OnSpecial () function by typing in the code shown below, which replaces
the existing code:

void CMymfc7Dialog: :OnSpecial ()

TRACE(""CMymfc7Dialog: :OnSpecial\n');

volid CHMymfc?Dialog: :OnSpecialil)

S TODD: Add yvour control notification handler code here
TRACE("CHymnfcYDialog: : OnSpecial~n");

Listing 1.

Use ClassWizard to add an OnInitDialog() message-handling function. As you'll see in a moment, ClassWizard
generates code that initializes a dialog's controls. This DDX (Dialog Data Exchange) code won't initialize the list-box
choices, however, so you must override the CDialog: :OnInitDialog function. Although OnInitDialog() is a
virtual member function, ClassWizard generates the prototype and skeleton if you map the WM_INITDIALOG message
in the derived dialog class.

To do so, click on CMymFc7Dialog in the Object IDs list box and then double-click on the WM_INITDIALOG
message in the Messages list box. Click the Edit Code button in the MFC ClassWizard dialog to edit the
OnInitDialog() function.

MFC ClassWizard

Mezzane Maps | b ember Y ariables | Autamation | Active Events | Clazz Info |

Project: Clazs name: Add Class.. =

myrmfcy | Chymfc?Dialog

Foh Amymfe#SMomfc 7Dialog b, 5 smymfe A Morfc 7Dialog.cpp g
Object |Ds: Messages: Delete Function

‘wi_DR&WITEM r
ID_APP_ABOUT — |wM_HELPINFO]
ID_APF_EXIT — |wh_HSCROLL

ID_EDIT_COFY
ID_EDIT_CUT wih_KEYDOWH 3
ID_EDIT_PASTE \wihi_KEYUP

ID_EDIT_UNDO v |wM_KILLFOCUS v

b ember functions:

Y DaoDataExchange

OnlnitDialog OM_wikd_INITDIALOG
W OnSpecial OMN_IDC_SPECIAL:BM_CLICKED
Description: Sent to a dialog box before the dialog box iz displayed

0k, Cancel

Figure 43: Adding an OnInitDialog() message-handling function through the ClassWizard.

Type in the following code, which replaces the existing code:

BOOL CMymfc7Dialog::OnlnitDialog()

// Be careful to call CDialog::OnInitDialog

// only once in this function

CListBox* pLB = (CListBox*) GetDIgltem(IDC_DEPT);
pLB->InsertString(-1, "Documentation');
pLB->InsertString(-1, "Accounting');
pLB->InsertString(-1, "Human Relations™);
pLB->InsertString(-1, "Security');

// Call after initialization
return CDialog::OnlnitDialog();

}

BOOL CHymic?Dialog: OnlnitDialogi)

i
Chialog: :OnInitDialogl):

L TODD: Add extra initialization here

¢ Be careful to call Chialog: OnlnitDialog

<« only once in this function

CLi=tBox* plE = (CLi=tBox#) GetDlgltem(IDC_DEFT):
pLE-:InsertString{—1. "Documentation"):;
pLE-:Ins=ertString(-1. "Accounting"):
pLE-:In=ertString(—1. "Human Eelation="):
pLE-:InsertString{-1. "Security");

< Call after initialization
return Chialog: OnInitDialogl):

Listing 2.
You could also use the same initialization technique for the combo boxes, in place of the initialization in the resource.
Connecting the Dialog to the View

Now we've got the resource and the code for a dialog, but it's not connected to the view. In most applications, you
would probably use a menu choice to activate a dialog, but we haven't studied menus yet. Here we'll use the familiar
mouse-click message WM_LBUTTONDOWN to start the dialog. The steps are as follows:

1. In ClassWizard, select the CMymFc7View class. At this point, be sure that MYMFC7 is Visual C++'s current
project.

2. Use ClassWizard to add the OnLButtonDown () member function. You've done this in the examples in
earlier Modules. Simply select the CMymFc7View class name, click on the CMymFc7View object ID, and
then double-click on WM_LBUTTONDOWN.

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfcy j | Chdypmfc i j -

Foh Ao mymfc Miew b, B Smymbc S momfc PYiew. cpp g
Object |0 Mezzages: Delete Function

Chuyrnfc Y igw A Wwid_HSCROLL ~
ID_APF_ABOUT E Wk _KEY DO M T
ID_&PP_ExIT Wid_EEYLIP

ID_EDIT_COPY B Wid_KILLFOCUS

ID_EDIT_CUT W _LBUTTOMDELCLE, -

ID_EDIT_PASTE WM LEUTTONDOWN
ID_EDIT_UMDO Wihd_LBUTTOMUP
kember functians:

Yo OnDraw

£
54

OnLButtanDown O _wftd_LBUTTOMDOWMN
YW PreCreatedindow

Description: |ndicates when left mouze button iz prezsed

ak. | Cancel

Figure 44: Mapping a WM_LBUTTONDOWN (clicking the left mouse button) message to object’s ID.

Write the code for OnLButtonDown () in file mymfc7View.cpp by clicking the Edit Code button. Add the
following code below. Most of the code consists of TRACE statements to print the dialog data members after
the user exits the dialog. The CMym¥c7Dialog constructor call and the DoModal () call are the critical
statements, however:

void CMymfc7View: :OnLButtonDown(UINT nFlags, CPoint point)

{

CMymfc7Dialog dlg;
dlg.m_strName "Porter, Harry";

dlg.m_nSsn 12345678;

dlg.m_nCat 1; // 0 = hourly, 1 = salary
dlg.m_strBio "Like to do programming for fun®;
dlig-m_blInsLife FALSE;

dlg.m_blInsDis TRUE;

dlg-m_blInsMed TRUE;

""Documentation’;
"Executive';

1;

"High School™;
dig.m_nRely = 50;

dlg.m_strDept
dig.m_strSkill
dlg.m_nLang
dlg.m_strEduc
dlg.m_nLoyal

int ret = dlg.DoModal();

TRACE(*'DoModal return = %d\n*, ret);
TRACE(*'name = %s, ssn = %d, cat = %d\n", dlg.m_strName, dlg.m_nSsn, dlg.m_nCat);
TRACE("'dept = %s, skill = %s, lang = %d, educ = %s\n",

dlg.m_strDept, dlg.m_strSkill, dlg.m_nLang, dlg.m_strEduc);
TRACE("life = %d, dis = %d, med = %d, bio = %s\n",

dlg.m_blnsLife, dlg.m_blnsDis, dlg.-m_blInsMed, dlg.m_strBio);
TRACE("loyalty = %d, reliability = %d\n", dlg.m _nLoyal, dlg.m nRely);

wolid CHymfc?View: OnlButtonDown(UINT nFlag=s., CPoint point)

1
S TODD: Add wour messzage handler code here andsor call defaunlt
CHyvmf=7Dialog dlg;
dlg. n_strHame = "Porter. Harrv":
dlg.m_nS=n = 12345878;
dlg.m_nCat =1; +» 0 = hourly. 1 = =zalarv
dlg.n_=trBio = "Like to do programming for fun”;
dlg.m_bIn=slife = FALSE:
dlg.m_bIn=sDis = TRUE;
dlg.m_bInsMed = TRUE:
dlg.m_strlept = "Documentation';
dlg. m_=trSkill = "Executive":
dlg.m_nLang = 1;
dlg.m_strEduc = "High School';
dlg. m_nLoval = dlg.m_nREelvy = &50;
int ret = dlg.DoModal():
TRACE("DoModal return = #d-n", ret);
TRACE("namne = %=, ==n = #d. cat = Zd~n".
dlg. n_strHame. dlg. m_nS=n. dlg. m_nCat):
TRACE({"dept = ¥=, =kill = ¥=, lang = kd, educ = X=~n".
dlg. m_strDept. dlg.m_strS5Skill, dlg. m_nLang, dlg. m_strEduc):
TRACE({"life = %d. di= = %d. med = %d. bio = XZ=~n".
dlg.m_bIn=slife. dlg . m_bln=Di=. dlg.m_blnsHed., dlg. m_strBio):
TRACE("lovalty = xd. reliability = Zd~n". dlg.m_nloval. dlg. m_nRelwv):
h

Listing 3.

Add code to the virtual OnDraw() function in file mymfc7View.cpp. To prompt the user to press the left mouse
button, code the CMymFc7View: :OnDraw function. The skeleton was generated by AppWizard. The following code
(which you type in) replaces the existing code:

void CMymfc7View: :OnDraw(CDC* pDC)

pDC->TextOut(50, 50, "Press the left mouse button to launch the funny dialog
box.");
}

vold CHymic?View: OnDraw(CDC* pDC)

A4 TODD: add drawv code for native data here

pDC—:»TextOut (50, 50, "Press the left mouse button |to launch the funny dialog box. ")

Listing 4.

To mymfc7View.cpp, add the dialog class include statement. The OnLButtonDown() function above depends on the
declaration of class CMymfc7Dialog. You must insert the following #include statement:

#include "mymfc7Dialog.h"
at the top of the CMymF¥c7View class source code file (mymfc7View.cpp), after the statement:

#include "mymfc7View.h"

S mymicyView. cpp © implementation

#include "=stdaf= h"
#include "mymic? R

#include "mymfc?Doc h”
finclude "mymic?View k"
finclude "mymfc?Dialog. h”

¥ifdef _DEBUG

#define new DEBUG_HEW

#undef THIS FILE

static char THIS_FILE[] = __ FILE :
#endif

Listing 5.

Build and test the application. If you have done everything correctly, you should be able to build and run the MYMFC7
application through Visual C++. Try entering data in each control, and then click the OK button and observe the TRACE
results in the Debug window. Notice that the scroll bar controls don't do much yet; we'll attend to them later. Notice
what happens when you press Enter while typing in text data in a control: the dialog closes immediately.

< Untitled - mymfc? M=E3
File Edit Yew Help

0= & 4

Press the left mouse button to launch the funny dialog box.

Ready

Figure 45: MYMFC?7 program output.

Dialog box MFC example

K

Marme |F'|:|rter, Harry Skill [Simple comba bax) Diept [List box] Cancel

|E:-:e-:utive

Accounting

55N |'I 2345673 b arager Human Flelations Special
. Security
Bio Like ta dao Prograrnmer

4,

programming for fun

W
Education [Dropdown combo] Language [Droplist comba) l;g
High 5 chaal | French j

Cat

= High Schodl
Howrly Collzge

' Salamy

Ingurance Layalty
[Life 1 ﬂ
id VT Reliabilty

v Medical F ﬂ

Figure 46: MYMFC7 program output when the left mouse button is clicked, full of controls.
Notice that our horizontal scroll bar is not working at this moment. Don’t worry, it is our next task.

Understanding the MYMFC7 Application

When your program calls DoModal (), control is returned to your program only when the user closes the dialog. If you
understand that, you understand modal dialogs. When you start creating modeless dialogs, you'll begin to appreciate the
programming simplicity of modal dialogs. A lot happens "out of sight" as a result of that DoModal () call, however.
Here's a "what calls what" summary:

CDialog: :DoModal
CMymfc7Dialog: :OnInitDialog
~additional initialization..
CDialog::OninitDialog
CWnd: :UpdateData(FALSE)
CMymfc7Dialog: :DoDataExchange
user enters data..
user clicks the OK button
CMymfc7Dialog: :OnOK
.additional validation..
CDialog: :0nOK
CWnd: :UpdateData(TRUE)
CMymfc7Dialog: :DoDataExchange
CDialog: :EndDialog(1DOK)

OnlnitDialog() and DoDataExchange() are virtual functions overridden in the CMymfc7Dialog class.
Windows calls OnInitDialog() as part of the dialog initialization process, and that results in a call to
DoDataExchange(), a CWnd virtual function that was overridden by ClassWizard. Here is a listing of that function:

wvolid CHMymfc?YDialog: :DoDataExzchange(ChataExchange* pDi)

1
CDialog: :DoDataExchangs(pDX) ;

SoLLAFE_DATA MAP(CHMymfc?Dialog)

DDE Text{phi, IDC_BID, m_strBio);

LD¥ _Fadioi{pD¥, IDC_CAT. m_nCat):

DDE _IBEString(pD¥, IDC_DEPT. m_=trDept):
LD¥_Checl({pD¥, IDC_DIS, m_blInsDi=):
DDE_CEString(pDX, IDC_EDU, m_=trEduc):
DD¥ CEBIndex(pDX, IDC LANG, m_nLlang):
LD¥_Checl(pD¥, IDC_LIFE. m_bInsLife):
DDE Scroll(pDi, IDC_TOVAL, m_nLowall:
DDE Checlk(pDi, IDC_MED, m_bln=Hed);
DDE_Texti(pDi. IDC_NAME, n_strHame):

DDE _Scroll(pDX, IDC_RELY., m_nEelw):
LD¥_CBString(pDE, IDC_SEILL, m_strSlkill):
DD¥_Text(pDE, IDC_S55SH., m_nS=n):

SoVYARE DATA MAP

Listing 6.

The DoDataExchange () function and the DDX_ (exchange) and DDV__ (validation) functions are "bidirectional." If
UpdateData() is called with a FALSE parameter, the functions transfer data from the data members to the dialog
controls. If the parameter is TRUE, the functions transfer data from the dialog controls to the data members. DDX_Text
is overloaded to accommodate a variety of data types. The EndDialog() function is critical to the dialog exit
procedure. DoModal () returns the parameter passed to EndDialog(). 1DOK accepts the dialog's data, and
IDCANCEL cancels the dialog. You can write your own "custom" DDX function and wire it into Visual C++. This
feature is useful if you're using a unique data type throughout your application.

Enhancing the Dialog Program

The MYMFC7 program required little coding for a lot of functionality. Now we'll make a new version of this program
that uses some hand-coding to add extra features. We'll eliminate MYMFC7's rude habit of dumping the user in response
to a press of the Enter key, and we'll hook up the scroll bar controls.

Taking Control of the OnOK() Exit

In the original MYMFC7 program, the CDialog: :OnOK virtual function handled the OK button, which triggered data
exchange and the exit from the dialog. Pressing the Enter key happens to have the same effect, and that might or might
not be what you want. If the user presses Enter while in the Name edit control, for example, the dialog closes
immediately. What's going on here? When the user presses Enter, Windows looks to see which pushbutton has the input
focus, as indicated on the screen by a dotted rectangle. If no button has the focus, Windows looks for the default
pushbutton that the program or the resource specifies. The default pushbutton has a thicker border. If the dialog has no
default button, the virtual ONOK () function is called, even if the dialog does not contain an OK button. You can disable
the Enter key by writing a do-nothing CMymFc7Dialog: :OnOK function and adding the exit code to a new function
that responds to clicking the OK button. Here are the steps:

1. Use ClassWizard to "map" the 1DOK button to the virtual ONOK() function. In ClassWizard, choose 1DOK
from the CMymFfc7Dialog Object IDs list, and then double-click on BN_CL ICKED. This generates the
prototype and skeleton for OnOK().

MFC ClassWizard

tezzage Maps tember Yarables I ALtomation | Activer Events | Clazz [nfo |

Project: Clazz name; Add Clazs. = l

mymfc7 ~| | CMymic7Dialog ~ —
hior....

F:A Ampmfc P MymbcfDialog.h, F:5 . smymfc P MumfcDialog. cpp m

Object [Ds: Messages: Ielete Function

IDC_MAME
IDC_Rabio:z Br_DOUELECLICKED
IDC_RELY
:BE:EE:ELI%I&L Add Member Function

IDC_S5M

[>

tember funchion name:

ook | | oK I
tember functions; iEIr'm |

<

Cancel

Y DaDatakschange
Meszage; BN _CLICKED

W OnlnitDialog OM_wh_[MITDIA :
W OnSpecial ON_IDC_SPECIa| Ubiect|D: IDOK
D ezcription; |ndizates the uzer clicked a buttan

k. l Cancel

Figure 47: Mapping the 1DOK button to the virtual ONOK() function.

2. Use the dialog editor to change the OK button ID. Select the OK button, change its ID from 1DOK to 1DC_OK,
and then uncheck its Default Button property. Leave the ONOK() function alone.

Push Button Properties X]
= ? General | Styles | Estended Stules I

ID: |IDC_K _v| Caption |OK

v Wizible [T Group [~ HelplD
[Disabled ¥ Tab stop

Figure 48: Changing the OK push button ID.

Push Button Properties [
A ? General Styles | Extended Stulez I

[Defagkbuthjrg [Multiline Harizontal alignrment;
[Ownerdraw [Motify IDefauIt |
[lgon [Flat Wertical alignment:

[Bitmap IDefauIt LI

Figure 49: Modifying the OK push button properties.

3. Use ClassWizard to create a member function called OnCl i ckedOk(). This CMymFc7Dialog class
member function is keyed to the BN_CL ICKED message from the newly renamed control 1DC_OK.

MFC ClassWizard

Mezzage Maps] Member ¥ ariables | Automation I Activel Events] Clazz Infao |

Project; Clazs name: Add Clags.. * j
myrnfcy _:r_j]EMymfc?DiaIDg __ﬂ ocdd Pt

k...
F:h smpmnfe AMymic P Dialog b, FA smypmbc P umfc7Dialog.cpp m

Object 10z Meszages;

IDC_LIFE ~

IDC_LOvAL = BM_DOUBLECLICKED

IDC_MED

L ME Add Member Function

IDC_RaDIOZ2 = i

IDC_RELY v Member function narne; 0 |
kember functions: iEI nClickedk

Canizel !

Y DaDataExchange

W OnlritDialog ON_wh_NiTDiq Messade: BN_CLICKED

W OnaK oN_Dok.gw_cyf DbisctiD: IDC_OK

W OnSpecial OM_IDC_SPECIALEN_CLICKED
Dezcription: Indicates the uzer clicked a button

] 4 Cancel

Figure 50: Creating an ONCl i ckedOk () member function and maps it to IDC_OK ID.

4. Edit the body of the OnCl ickedOk() function in mymfc7Dialog.cpp. This function calls the base class
OnOK() function, as did the original CMymFc7Dialog: :OnOK function. Here is the code:

void CMymfc7Dialog: :OnClickedOk()
TRACE(*"CMymfc7Dialog: :OnClickedOk\n'");

CDialog: :0nOKQ);
¥

vold CHymfcYDialog: :OnClickedOl()
S TODD: Add wour control notification handler code here

TRACE("CHymfz?Dialog: :OnClickeddk~n");
Chialog: :OnCE();

Listing 7.

Edit the original ONOK() function in mymfc7Dialog.cpp. This function is a "leftover" handler for the old 1DOK button.
Edit the code as shown here:

void CMymfc7Dialog: :OnOK()

// dummy OnOK function -- do NOT call CDialog::0nOKQ)
TRACE(**CMymfc7Dialog: :OnOK\n™);

}

vold CHymfcYDialog: :OnOE()

A4 TODD: Add extra walidation here
A dummy OnOE function —— do HOT call Chialog: OnOE()
TEACE("CHynf=?Dialog: :OnOE~n" 1 ;

Listing 8.

Build and test the application. Try pressing the Enter key now. Nothing should happen, but TRACE output should
appear in the Debug window. Clicking the OK button should exit the dialog as before, however.

Loaded "C:\WINDOWS\system32\mslbui.dlIl®, no matching symbolic information found.
Warning: skipping non-radio button in group.

CMymfc7Dialog: :OnClickedOk

Warning: skipping non-radio button in group.

DoModal return = 1

name = Porter, Harry, ssn = 12345678, cat = 1
dept = Documentation, skill = Executive, lang = 1, educ = High School
life = 0, dis =1, med = 1, bio = Like to do programming for fun

loyalty = 0, reliability = 0
The thread OxF64 has exited with code 0 (0x0).
The program "F:\mfcproject\mymfc7\Debug\mymfc7.exe" has exited with code 0 (0x0).

For Win32 Programmers

Dialog controls send WM_ COMMAND notification messages to their parent dialogs. For a single button click, for
example, the bottom 16 bits of wWParam contain the button ID, the top 16 bits of wParam contain the BN_CLICKED
notification code, and IParam contains the button handle. Most window procedure functions process these notification
messages with a nested switch statement. MFC "flattens out" the message processing logic by "promoting" control
notification messages to the same level as other Windows messages. For a Delete button (for example), ClassWizard
generates notification message map entries similar to these:

ON_BN_CLICKED(IDC_DELETE, OnDeleteClicked)
ON_BN_DOUBLECL ICKED(IDC_DELETE, OnDeleteDblIClicked)

Button events are special because they generate command messages if your dialog class doesn't have notification
handlers like the ones above. As Module 13 explains, the application framework "routes" these command messages to
various objects in your application. You could also map the control notifications with a more generic ON_ COMMAND
message-handling entry like this:

ON_COMMAND(IDC_DELETE, OnDelete)

In this case, the OnDe lete () function is unable to distinguish between a single click and a double click, but that's no
problem because few Windows-based programs utilize double clicks for buttons.

OnCancel () Processing

Just as pressing the Enter key triggers a call to OnOK(), pressing the Esc key triggers a call to OnCancel (), which
results in an exit from the dialog with a DoModal () return code of IDCANCEL. MYMFC7 does no special processing
for IDCANCEL,; therefore, pressing the Esc key (or clicking the Close button) closes the dialog. You can circumvent this
process by substituting a dummy OnCance I () function, following approximately the same procedure you used for the
OK button.

Hooking Up the Scroll Bar Controls

http://www.tenouk.com/cnwin32tutorials.html

The dialog editor allows you to include scroll bar controls in your dialog, and ClassWizard lets you add integer data
members. You must add code to make the Loyalty and Reliability scroll bars work. Scroll bar controls have position
and range values that can be read and written. If you set the range to (0, 100), for example, a corresponding data member
with a value of 50 positions the scroll box at the center of the bar. The function CScrol IBar : :SetScrol IPos also
sets the scroll box position. The scroll bars send the W_HSCROLL and WM_VSCROLL messages to the dialog when the
user drags the scroll box or clicks the arrows. The dialog's message handlers must decode these messages and position
the scroll box accordingly.

Each control you've seen so far has had its own individual message handler function. Scroll bar controls are different
because all horizontal scroll bars in a dialog are tied to a single WM_HSCROLL message handler and all vertical scroll
bars are tied to a single WM_VSCROLL handler. Because this monster dialog contains two horizontal scroll bars, the
single WM_HSCROLL message handler must figure out which scroll bar sent the scroll message. Here are the steps for
adding the scroll bar logic to MYMFCT7:

Add the class enum statements for the minimum and maximum scroll range. In mymfc7Dialog.h, add the following
lines at the top of the class declaration:

enum { nMin
enum { nMax

0 };
100 };

S CHymfc?Dialog dialog

class CMymic?Dialog @ public Chialog
1

enun |1 nMin
enumn | nlax

]
o
—

£ Construction

Listing 9.

Edit the OnInitDialog() function to initialize the scroll ranges. In the OnInitDialog() function, we'll set the
minimum and the maximum scroll values such that the CMymfc7Dialog data members represent percentage values. A
value of 100 means "Set the scroll box to the extreme right"; a value of 0 means "Set the scroll box to the extreme left."
Add the following code to the CMymFfc7Dialog member function OnInitDialog() in the file mymfc7Dialog.cpp:

CScrollBar* pSB = (CScrollBar*) GetDIgltem(IDC_LOYAL);
pSB->SetScrollRange(nMin, nMax);

pSB = (CScrollBar*) GetDIgltem(IDC_RELY);
pSB->SetScrol IRange(nMin, nMax);

BOOL CHMyvmfcYDialog: :OnlInitDialogl)

1
Chialog: :OnInitDialogi):

S« TODD: Add extra initialization here

¢ Be careful to call Chialog: :OnInitDialog

<« only once in this function

CLi=tBox* plE = [(CLi=tBox*) GetDlgltem(IDC_DEFPT):
pLB-:In=ertString(—1. "Documentation”):
pLE-:InsertString{—-1. "Accounting"):
pLB-:In=ertString(—1. "Human REelations"):
pLE-:InsertString{-1. "Securitv"):;

CScrollBar#* pSEB = (CScrollBar#) GetDlgltem{ IDC_LOYALY
pSEB-:SetScrollRange({nMin, nMax);

| pSE = (CScrol g
pSB-:5etScrol [void _ thiscal CScrollB ar: S etScrollR angelintint int]

<+ Zall after initialization
return Chialog: OnInitDialogi);

Listing 10.

Use ClassWizard to add a scroll bar message handler to CMymfc7Dialog. Choose the WM_HSCROLL message, and
then add the member function OnHScrol1().

MFEC ClassWizard

Mezzage Maps b ember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazz name: Add Class..
mymfcy j | Chymic?alog j -

F:h Amymfe@sMomfc fDialog b, Fh . Ssmymfc A omfc 7Dialog.cpp g
Object |0z Mezsages: Delete Function

"W HELPIMFO rY

ID_APP_ABOUT

ID_AFFP_EXIT WH_INITDIALOG

ID_EDIT_COFY Wihd_EETDIOW N

ID_ECIT_CUT Wit _FEYLUIP

ID_EDIT_PASTE Wikd_KILLFOCUS

ID_EDIT_UMDO b Wk _LBUTTOMDBLCLE. b
b ember functions:

YW DaoDataExchange L

W OnClickedOE OM_IDC_0Ok:BM_CLICKED

OnHSzrall wfh_HSCROLL

W OnlnitDialog OMN_wWikd_INITDIALDG

W OnOk OM 1ID0E:BM CLICKED b/
Description: |ndizates a click in a horizantal zoroll bar

0k, Cancel

Figure 51: Adding a scroll bar message handler to CMymfc7Dialog.

Click the Edit Code button and enter the following code:

void CMymfc7Dialog: :OnHScrol I (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{
int nTempl, nTemp2;

nTempl = pScrollBar->GetScrollPos();

switch(nSBCode) {

case SB_THUMBPOSITION:
pScrolIBar->SetScrol IPos(nPos);
break;

case SB_LINELEFT: // left arrow button
nTemp2 = (nMax - nMin) / 10;
if ((nTempl - nTemp2) > nMin) {

nTempl -= nTemp2;

}

else {
nTempl = nMin;

¥
pScrol1Bar->SetScrol IPos(nTempl);
break;
case SB_LINERIGHT: // right arrow button
nTemp2 = (nMax - nMin) / 10;
if ((nTempl + nTemp2) < nMax) {
nTempl += nTemp2;

else {
nTempl = nMax;

}
pScrol1Bar->SetScrol IPos(nTempl);
break;

}

vold CHMymfcYDialog: :OnHScroll (UINT nSBCode, UINT nPos.

{

CScrollBar* pScrollBar)

S TODD: Add wour messzage handler code here andsor call default

int nTempl., nTenp?:

nTempl = pScrollBar-:GetScrollPos();

switchi{nSBCode)

casze SE_THUMEPOSITION:
pScrollBar—-:5etScrol l1Pos(nPo=s) ;
break:

caz=e SB_LINELEFT: -« left arrow button
nTemp? = (nMax - nMin) ~ 10;
1f {{nTempl - nTempZ) > nMin) {

nTempl —= nTemnp?:

el=ze {
nTempl = nMin:

I
pScrollBar—:5etScrol 1Pos{nTenpl) ;
brealk:
caze SBE_LINERIGHT: - right arrow button
nTemp? = (nMax - nMin) ~ 10;
if {{nTempl + nTemp2) < nMazx) {
nTempl += nTemp?:

el=ze {
nTempl = nMax:

b
pScrollBar-:5SetScrollPos(nTenpl) ;
brealk:

Listing 11.

The scroll bar functions use 16-bit integers for both range and position.

Build and test the application. Build and run MYMFC7 again. Do the scroll bars work this time? The scroll boxes should
"stick" after you drag them with the mouse, and they should move when you click the scroll bars' arrows. Notice that we
haven't added logic to cover the user's click on the scroll bar itself.

Dialog box MFC example

Name |F'|:|rter, Harry Skill [Simple combo box) Dept [List box) Cancel

|E:-:e-:utive

Aocounting .
= |1 2345678 Manager Hurnan Relations Special
. Security
Bio Like to da Frogrammer

progrannming for fun

4l

*
Education [Dropdown combo] Language [Droplist comba) l;g

High School — +| |Enalish =l

Cateqary -

e Englizh

f Houry French

f* Salany SPANET
Insurance Loyalty

e < | ol

v Diizability

Beliability

[+ Medical ﬂ J ﬂ

Figure 52: New MYMFC7 program output activating the scroll bars.
Identifying Controls: CWnd Pointers and Control IDs

When you lay out a dialog resource in the dialog editor, you identify each control by an ID such as IDC_SSN. In your
program code, however, you often need access to a control's underlying window object. The MFC library provides the
CWnd: :GetDIgltem function for converting an ID to a CWnd pointer. You've seen this already in the
OnInitDialog() member function of class CMymFfc7Dialog. The application framework "manufactured" this
returned CWnd pointer because there never was a constructor call for the control objects. This pointer is temporary and
should not be stored for later use. If you need to convert a CWnd pointer to a control ID, use the MFC library
GetDIgCtr1D() member function of class CWnd.

Setting the Color for the Dialog Background and for Controls

You can change the background color of individual dialogs or specific controls in a dialog, but you have to do some
extra work. The parent dialog is sent a WM_CTLCOLOR message for each control immediately before the control is
displayed. A WM_CTLCOLOR message is also sent on behalf of the dialog itself. If you map this message in your derived
dialog class, you can set the foreground and background text colors and select a brush for the control or dialog non-text
area.

The following is a sample OnCtlColor () function that sets all edit control text color to red and the dialog
background to yellow. The m_hYel lowBrush and m_hRedBrush variables are data members of type HBRUSH,
should be initialized in the dialog's OnInitDialog() function. The N"CtIColor parameter indicates the type of
control, and the pWnd parameter identifies the specific control. If you wanted to set the color for an individual edit
control, you would convert pWnd to a child window ID and test it.

HBRUSH CMyDialog: :OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)

iT (nCtlColor == CTLCOLOR_EDIT) {
pDC->SetBkColor(RGB(255, 255, 0)); // yellow
return m_hYellowBrush;

}

if (nCtiColor == CTLCOLOR _DLG) {
pDC->SetBkColor(RGB(255, 0, 0)); // red
return m_hRedBrush;

return CDialog::OnCtlColor(pDC, pWnd, nCtliColor);
}

The dialog does not post the WM_CTLCOLOR message in the message queue; instead, it calls the Win32
SendMessage () function to send the message immediately. Thus the message handler can return a parameter, in this
case a handle to a brush. This is not an MFC CBrush object but rather a Win32 HBRUSH. You can create the brush by
calling the Win32 functions CreateSol idBrush(), CreateHatchBrush(), and so forth.

For Win32 Programmers

Actually, Win32 no longer has a WM_CTLCOLOR message. It was replaced by control-specific messages such as
WM_CTLCOLORBTN, WM_CTLCOLORDLG, and so on. MFC and ClassWizard process these messages invisibly, so your
programs look as though they're mapping the old 16-bit WM__CTLCOLOR messages. This trick makes debugging more
complex, but it makes portable code easier to write. Another option would be to use the ON_MESSAGE macro to map
the real Win32 messages. If your dialog class (or other MFC window class) doesn't map the WM_CTLCOLOR message,
the framework reflects the message back to the control.

Let try this one. Add two public data member, m_hYel lowBrush and m_hRedBrush of type HBRUSH.

W | | o LY & o | Y By Ry I B R L
& Chlymicyl G0 ko Definition
Y4 DoDataks (30 To Dialog Editor
W4 OnClickec
W4 OnCHColo
@j OrHS crol add Member Yariable. ..

Fl,?' OnlritDial Add Wirtual Function. ..

Add Member Function. ..

@' OnOK[) . add Windows Message Handler. ..
@; afgll:r':;': E References. ..

& m_blrsLif a'm Derived Classes...
i m_blnste !‘- Base Classes...

g m_hivelo add to Gallery
@ m_nCat

Mew Folder. .,
i m_nLang G New
i m_nLoyal Group by Access
i@ m_nBRely

i@ m_nSsn v Docking Yiew
& m_stBio Hide

i m_stiDepl

@ m_strEdue Properties

Figure 53: Adding two public data member, m_hYel lowBrush and m_hRedBrush of type HBRUSH.

Add Member Yariable

Yarable Type: K.

|HEHUSH

Cancel
Yariable Marme:

|m_hYeII-:uwBrush

Access
+ Public " Protected " Private

Figure 54: Adding dialog's member variable.

< Construction

miblic:
HERUSH m_hREedBrus=sh;
HEBRUSH m_h¥VellowBrush:
CHymfcYDialog{CWnd* pParent = HULL):

Listing 12.

Then do the message map for the WM_CTRLCOLOR and click the Edit Code button.

MFC ClassWizard

Mezzage Maps Member ¥ ariables | Automation | Activel Events | Clazz Info |
Project: Clazs name: Add Clase .
myrmfcy ﬂ | Chymfe?Dialog ﬂ
Fh smemfe P ymic?Dialog b, FA smymbc P MumfcFDialog.cpp g
Object 10 Meszages: Delete Function
Y Wid_COMPAREITERM [y
ID_AFPFP_ABOUT =3 Wikd_COMTEXTMENL 0
ID_AFF_ExIT B Wihd_COFYDATA
ID_EDIT_COPY Wik CREATE =3
ID_EDIT_CUT WhH CTLCOLOR
ID_EDIT_PASTE Wihd_DELETEITEM
ID_EDIT_UNDO b wid_DESTROY i
b ember functions:
Y DoDataExchange M
W OnClickedOk OMN_IDC_OK:BM_CLICKED
OnCHCalar OM_'wh_CTLCOLOR
W OnHScroll QM _wikd_HSCROLL
W OnlnitDialoa OM wikd IMITDIALOG s
Dezcription; Indicates that a control iz about to be drawn
ak. Cancel

Figure 55: The message map of the WM_CTRLCOLOR for CMymfc7Dialog.
Enter the following code.

HBRUSH CMymfc7Dialog: :OnCtlColor(CDC* pDC, CWnd* pwWnd, UINT nCtlColor)
{

// You can try other controls...

// CTLCOLOR_ BTN - Button control

// CTLCOLOR_DLG - Dialog box

// CTLCOLOR_EDIT - Edit control

// CTLCOLOR_LISTBOX - List-box control

// CTLCOLOR_MSGBOX - Message box

// CTLCOLOR_SCROLLBAR - Scroll-bar control
// CTLCOLOR_STATIC - Static control

it (nCtlColor == CTLCOLOR_EDIT) {
pDC->SetBkColor(RGB(255, 255, 0)); // yellow edit control background
pDC->SetTextColor(RGB(255, 0, 0)); // red edit control text

return m_hYellowBrush;

}

if (nCtiColor == CTLCOLOR_BTN) {
pDC->SetBkColor(RGB(255, 0, 0)); // red for dialog
return m_hRedBrush;

s

return CDialog: :OnCtlColor(pDC, pWnd, nCtlColor);
¥

Build the program.

Dialog box MFC example [z|

MHame Skill [Simple combo box] Dept [List bow]

|E:-:eu:utive

Aocounting .
S55M |123458?B b anager Human Relations Special
i Security
Bio Like to do Pragrarmmer

programming for fun

]9
[

Cancel

*
Education [Dropdown comba) L anguage [Droplist combo) g

High School ~— +| |French |

Cateqgory
" Hourly
{* Salany

Ingurance Lanalty

[Life ﬂ J ﬂ

v Disabilty Reliability

[v Medical ﬂ J ﬂ

Figure 56: New MYMFC?7 program output with all edit control text color set to red and the background set to yellow.
Painting Inside the Dialog Window

You can paint directly in the client area of the dialog window, but you'll avoid overwriting dialog elements if you paint
only inside a control window. If you want to display text only, use the dialog editor to create a blank static control with a

unique ID and then call the CWnd: : SetDlgltemText function in a dialog member function such as
OnlnitDialog() to place text in the control.

Displaying graphics is more complicated. You must use ClassWizard to add an OnPaint() member function to the
dialog; this function must convert the static control's ID to a CWnd pointer and get its device context. The trick is to
draw inside the control window while preventing Windows from overwriting your work later. The
Invalidate()/UpdateWindow() sequence achieves this. Here is an OnPaint() function that paints a small
black square in a static control:

void CMyDialog: :OnPaint()

CWnd* pWnd = GetDIgltem(IDC_STATIC1); // IDC_STATIC1 specified
// in the dialog editor
CDC* pControlDC = pWnd->GetDC(Q);

pWnd->Invalidate();
pWnd->UpdateWindow() ;
pControlDC->SelectStockObject(BLACK_BRUSH) ;
pControlDC->Rectangle(0, 0, 10, 10); // black square bullet
pwWnd->ReleaseDC(pControlDC);

}

As with all windows, the dialog's OnPaint() function is called only if some part of the dialog is invalidated. You can
force the ONnPaint() call from another dialog member function with the following statement:

Invalidate();
Adding Dialog Controls at Runtime

You've seen how to use the resource editor to create dialog controls at build time. If you need to add a dialog control at
runtime, here are the programming steps:

1. Add an embedded control window data member to your dialog class. The MFC control window classes include
CButton, CEdit, CListBox, and CComboBox. An embedded control C++ object is constructed and
destroyed along with the dialog object.

2. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

3. Use ClassWizard to map the W_INITDIALOG message, thus overriding CDialog: :OnlnitDialog. This
function should call the embedded control window's Create () member function. This call displays the new
control in the dialog. Windows will destroy the control window when it destroys the dialog window.

4. In your derived dialog class, manually add the necessary notification message handlers for your new control.

We will learn this more detail in another Module.
Using Other Control Features

You've seen how to customize the control class CScrol IBar by adding code in the dialog's OnInitDialog()
member function. You can program other controls in a similar fashion. In the Microsoft Visual C++ MFC Library
Reference, or in the online help under "Microsoft Foundation Class Libary and Templates," look at the control classes,
particularly CL istBox and CComboBoX. Each has a number of features that ClassWizard does not directly support.
Some combo boxes, for example, can support multiple selections. If you want to use these features, don't try to use
ClassWizard to add data members. Instead, define your own data members and add your own exchange code in
OnlnitDialog() and OnClickedOK().

For Win32 Programmers

If you've programmed controls in Win32, you'll know that parent windows communicate to controls via Windows
messages. So what does a function such as CLiStBox: : InsertString do? (You've seen this function called in
your OnInitDialog() function.) If you look at the MFC source code, you'll see that InsertString() sends an
LB_INSERTSTRING message to the designated list-box control. Other control class member functions don't send

messages because they apply to all window types. The CScrol IView: :SetScrol IRange function, for example,
calls the Win32 SetScrol IRange () function, specifying the correct hWnd as a parameter.

Windows Common Controls

The controls you used in MYMFC7 are great learning controls because they're easy to program. Now you're ready for
some more "interesting" controls. We'll take a look at some important new Windows controls, introduced for Microsoft
Windows 95 and available in Microsoft Windows NT. These include the progress indicator, trackbar, spin button
control, list control, and tree control.

The code for these controls is in the Windows COMCTL32.DLL file. This code includes the window procedure for
each control, together with code that registers a window class for each control. The registration code is called when the
DLL is loaded. When your program initializes a dialog, it uses the symbolic class name in the dialog resource to connect
to the window procedure in the DLL. Thus your program owns the control's window, but the code is in the DLL. Except
for ActiveX controls, most controls work this way. Example MYMFCS uses the aforementioned controls. Figure 57
shows the dialog from that example. Refer to it when you read the control descriptions that follow.

Be aware that ClassWizard offers no member variable support for the common controls. You'll have to add code to your
OnInitDialog() and OnOK() functions to initialize and read control data. ClassWizard will, however, allow you to
map notification messages from common controls.

Dialog

ali.

i bt bl
roges MMMANEN s ﬁ

red cyan
[40
Trackbar 1 J < 3
l CHan
Trackbar 2 . 1.0
I I I I I Tree O Lisa A
Cantral = O] pibert
O Dogbert
Buddy |ERT j S pin C1 Fatbert
Ratbert

Figure 57: The Windows Common Controls Dialog example.
The Progress Indicator Control

The progress indicator is the easiest common control to program and is represented by the MFC CProgressCtrl
class. It is generally used only for output. This control, together with the trackbar, can effectively replace the scroll bar
controls you saw in the previous example. To initialize the progress indicator, call the SetRange() and SetPos()
member functions in your OnlnitDialog() function, and then call SetPos() anytime in your message handlers.
The progress indicator shown in Figure 6-2 has a range of 0 to 100, which is the default range.

The Trackbar Control

The trackbar control (class CS1iderCtrl), sometimes called a slider, allows the user to set an "analog" value.
Trackbars would have been more effective than sliders for Loyalty and Reliability in the MYMFC7 example. If you
specify a large range for this control, 0 to 100 or more, for example, the trackbar's motion appears continuous. If you
specify a small range, such as 0 to 5, the tracker moves in discrete increments. You can program tick marks to match the
increments. In this discrete mode, you can use a trackbar to set such items as the display screen resolution, lens f-stop
values, and so forth. The trackbar does not have a default range.

The trackbar is easier to program than the scroll bar because you don't have to map the W_HSCROLL or WM_VSCROLL
messages in the dialog class. As long as you set the range, the tracker moves when the user slides it or clicks in the body
of the trackbar. You might choose to map the scroll messages anyway if you want to show the position value in another
control. The GetPos() member function returns the current position value. The top trackbar in Figure 6-2 operates

continuously in the range 0 to 100. The bottom trackbar has a range of 0 to 4, and those indexes are mapped to a series
of double-precision values (4.0, 5.6, 8.0, 11.0, and 16.0).

The Spin Button Control

The spin button control (class CSpinButtonCtrl) is an itsy-bitsy scroll bar that's most often used in conjunction
with an edit control. The edit control, located just ahead of the spin control in the dialog's tabbing order, is known as the
spin control's buddy. The idea is that the user holds down the left mouse button on the spin control to raise or lower the
value in the edit control. The spin speed accelerates as the user continues to hold down the mouse button.

If your program uses an integer in the buddy, you can avoid C++ programming almost entirely. Just use ClassWizard to
attach an integer data member to the edit control, and set the spin control's range in the OnlInitDialog() function. You
probably won't want the spin control's default range, which runs backward from a minimum of 100 to a maximum of 0.
Don't forget to select Auto Buddy and Set Buddy Integer in the spin control's Styles property page. You can call the
SetRange() and SetAccel () member functions in your OnInitDialog() function to change the range and the
acceleration profile. If you want your edit control to display a non-integer, such as a time or a floating-point number,
you must map the spin control's WM_VSCROLL (or WM_HSCROLL) messages and write handler code to convert the spin
control's integer to the buddy's value.

The List Control

Use the list control (class CListCtrl) if you want a list that contains images as well as text. Figure 6-2 shows a list control
with a "list" view style and small icons. The elements are arranged in a grid, and the control includes horizontal
scrolling. When the user selects an item, the control sends a notification message, which you map in your dialog class.
That message handler can determine which item the user selected. Items are identified by a zero-based integer index.
Both the list control and the tree control get their graphic images from a common control element called an image list
(class CImageList). Your program must assemble the image list from icons or bitmaps and then pass an image list
pointer to the list control. Your OnInitDialog() function is a good place to create and attach the image list and to
assign text strings. The Insertltem() member function serves this purpose. List control programming is
straightforward if you stick with strings and icons. If you implement drag and drop or if you need custom owner-drawn
graphics, you've got more work to do.

The Tree Control

You're already familiar with tree controls if you've used Microsoft Windows Explorer or Visual C++'s Workspace view.
The MFC CTreeCtr class makes it easy to add this same functionality to your own programs. Figure 6-2 illustrates a
tree control that shows a modern American combined family. The user can expand and collapse elements by clicking the
+ and - buttons or by double-clicking the elements. The icon next to each item is programmed to change when the user
selects the item with a single click.

The list control and the tree control have some things in common: they can both use the same image list, and they share
some of the same notification messages. Their methods of identifying items are different, however. The tree control uses
an HTREE I TEM handle instead of an integer index. To insert an item, you call the Insertltem() member function,
but first you must build up a TV_INSERTSTRUCT structure that identifies (among other things) the string, the image
list index, and the handle of the parent item (which is null for top-level items). As with list controls, infinite
customization possibilities are available for the tree control. For example, you can allow the user to edit items and to
insert and delete items.

The WM_NOTIFY Message

The original Windows controls sent their notifications in WM_COMMAND messages. The standard 32-bit wParam and
IParam message parameters are not sufficient, however, for the information that a common control needs to send to its
parent. Microsoft solved this "bandwidth" problem by defining a new message, WM_NOT IFY. With the WI_NOTIFY
message, WParam is the control ID and IParam is a pointer to an NMHDR structure, which is managed by the control.
This C structure is defined by the following code:

typedef struct tagNMHDR {
HWND hwndFrom; // handle to control sending the message
UINT idFrom; // 1D of control sending the message
UINT code; // control-specific notification code

} NMHDR;

Many controls, however, send WM_NOT IFY messages with pointers to structures larger than NMHDR. Those structures
contain the three members above plus appended control-specific members. Many tree control notifications, for example,
pass a pointer to an NM_TREEV I EW structure that contains TV__ I TEM structures, a drag point, and so forth. When
ClassWizard maps a WM_NOT I FY message, it generates a pointer to the appropriate structure.

The MYMFC8 Example
The steps using common controls are shown below.

Run AppWizard to generate the MYMFCS project. Choose New from Visual C++'s File menu, and then select
Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but two: select Single Document and
deselect Printing And Print Preview. The options and the default class names are shown here.

New Project Information §|

Appiwfizard will create a new skeleton project with the following specifications:

Application twpe of mymfcd:
Single Document Interface Application targeting:
Wihd2

Clazzes to be created:
Application: CkymfcB&pp in mymfc8.h and mymfcd.cpp
Frame: CMainFrame in MainFrm b and bMainFrm.cpp
Document: Cymfc80oc in mymfcBloc.h and mpmfcBl oc. cpp
Wiew: ChymfcEview in mymfc@iew.h and momfchiew cpp

Features:
+ |nitial toolbar in main frame
+ [nihal ztatus bar in main frame
+ 30 Controls
+ Usges shared DLL implement ation [MFC42.DLL]
+ Activer Caontralz suppart enabled
+ Localizable text in:
Englizh [United States)

Froject Directory:
F:mfcprojectsmymfce

Cancel

Figure 58: MYMFCS project summary.

Create a new dialog resource with ID 1DD_DIALOG1 (default ID used). Place the controls as shown in Figure 57.
You can select, drag and drop the controls from the control palette. The following table lists the control types and their
IDs. Don't worry about the other properties now; you'll set those in the following steps. Some controls might look
different than they do in Figure 59 until you set their properties. Set the tab order as shown next.

.. T

.

...

o Contral red

W

ZZ“"'ZZZZZZZch

el

' bl

areen

| I

'magent o

e
M ovan |

Dﬁ Expanded Maode
[0%6 Leat
[1%& Leat

m Expanded Mode

SE EI:-:untn:ul

S e e

L8 colansediads MLt
e

Cancel

Figure 59: MYMFCS dialog resource with its common controls.

Tab
Sequence

Control Type

Child Window ID

1

Static

IDC_STATIC

Progress

IDC_PROGRESS1

Static

IDC_STATIC

Trackbar
(Slider)

IDC_TRACKBAR1

Static

IDC_STATIC_TRACK1

Static

IDC_STATIC

Trackbar
(Slider)

IDC_TRACKBAR2

ool AN | E N V5] I \)

Static

IDC_STATIC_TRACK2

Static

IDC_STATIC

Edit

1DC_BUDDY_SPINL

11

Spin

IDC_SPINT

12

Static

IDC_STATIC

13

Static

IDC_STATIC

14

List control

IDC_LISTVIEW1

15

Static

IDC_STATIC_LISTVIEW1

16

Static

IDC_STATIC

17

Tree control

IDC_TREEVIEW1

18

Static

IDC_STATIC_TREEVIEW1

19

Pushbutton

IDOK

20

Pushbutton

IDCANCEL

Table 2: MYMFC8 common controls, IDs and their tab order.

Use ClassWizard to create a new class, CMymFc8Dialog, derived from CDial og. ClassWizard will automatically
prompt you to create this class because it knows that the IDD_DIALOG1 resource exists without an associated C++

class.

MFC ClassWizard

tessage Maps

Project:

Clazz name:

b ember Yariables l Automation ! Activer Eventz l Clazz Info !

l rayrnfcd
F:h AmyrnfoEhmy
Object 1D

CaboutDlg
ID_APP_ABOUT
ID_AFP_EXIT
ID_EDIT_CORY
ID_EDIT_CUT
ID_EDIT_PASTE
ID_EDIT_UNDO

tember functions;
W Dalataksch

clazs.

& Create a new class

T Sy gl FRe ik 2 gy T g u L B O

£

| CaboutDlg

Adding a Class

[DD_DIALOGT iz a new resource. Since it iz a
dialog resource you probably want to create a
new clazs for it You can alzo select an existing

" Select an existing clazs

Add Clazs.. = l

EditCode |

Cancel |

Dezcrnption:

[ok]

Cancel

Figure 60: Creating a new class, CMymfc8Dialog, derived from CDialog.

Mew Class

— Clazz infarmation

H ame:

File name:

Baze clazs:

Dialag 1D

o]

| CMymicEDialog

|h-1ymfu:8DiaIu::g.u:pp

IDD_DIALOGY

— Automation
& None

" Automation

" Createsble by type 10

ryrnfcE. kumfcBDialog

Caricel |

Figure 61: The CMymFc8Dialog class information.

Map the WI_INITDIALOG message, the WM_HSCROLL message, and the WM_VSCROLL message.

MFC ClassWizard

tezzage Maps tember Y ariables | Autamation | Activer Events | Clazz Info |

Project: Clasz name: Add Class.. ~

rymfcd j | Chdymfc8hialog

F:h AmymfedsMumic8Dialog. b, F:h . smymfcShMomfcBDialog. cpp g
Object [Ds: M ezzages: Delete Function

ChurnfciDialog ~ [wM_SETCURSOR ~
ID_APP_AROUT — WM SHOWAWINDOW 3
ID_APF_EXIT — |wM_SIZE

ID_EDIT_COFY wM_TCARD

ID_EDIT_CUT \w_TIMER

ID_EDIT_PASTE WM YEEYTOITEM e
ID_EDIT_UNDO v v

kember functions:

YW [DoDataEschange
W OnHS ol OM_wt_HSCROLL
W OnlnitDialog OM_wh_IMITDIALOG

OrvScroll OM_wM_WSCROLL

Description: Indicates a click in a vertical scroll bar

k. Cancel

Figure 62: Mapping the WI_INITDIALOG, WM_HSCROLL and WM_VSCROLL messages.

Program the progress control. Because ClassWizard won't generate a data member for this control, you must do it
yourself. Add a public integer data member named m_nProgress in the CMymFfc8Dial og class header, and set it to
0 in the constructor.
| | S MNILL IO LN L
& Ch G0 ko Definikion
P Dc o To Dialeg Editor

o Or add Member Function. ..
P Or

Y Or
B = Chiymf &dd virtual Funckion. .

B8 Chiymf Add windows Message Handler. ..
(1 Global E References. ..
i-. Cerjpved Classes, ..
!.F Base Classes...
Add to Gallery
[Mew Falder. ..

&dd Member Yariable. ..

Group by Access

v Diocking View
Hide:

Propetties

Figure 63: Adding a public integer data member named m_nProgress.

Add Member Variable

Wariable Type: K

Fm
Cance
Wariable Name:

|WLanngS

Access
* Public " Protected " Private

Figure 64: Adding the variable type and name.

class CHymifc8Dialog : public Chialog
1

¢ Construction
public:
int m_nFProgres=s;
CHymfc8Di1ialog{Clind* pParent = HULL):

¢ Dialog Data
A CHymfc8Dialog dialog

CHymfc8Dialog: :CHymic8Dialog{Clind* pParent ~#=HUOLL=x-)
CDialogi{CHymfz8Dialog: : IDD, pParent)
1

m_nProgress = 0:
S LAFE _DATA IHIT{CHMymfcEDialog)

& HOTE: the ClassWizard will add member initialization here
<<V VAFE _DATA INIT

Listing 13.

Also, add the following code in the OnInitDialog() member function:

CProgressCtrl* pProg = (CProgressCtri*) GetDIgltem(IDC_PROGRESS1);
pProg->SetRange(0, 100);
pProg->SetPos(m_nProgress);

BOOL CHMymfcB8Dialog: :OnInitDialogi)

1
S« TODOD: Add extra initialization here
CProgressCtrl#*® pProg = (CProgressCtrl*) GetDlgltem{IDC_PROGRESS1:
pProg—-:>SetRangs(0. 100):
pProg—:SetPo=i{n_nProgres=s);
I

Listing 14.

Program the ""continuous' trackbar control. Add a public integer data member named m_nTrackbarl to the
CMymfc8Dialog header, and set it to 0 in the constructor.

5 s . | | ERF A A
[o ko Definition
|
i o Ta Dialog Editar
(& c add Member Funckion, .,

add Member Variable, ..
add Yirtual Eunckian,
add windows Message Handler, ..

E References. ..
-'i Detived Classes. ..
l-F Base Classes, ..

Add to Gallery
5 Mew Folder, ..

Garoup by Access

v Docking Wigw
Hide

Properties

Figure 65: Adding a public integer data member named m_nTrackbar1 to the CMymFc8Dial og header.

Add Member Variable

Wariable Type:

|int

Cancel
Wariable Name:
|m_nTran:kI:uar1|

Acoess
* Public " Protected " Private

Figure 66: Entering the variable type and name.

class CHMymic8Dialog © public Chialog
{
S Construction
public:
int m_nTrackbarl:
int mn_nProgress;
CHymfcBDialog{Clind* pParent = HULL):

< Dialog Data

Listing 15.

A CHymfcB8Dialog dialog

CHyvmifcEDialog: CHymic8Dialog{ClWnd* pParent - *=HULL*.")
CDialogi{CHynf=8Dialog: : IDD, pParent)
{

n_nProgress = 0;
m_nTrackbarl = 0]

SO LAFE _DATA IHNIT{CHymfcB8Dialog)
£« HOTE: the Cla==sWizard will add member initi
SoVYAFE DATA THIT

Listing 16.

Next add the following code in the OnInitDialog() member function to set the trackbar's range, to initialize its
position from the data member, and to set the neighboring static control to the tracker's current value.

CString strTextl;

CSliderCtrl* pSlidel = (CSliderCtri*) GetDIgltem(IDC_TRACKBAR1);
pSlidel->SetRange(0, 100);

pSlidel->SetPos(m_nTrackbarl);

strTextl.Format("'%d", pSlidel->GetPos());
SetDIgltemText(IDC_STATIC TRACK1l, strTextl);

BOOL CHMymfcB8Dialog: :OnlInitDialog()

1
S« TODD: Add extra initialization here
CProgres=Ctrl#*® pProg = (CProgressCtrl#*) GetDlgltemi IDC_PROGEESS1) ;
pProg—:>SetRange(0, 100} ;
pProg-:SetPo={m_nProgres=s);
CS5tring =trTextl:
CSliderCtrl= pSlidel = |[(CSliderCtrl=) GetDlgltem{IDC TRACKEARL)
pSlidel-:»SetRange(0, 100} ;
pslidel-:SetPos=(mn_nTrackbarl):
strTextl Format{"*d". pSlidel-:GetPo=()):
SetDlgltemText (IDC_STATIC _TRACKEL, =strTe=xtl):
b

Listing 17.

To keep the static control updated, you need to map the WM_HSCROLL message that the trackbar sends to the dialog.
Here is the code for the handler:

void CMymfc8Dialog: :OnHScrol L (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{
CSliderCtri* pSlide = (CSliderCtri*) pScrollBar;
CString strText;
strText.Format("'%d", pSlide->GetPos());
SetDIgltemText(IDC_STATIC_TRACK1, strText);

}

vold CHymic8Dialog: OnHScroll (UINT nSBCode, UIHT nPo=., CScrollBar#*® pScrollBazxr)
{
S TODD: Add wour mes==s=age handler code here andsor call default
CSliderCtrl#* pSlide = (CSliderCtrl#*®) pScrollBar;
CString =trText
=trText Format("*d"., pSlide-:GetPo=s());
SetDlgltemText (IDC_STATIC _TRACKELl, strText):

Listing 18.

Finally, you need to update the trackbar's m_nTrackbarl data member when the user clicks OK. Your natural instinct
would be to put this code in the ONOK() button handler. You would have a problem, however, if a data exchange
validation error occurred involving any other control in the dialog. Your handler would set m_nTrackbarl even
though the user might choose to cancel the dialog. To avoid this problem, add your code in the DoDataExchange()
function as shown below. If you do your own validation and detect a problem, call the CDataExchange: :Fail
function, which alerts the user with a message box.

if (pbDX->m_bSaveAndValidate)

TRACE("'updating trackbar data members\n');
CSliderCtri* pSlidel = (CSliderCtri*) GetDIgltem(I1DC_TRACKBAR1);
m_nTrackbarl = pSlidel->GetPos();

}

wold CHymfcBDialog: :DoDataExchange({ChataExchange* pDi)
{
SO TAFE _DATA MAP({CHymfcBDialog)
< HOTE: the ClaszslWizard will add DDE and DDV callz here
SOV VAFE DATA MAP
1f (pDE-:m_bSaveindValidate)

1
TRACE{ "uwpdating trackbar data memnbers-n"):
CSliderCtrl* pSlidel = |(CSliderCtrl#*) GetDlgltem(IDC_TRACKBARL)
m_nTrackbarl = p5lidel-:GetPo=();

T

1

Listing 19.

Program the "discrete' trackbar control. Add a public integer data member named m_nTrackbar2 to the
CMymfc8Dialog header, and set it to O in the constructor. This data member is a zero-based index into the dValue,
the array of numbers (4.0, 5.6, 8.0, 11.0, and 16.0) that the trackbar can represent.

&dd Member Yariable 7))

Wariable Type:

Fm
Cancel
Wariable Name:
|m_nTran:kI:uar2

Access
* Public " Protected " Private

Figure 67: Adding a public integer data member named m_nTrackbar?2 to the CMymFc8Dial og header.

claszs CHymfc8Dialog : public CDialog

< Construction
ablic:
int m_nTrackbar? ;|
int m_nTrackbarl:
int m_nProgress;
CHymfc8Dialog{(Clnd* pFarent = HULL);

Listing 20.

& CHymfc8Dialog dialog

CHymfc8Dialog: : CHymfc8Dialog{ Cind* pParent ~#=HIOLL#*.")
Chialog{CHymic=8Di1alog: : IDD, pParent)

1
n_nProgress = 0;
m_nTrackbarl = 0:
m_nTrackbar? = 0:

oL LAFE DATA INIT(CMymfc8Dialog)
S« HOTE: the Clas=sWizard will add member initi

Listing 21.

Define dValue as a private static double array member variable in mymfc8Dialog.h:

Add Member ¥ariable

Yariable Type:
|3mﬁcdnume
Cance
Wariable Mame:
| alue(]
Aooess

" Public " Protected ¥ Private

Figure 68: Adding dValue array member variable in mymfc8Dialog.h.

atx m=g woid Un¥scroll{ULN]
<o PARE MSG
DECLARE HMESSAGE_MAP()
private:
=tatic double dValus[]:
T

Listing 22.
And add to mymfc8Dialog.cpp the following line:
double CMymfc8Dialog::dValue[5] = {4.0, 5.6, 8.0, 11.0, 16.0};

=tatic Dhar_THIS_FILE[] = _FILE _:
#endif

PP R PR PR PR R PR R R
& CHymfc8Dialog dialog

double CHymic8Dialog: :dValu=[5] = {4.0, §.6, 8.0, 11.0, 16.0%;
CHymfcBDialog: :CHymicBDialog{CWnd* pParent ~#=HULL*.")
Listing 23.
Next add code in the OnInitDialog() member function to set the trackbar's range and initial position.

CString strText2;

CSliderCtrl* pSlide2 = (CSliderCtri*) GetDIlgltem(IDC_TRACKBAR2);
pSlide2->SetRange(0, 4);

pSlide2->SetPos(m_nTrackbar?);

strText2.Format("%3.1f", dValue[pSlide2->GetPosQ]);
SetDIgltemText(IDC_STATIC_TRACK2, strText2);

BOOL CMymfc8Dialog: OnlnitDialogf)

1
o TODD: Add extra initialization here
CProgres=Ctrl*® pProg = (CProgressCtrl*) GetDlgltem(IDC_PROGRESS1) :
pProg—:SetRangs(0, 1007;
pProg—:SetFPos{mn_nProgress=s);
CS5tring =trTe=xtl:
CSliderCtrl#*® pSlidel = (CSliderCtrl*®) GetDlgltem{ IDC_TRACKBARL)
rSlidel-»SetRange(0, 100);
pSlidel-:»SetPos{n_nTraclkbarl);
=trTextl Formati"xd". pSlidel-:GetPo=(1):
SetDlgltemText (IDC_STATIC TREACKL, =trTextl);
C5tring =trText?:
CS5liderCtrl#* pSlide? =
(CSliderCtrl#*®) GetDlgltem{IDC_TRACEBARZ)
pSlideZ—-»SetRange(0. 4);
pSlided—:>SetPos{n_nTraclkbari):
strText? Format("%3.1f", dValus[pS5lide?-:GetPos(1]):
SetDlgltemText (IDC_STATIC TRACK?, =trText?);
h

Listing 24.

If you had only one trackbar, the WM_HSCROLL handler in the previous step would work. But because you have two
trackbars that send WM_HSCROLL messages, the handler must differentiate. Here is the new code:

void CMymfc8Dialog: :OnHScrol I (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{

CSliderCtri* pSlide = (CSliderCtri*) pScrollBar;

CString strText;

// Two trackbars are sending
// HSCROLL messages (different processing)
switch(pScrolIBar->GetDIgCtriID())

case IDC_TRACKBAR1:
strText.Format(""%d", pSlide->GetPos());
SetDIgltemText(IDC_STATIC_TRACK1, strText);
break;

case IDC_TRACKBAR2:
strText.Format("%3.1f", dvalue[pSlide->GetPosQ]):
SetDIgltemText(IDC_STATIC_TRACK2, strText);
break;

vold CHymicBDialog: :OnHScroll (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

and-or call default

1
S TODD: Add wour messzage handler code here
CSliderCtrl#* pSlide = (CSliderCtrl*) pScrollBar;
CString =trText:
< Two trackbars are sending
S HECROLL meszsagesz (different processing)
svitchi{pScrollBar—:GetD1gltr1ID0))
caze IDC_TRACEBAERD :
strText Format{"%d", pSlide—:GetPo=());
SetDlgltenText (IDC_STATIC TRACKE]l, =trText):
brealk
caze IDC_TRACEBARZ:
ztrText Format("%3.1f". dValue[p5lide-:GetFo=()1]);
SetDlgltenText { IDC_STATIC _TRACK?, =strTe=t):
breal
h
h

Listing 25.

This trackbar needs tick marks, so you must check the control's Tick Marks and Auto Ticks properties back in the
dialog editor. With Auto Ticks set, the trackbar will place a tick at every increment. The same data exchange
considerations applied to the previous trackbar applies to this trackbar. Add the following code in the dialog class
DoDataExchange () member function inside the block for the I statement you added in the previous step:

CSliderCtrlI* pSlide2 = (CSliderCtri*) GetDIgltem(1DC_TRACKBAR?2);

m_nTrackbar2 = pSlide2->GetPos();

vold CHymicE8Dialog: :DolDataExzchange{ChataExzchange* pli)

1
Ao {AFE_DATA MAP(CHymfc8Dialog)

A4 HOTE: the ClassWizard will add DDE and DDV calls here

SOYVAFE_DATA MAP
if (pDE-:m_bSaweindValidate)

1
TRACE({ "updating trackbar data members~n"):
CSliderCtrl#* pSlidel = (CSliderCtrl#) GetDlgltem({IDC TRACKBARL):
m_nTrackbarl = p5lidel-:GetPos():
CSliderCtrl#* pSlide? = (CSliderCtrl=) GetDlgltem({IDZ _TRACEBARZ):
m_nTrackbar? = p5lidei-:GetPos();

1

ks

Listing 26.

Use the dialog editor to set the Point property of both trackbars to Bottom/Right. Select Right for the Align Text
property of both the IDC_STATIC_TRACK1 and IDC_STATIC_TRACK2 static controls.

A ? General | Extended Stulez |

Orientatian: [Tick marks
|H|:|ri21:|nta| ﬂ [Auto ticks
Point;

| Bottom/Right ﬂ [Border

slider Properties [

[Enable zelection

Figure 69: Modifying the Slider properties.

Text Properties

A ? General Styles | Extended Stulez |
Aligr bext: [Center vertically [Motify
hl [Mo prefis [Sunken
[Mo wrap [Border
[Simple

Figure 70: Modifying static text properties.

Program the spin button control. The spin control depends on its buddy edit control, located immediately before it in
the tab order. Use ClassWizard to add a double-precision data member called m_dSpin for the IDC_BUDDY_SPIN1

edit control.

Add Member Yariable

kember variable name:

|n'|_d5 it

Categony:

Cancel

i

|‘v"alue

W ariable bype:

Description:

[

ETT R -

double with range walidation

Figure 71: Adding a double-precision m_dSpin for the IDC_BUDDY_SPINL1 edit control.

MFC ClassWizard

tezzage Maps Member Yanables | Autamation | Activer Events | Clazz Info |

Project; Clazs name: Add Clazs. =
rymfcd j | Chdymfc8hialog - il Varinb
F:A. AmymfcEiMymicaDialog. b, F:h...\mymfciMymicDislog.cpp ﬁ
Contral |0 Type kdemnber Delete Variable
: : -
IDC_LISTYIEW =
IDC_PROGRESST
IDC_SPIMA

IDC_STATIC_LISTVIEWA
IDC_STATIC_TRACK1

IDC_STATIC_TRACKZ

IDC_STATIC_TREEVIEWA —
IDC_TRACKEART
IDC_TRACKEARZ
IDC TREEWIEA

54

Description: double with range walidation

Minirnurm W alue:
b axirnurn Y alue:

] | Cancel

Figure 72: The added member variable.

We're using a doubl e instead of an Int because the int would require almost no programming, and that would be too
easy. We want the edit control range to be 0.0 to 10.0, but the spin control itself needs an integer range. Add the
following code to OnInitDialog() to set the spin control range to 0 to 100 and to set its initial value tom_dSpin
* 10.0:

CSpinButtonCtrlI* pSpin = (CSpinButtonCtri*) GetDIgltem(IDC_SPIN1);
pSpin->SetRange(0, 100);
pSpin->SetPos((int) (m_dSpin * 10.0));

BOOL CHymfcB8Dialog: :OnInitDialogi)

1
L TODD: Add extra initialization here
CProgres=Ctrl#*® pProg = (CProgressCtrl#) GetDlgltem{ IDC_FPROGRESS1)
pProg—:SetRange{0. 100}
pFProg-:>SetPo=si{n_nProgress);
CS5tring =trTextl:
C5liderCtrl#* pSlidel = (CSliderCtrl=) GetDlgltem{IDC_TRACKBARL):
pSlidel-:SetRange(0. 100}
pslidel-:»SetPos(m_nTrackbarl):
strTextl Format("*d". pSlidel-:GetPo=()):
SetDlgltenText (IDC_STATIC _TRACEKEL, =strTextl):;
CString strText?;
CSliderCtrl#* pSlide? = [(CSliderCtrl#*) GetDlgltem(IDC_TRACKBARZ):
pSlideZ—>SetRangei(l. 43:
pSlided—:SetPosi{m_nTraclkbar?):
strText? Format("x3 . 1f". dValuse[p5lidez-:GetPo=(1]):
SetDlgltemText (IDC_STATIC TRACEZ, strTe=xt2);
CSpinButtonCtrl#*® pSpin = (CSpinButtonCtrl#*®) GetDlgltem(IDC_SFIN1):
PSpin—:SetRange(0. 1003
pSpin—:SetPosi{{int) {(m_dSpin * 10.03);
h

Listing 27.

To display the current value in the buddy edit control, you need to map the WM_VSCROLL message that the spin control
sends to the dialog. Here's the code:

void CMymfc8Dialog: :OnVScrol I (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{
iT (nSBCode == SB_ENDSCROLL)
{
return; // Reject spurious messages
b
// Process scroll messages from IDC_SPIN1 only
ifT (pScrollBar->GetDIgCtriID() == IDC_SPIN1)
CString strValue;
strvalue.Format("%3.1f", (double) nPos / 10.0);
((CSpinButtonCtrl*) pScrollBar)->GetBuddy()->SetWindowText(strValue);
}
}

vold CHymfcB8Dialog: :OnVScroll (UINT nSBCode, UINT nPos. CScrollBar* pScrollBar)
1

S TODD: Add wour messzage handler code here and<or call default
if (nSBCode == SB_EHDSCROLL)
1

¥

& Proceszs scroll messages from IDC_SPIN]1 only
if (pScrollBar—:GetDlgCtrlID() == IDC_SFPIN1)
1

return: < BEeject spurious nessages

C5tring s=trValue;
strValuse Format("%3.1f". {(double) nFo=s » 10.03;
((CSpinButtonCtrl#*®) pScrollBar)—:GetBuddy(i—:SetWindowText{=trValue):

Listing 28.

There's no need for you to add code in ONOK() or in DoDataExchange () because the dialog data exchange code
processes the contents of the edit control. In the dialog editor, select the spin control's Auto Buddy property and the
buddy's Read-only property.

Spin Properties E
4 B General | | Estended Styles |

Drierkation; [v duto buddy [wiap

Yertical - [Set buddy integer v Ao keys

Alignment; [Mo thousands [Hat track

Unattached -

Figure 73: Modifying the Spin control properties.

Edit Properties IEI
= ? General Stules | Estended Stules |

Align text: [~ | Password Iv Barder

Left * | v Auto HScrol [Mo hide selection [Uppercasze

[Multiline B [~ OEM corvert [Lowercasze

[Mumber [[wiant return i

Figure 74: Modifying the Edit control properties.

Set up an image list. Both the list control and the tree control need an image list, and the image list needs icons.
First use the graphics editor to add icons to the project's RC file.

=R o 1

Save mymfcd. o

Insert...
H-M - o
+1-[E3 Sti Insett Icon
+-[27 Tae Import...
+- [0 Wer
v Docking Yiew
Hide

Properties

Figure 75: Inserting new icons.

5 pevige: [Standard (32432) ~| &
=423 mpmic resources

+--[_7] Accelerator .
=425 Dialog
IDD_&BOUTBOX
IDD_DIALOGT
4 Icon

MAlIDI_BLACK,

[IDR_MAINFRAME
[IDR_MvMFCETY P
L3 Meru
(2 String Table
£ Toolbar
L3 Wersion

- [H-[H[F

E3)

Icon Properties

= ? Resource |

(N[BLACE, w | Presvig:
Language: |English L5 j .
Candition: |

File name: |res"-.|:nlan:k.in:n:|

Figure 76: Modifying icon properties in resource editor.

= peyige: [Standard (32:32) ~| &

=3 mymfch resources

+--[7 Acceleratar

=423 Dialog
IDD_aBOUTBOX
IDD_DIALOGT

=3 lcon
[IDI_BLACK
[IDI_BLUE
9 IDI_CvaM
Y IDI_GREEN
4 IDI_PURPLE
4 IDI_RED
8 IDIwWHITE
8] DI YELLOW
[IDR_MAINFRAME
Y IDR_MYMFCETYRE

Figure 77: Completed icons creation.

Use fancier icons if you have them. You can import an icon by choosing Resource from the Insert menu and then
clicking the Import button. For this example, the icon resource IDs are as follows.

Resource ID Icon File name
IDI_BLACK | Iconl
IDI_BLUE Icon3

IDI_CYAN Icon5
IDI_GREEN | Icon7
IDI_PURPLE | Icon6
IDI_RED Icon2
IDI_WHITE | Icon0
IDI_YELLOW | Icon4

Table 3: Icons resource IDs.

Next add a private CImageL i st data member called m_imageList in the CMymFc8Dialog class header.

Add Member ¥ariable

‘“Wariable Type: 0k

|EImageList
Cancel
Wariable Marme:

|m_imageLisli

Access
" Public " Protected ' Prjvate

Figure 78: Adding a private CImageL i st data member, m_imageList in the CMymFc8Dialog class header.

ArXE _m=g vold Unvocrollil

SOV ARE MSG

DECLARE_MESSAGE _MAP()
rivate:

CImnageli=st mn_imagelist

=tatic double dValue[]:

Listing 29.
And then add the following code to OnInitDialog():
HICON hlcon[8];

int n;
m_imageList.Create(16, 16, 0, 8, 8); // 32, 32 for large icons

hlcon[0] = AfxGetApp()->Loadlcon(IDI_WHITE);
hlcon[1] = AfxGetApp()->Loadlcon(IDI_BLACK);
hlcon[2] = AfxGetApp()->Loadlcon(IDI_RED);
hlcon[3] = AfxGetApp()->Loadlcon(IDI_BLUE);
hlcon[4] = AfxGetApp()->Loadlcon(IDI_YELLOW);
hlcon[5] = AfxGetApp()->Loadlcon(IDI_CYAN);
hlcon[6] = AfxGetApp()->Loadlcon(IDI_PURPLE);
hlcon[7] = AfxGetApp()->Loadlcon(IDI_GREEN);
for (n = 0; n < 8; n++)

{

m_imageList.Add(hlcon[n]);
}

CSpinButtonCtrl#*® pSpin = (CSpinButtonCtrl#*) GetDlgltem(IDC_SEPIN1)
pSpin—:SetRange(0, 100%;

Crin=sC=tPa=ifint) (m_dSpin * 10.0%):

TESpMBuHDnEM“pSpmr

HICON hIcon[8]:

int n:

m_imageli=st Create(le, 16, 0, 8, 8); »» 32, 32 for large icons

hIcon[0] = AfzGetipp()—:Loadlcon{IDI_WHITE):
hlIcon[l] = AfGetApp()—rLoadlcon(IDI_BLACK) :
hIcon[2] = AfzGetipp()—rLoadlcon({IDI_ RED);
hlIcon[3] = AfeEGetApp()—-rLoadlcon(IDI_BLUE):
hIcon[d4] = AfxGetipp()—rLoadlcon{IDI_YELLOW)
hIcon[S5] = AfzGetipp()—rLoadlcon({IDI_ CYAH);
hIcon[6] = AfzGetipp()—:Loadlcon{IDI_FURFLE);
hlicon[?] = AfzGetApp()—:Loadlcon(IDI_GREEN]) :
for (n = 0; n < 8; n+t+d

1

n_imagelist.Add{hIcon[n]);
T

Listing 30.
About Icons

You probably know that a bitmap is an array of bits that represent pixels on the display. In Windows, an icon is a
"bundle" of bitmaps. First of all, an icon has different bitmaps for different sizes. Typically, small icons are 16-by-16
pixels and large icons are 32-by-32 pixels. Within each size are two separate bitmaps: one 4-bit-per-pixel bitmap for the
color image and one monochrome (1-bit-per-pixel) bitmap for the "mask." If a mask bit is 0, the corresponding image
pixel represents an opaque color. If the mask bit is 1, an image color of black (0) means that the pixel is transparent and
an image color of white (OXF) means that the background color is inverted at the pixel location. Windows 95 and
Windows NT seem to process inverted colors a little differently than Windows 3.x does, the inverted pixels show up
transparent against the desktop, black against a Windows Explorer window background, and white against list and tree
control backgrounds. Don't ask me why.

Small icons were new with Windows 95. They're used in the task bar, in Windows Explorer, and in your list and tree
controls, if you want them there. If an icon doesn't have a 16-by-16-pixel bitmap, Windows manufactures a small icon
out of the 32-by-32-pixel bitmap, but it won't be as neat as one you draw yourself. The graphics editor lets you create
and edit icons. Look at the color palette shown here.

L] E -
O @ W
i
=
L Click here for transparent
El pixels
" Click here for oparue
pixels

Figure 79: Color palette and other utilities for icon editing.

The top square in the upper-left portion shows you the main color for brushes, shape interiors, and so on, and the square
under it shows the border color for shape outlines. You select a main color by left-clicking on a color, and you select a
border color by right-clicking on a color. Now look at the top center portion of the color palette. You click on the upper
"monitor" to paint transparent pixels, which are drawn in dark cyan. You click on the lower monitor to paint inverted

pixels, which are drawn in red.

Program the list control. In the dialog editor, set the list control's style attributes as shown in the next illustration.

List Control Properties X]

= ? General Stules | bore Styles | Extended Styles |

Wiew: v| v Single selection | Mo scrall

: [Auto arange [Mo column header
Sligr: | Tep -
[~ Molabelwap [Mo sort header
agit: | Nane T [Editlabels [v Show selection always

Figure 80: Modifying the list control properties.
Make sure the Border style on the More Styles page is set. Next add the following code to OnInitDialog():

static char* color[] = {"white", "black", "red",
“"blue™, "yellow", "cyan",
"purple', "green"};
CListCtrl* pList = (CListCtrlI*) GetDIgltem(IDC_LISTVIEW1);
pList->SetlImageList(&m_imageList, LVSIL_SMALL);
for (n = 0; n < 8; nt+)
{

pList->Insertltem(n, color[n], n);

¥
pList->SetBkColor(RGB(0, 255, 255)); // UGLY!
pList->SetTextBkColor(RGB(0, 255, 255));

static char#*® color[] = {"white", "black", "red".
"blue"., "vellow", "cwan'.
"purple". "green"}:

CLi=tCtrl*® pli=st = (CListCtrl*) GetDlgltem(IDC_LISTVIEW1):
pLlist—:>SetInagelist (én_imagelist, LVSIL_SHALL):
for in = 0. n < 8 n++)

1

plist—:Insertlten(n, color[n]. nl;

h
pli=t—»5=tBkColor (RGE({0, 255, 255%1): o TGLY!
pLlist—:SetTextBkColor(RGE(0, 255, 255)1):

Listing 31.

As the last two lines illustrate, you don't use the WM_CTLCOLOR message with common controls; you just call a
function to set the background color. As you'll see when you run the program, however, the icons' inverse-color pixels
look shabby. If you use ClassWizard to map the list control's LVN__ I TEMCHANGED notification message, so that you'll

be able to track the user's selection of items.
Mezzage Maps tember Yariables J Automation] Actives Events] Clazz [nfo]

Project: Clazs name: Add Class.. =
]m}lmch L]]EMymchDiaIDg LJ el Fuch

tiar...
F:ASmpmbc8hMumicBialog b, F:A SeymfcBMumfcBDialog.cpp m

Ohject 1D Meszages:

LVN_DELETEALLITEMS - .
LyN_DELETEITEM — Eptace
LN ENDLABELEDIT

LyN_GETDISPINFD =
Lyh_INSERTITEM

LM |ITEMCHANGED

Add Member Function El[gj

IDC_PROGRESST
IDC_SPIMT
IDC_STATIC_LISTVIEWA
IDC_STATIC_TRACK1
IDC_STATIC_TRACKZ
IDC_STATIC_TREEVIEWA b

M ember functions:

¥ DoDatakxchange Member funchion name: ITI
i - Onkserol UN_w/b_HSLH Ny |temchangedlistview
W Onlnithalog OW_WwWM_INITH Cancel
wll - Orivociol ON_WM_YSEH Message: LN ITEMCHANGED
Object |D: IDC_LISTYIE W1
Dezcrnption; Indicates that an item containSerrre——r—————————

k. Cancel

Figure 81: Mapping the list control's LVN__ 1 TEMCHANGED notification message.

The code in the following handler displays the selected item's text in a static control:

void CMymfc8Dialog: :OnltemchangedListviewl(NMHDR* pNMHDR, LRESULT* pResult)
{

NM_LISTVIEW* pNMListView = (NM_LISTVIEW*)pNMHDR;

CListCtrl* pList = (CListCtrlI*) GetDIgltem(IDC_LISTVIEW1);

int nSelected = pNMListView->iltem;

if (nSelected >= 0)

CString stritem = pList->GetltemText(nSelected, 0);

SetDIgltemText(IDC_STATIC_LISTVIEW1, stritem);

}
*pResult = 0;

¥

wold CHymfcBDialog: :Onltemchangedlistviewl (HHHDR* pHMHDE, LREESITLT* pResult)
{

FM_LISTVIEW* pHMListView = (NM_LISTVIEV=)pNHHDE:

CListCtrl#*® plist = (CListCtrl#) GetDlgltem(IDC_LISTVIEWL):
int nSelected = pHMLiztView-:iltem;
1f (nSelected := 0)

£

CString strltem = plist-:GetltenText (nSelected, 0);
SetDlgltenText (IDC_STATIC_LISTVIEW1, strltem):

I
*pRe=ult = 0;

Listing 32.
The NM_LISTVIEW structure has a data member called i 1tem that contains the index of the selected item.
Program the tree control. In the dialog editor, set the tree control's style attributes as shown here.

Tree Control Properties X]

= ? General Stules | bore Styles | Extended Styles |

Iv Has buttons [Edi labels | Show selection always

v Has lines [Disable drag drop

W Lines atroof W Border

Figure 82: Modifying the tree control styles.

Tree Control Properties

£

A ? General | Stules More Stulez | Extended Style=s |

W Check boxes W SQrDIE [Track select
[v Full row select | Tool tips | Single expand
v nfo tip v Mon even height

Figure 83: Another modification of the tree control styles.

Next, add the following lines to OnlnitDialog():

CTreeCtrl* pTree = (CTreeCtrl*) GetDIgltem(IDC_TREEVIEW1);
pTree->SetlmageList(&m_imageList, TVSIL_NORMAL);

// tree structure common values

TV_INSERTSTRUCT tvinsert;

tvinsert.hParent = NULL;

tvinsert.hlnsertAfter = TVI_LAST;
tvinsert.item.mask = TVIF_IMAGE | TVIF_SELECTEDIMAGE | TVIF_TEXT;
tvinsert.item.hltem = NULL;
tvinsert.item.state = 0;
tvinsert.item.stateMask = 0;
tvinsert.item.cchTextMax = 6;
tvinsert.item.iSelectedlmage = 1;
tvinsert.item.cChildren = 0;
tvinsert.item.lParam = 0;

// top level

tvinsert.item.pszText = "Homer";
tvinsert.item.ilmage = 2;

HTREEITEM hDad = pTree->Insertltem(&tvinsert);
tvinsert.item.pszText = "Marge";

HTREEITEM hMom = pTree->Insertltem(&tvinsert);
// second level

tvinsert.hParent = hDad;

tvinsert.item.pszText = "Bart";
tvinsert.item.ilmage = 3;
pTree->Insertltem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->Insertltem(&tvinsert);

// second level

tvinsert.hParent = hMom;

tvinsert.item.pszText = "Bart";
tvinsert.item.ilmage = 4;
pTree->Insertltem(&tvinsert);

tvinsert.item.pszText = "Lisa";
pTree->Insertltem(&tvinsert);
tvinsert.item.pszText = "Dilbert";

HTREEITEM hOther = pTree->Insertltem(&tvinsert);
// third level

tvinsert.hParent = hOther;

tvinsert.item.pszText = "Dogbert";
tvinsert.item.ilmage = 7;
pTree->Insertltem(&tvinsert);
tvinsert.item.pszText = "Ratbert";
pTree->Insertltem(&tvinsert);

CTreseCtrl*® pTres = (CTresCtrl#*®) GetDlgltem{IDC_TREEVIEW1):

pTree—:SetInagelist (&n_imagelist, TVSIL_HOREMALY

A4 tree structure common wvalues

TV_IHSERTSTEUCT twin=ert:

tvinzert hParent = HULL:

tvinsert hlnsertifter = TVI_LAST:

tvinsert item . mask = TVIF _IMAGE | TVIF _SELECTEDIHAGE |
TYIF_TEXT;

tvinzert item hltem = HULL:

tvinsert item.state = 0;

tvinsert item.=tateMa=slk = 0:;

tvinzert item.cchTextMa=z = 6;

tvinsert itemn.i1SelectedInage = 1;

tvinzert item.cChildren = 0:

tvinsert item.lParam = 0;

< top lewel

tvinsert item.psText = "Homer":

tvinsert item.ilmage = Z2;

HTEEEITEM hDad = pTree—:Insertltem{&tvinsert):

tvinsert item.pszText = "MHarge":

HTEEEITEM hMom = pTree—:Insertltem{&tvinsert):

S mecond lewel

tvinsert hParent = hDad:

tvinzert i1tem.p=s=Text = "Bart":

tvinsert item.ilmage = 3;

plree—:Insertltemné&tvinsert)

tvinsert item.pe=Text = "Li=a":

pTree—:InsertIlten(éitvinsert)

A4 zecond lewvel

tvinzert hPFarent = hMom:

tvinsert item.ps=Text = "Bart":
tvinzert i1tem.1Image = 4:
pTree—:InsertIten(éi&tvinssert)
tvinsert . item.pseText = "Li=a";
pTree—>Insertlten(i&tvrinsert)
tvinsert item.pszText = "Dilbert":

HTEEEITEM hiOther = pTree—:Insertltem{&tvinsert):
S third lewel

twvinzert hParent = hOther:

tvinzert i1tem.p=zText = "Dogbert":

ol
Listing 33.

As you can see, this code sets TV_INSERTSTRUCT text and image indexes and calls Insertltem() to add nodes to
the tree. Finally, use ClassWizard to map the TVN_SELCHANGED notification for the tree control.

MFC ClassWizard

tezzage Maps tember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazs name: Add Clazs..
rymfcd j
F:h AmymfedsMumic8Dialog. b, F:h . smymfcShMomfcBDialog. cpp g

| ChipmicBDialog |

Object [Ds: M ezzages: Delete Function

IDC_STATIC_TRACEKZ . TWN_GETDISPIMFO A

IDC_STATIC_TREEVIEWA 0 TMN_ITEME=FAMNDED 0

IDC_TRACKBART TYN_ITEME=PANDING

IDC_TRACKBARZ TWH_KEYDOWMN

IDCAMCEL _ TWMH_SELCHAMGIMG S

D0k » TMN_SETDISPIMFO i
kember functions:

YW [DoDataEschange s

W OnHScroll QM _wikd_HSCROLL

W OnlnitDialog OM_wikd_IMITDIALOG

OnSelchangedTreeviewl OM_IDC_TREEWIEWT:TWN_SELCHAMGED

W Onw'Scroll OM wikd WSCROLL v

Description: |ndicates that the zelection has changed from one item to another
] Cancel

Figure 84: Mapping the TVN_SELCHANGED notification for the tree control.

Click the Edit Code button and add the handler code to display the selected text in a static control:

void CMymfc8Dialog: :OnSelchangedTreeviewl(NMHDR* pNMHDR, LRESULT* pResult)

{

NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;
CTreeCtrl* pTree = (CTreeCtrlI*) GetDIgltem(IDC_TREEVIEW1);
HTREEITEM hSelected = pNMTreeView->itemNew.hltem;
if (hSelected != NULL)
{
char text[31];
TV_ITEM item;
item.mask = TVIF_HANDLE | TVIF_TEXT;
item.hltem = hSelected;
item.pszText = text;
item.cchTextMax = 30;
VERIFY(pTree->Getltem(&item));
SetDIgltemText(IDC_STATIC_TREEVIEW1, text);
}
*pResult = 0;

wvold CHymic8Dialog: :OnSelchangedTreeviewl (HHHDE* pHHMHDR, LEESULT# pREesult)
1
A TODD: Add wour control notification handler code here
HM_TREEVIEW#* pHMTresView = (HM_TREEVIEW#*)pHMHDE:
CTreeCtrl#*® pTree = (CTreeCtrl#®) GetDlgltem{IDC_ _TREEVIEWL):
HTREEITEM hSelected = pHMTresView—-:ritemNew hltem:
if (hSelected != NULL) {
char text[31]:
TVY_ITEH item;
item . mask = TVIF _HANDLE | TYIF_TEXT;
item hltem = hSelected:
iten.psEText = text;
iten.cchTextMax = 30;
VERIFY(pTree-:Getltemn(ditem))
SetDlgltemText (IDC_STATIC TREEVIEW1, text):

1
*#pResult = 0;

Listing 34.

The NM_TREEV IEW structure has a data member called 1temNew that contains information about the selected node;
itemNew.hltem is the handle of that node. The Getltem() function retrieves the node's data, storing the text using

a pointer supplied in the TV_ I TEM structure. The mask variable tells Windows that the h 1 tem handle is valid going in
and that text output is desired.

Add code to the virtual OnDraw() function in file mymfc8View.cpp. The following code replaces the previous code:

void CMymfc8View: :OnDraw(CDC* pDC)
{

}

pDC->TextOut(30, 30, "Press the left mouse button here.');

vold CHymfc8View: OnDraw(CDC* pDiC)

S TODD: add draw code for native data here
pDC—:TextOut (30, 30, "Pres=s the left mou=e button here. "):

Listing 35.

Use ClassWizard to add the OnLButtonDown () member function.

MFC ClassWizard

tezzage Maps tember Y ariables | Autamation | Activer Events | Clazz Info |

Project; Clazs name: Add Clazs..
rymfcd j | Chdpmfc @i j -

F:h Amwmnfe@hmymbcEyiew. b, Fh . SsmymfcShmomfcShiew cpp g

Object [Ds: M ezzages: Delete Function

Wi _LELUTTONDELCLE

Chd yrfoiEhisw

|
[

ID_aPP_ABOUT W LEUTTONDOWHN
ID_AFPP_EXIT W_LBUTTONUP

ID_EDIT_COPY W Wwibkd_MOLUSEROWE

ID_EDIT_CUT wik_MOUSEWHEEL

ID_EDIT_PASTE Wwihkd_IOWE i
ID_EDIT_UMDO » Wihd_PAINT i
kember functions:

W OnDraw

OnLButtanbown OM_wM_LEUTTONDOWM

W PreCreatedindow

Description: |ndicates when left mouse button iz pressed

k. Cancel

Figure 85: Adding the OnLButtonDown () member function to handle the left mouse click event.

Edit the AppWizard-generated code as follows:

void CMymfc8View: :OnLButtonDown(UINT nFlags, CPoint point)

{
CMymfc8Dialog dlg;

dlg.m_nTrackbarl 20;
dlg.m_nTrackbar2 2; // index for 8.0
dlg.m_nProgress = 70; // write-only
dlg.m_dSpin = 3.2;

dlg.DoModal () ;
}

vold CHMymfc8View: :OnlButtonDown{UINT nFlag=s. CPoint point)

1

dlg.m_nTrackbarl
dlg.m_nTrackbar?
dlg.n_nProgress = Y0; ~ write—only
dlg.m_dSpin = 3.2:

o TODD: Add vour message handler code here and-or call default
CHymf=BDialog dlg:

20;
2: 7 index for 3.0

dlg.Dolaodal():

Listing 36.

Add a statement to include mymfc8Dialog.h in file mymfc8View.cpp.

A nvmfciView . cpp 0 implementation of the CHynfciView class

#include "stdaf= h"
#include "mymfcd h"

#include "mymic8Doc k"
#include "mvmfc8View h'
#include "mymiciDialog. L'

#ifdef _DEBUG

#def ine new DEEUG_NEW

#fundef THIS FILE

static char THIS_FILE[] = __FILE :
#endif

If you unintentionally deleted the return value of the very long code for CMymfc8Dialog: :OnlnitDialog, make
sure it is like the following code.

return CDialog::OnlnitDialog();

plree—:Insertlten{étvinsert) ;
tvinsert item.pszText = "Rathert":
plTree—:Insertltemn(éitvinssert)

< Call after initialization
return CDialog: :OnInitDialogi):

Listing 37.

Finally, build and run the program. Experiment with the controls to see how they work. We haven't added code to make
the progress indicator functional that will be covered in Module 22.

7+ Untitled - mymfcB
File Edit “jew Help

0= 7

Press the left mouse button here.

Ready

Figure 86: The MYMFCS program output.

http://www.tenouk.com/visualcplusmfc22.html

Dialog

ai.

i hi blug.
Frogress l llll lll llilztﬂrnl :;a:i a-'r';lzw Cancel

red

Cyan
| 20

Trackbar 1 J P 3

(yellow

Trackhbar 2 J g.0

' ' ' ' ' Tres = I:I. Hormer ~

Control Il cat
P D. Liza 1
e S SOl g

Liza

Figure 87: MYMFCS program output when the left mouse button is clicked, dialog with full of the common controls.
Other Windows Common Controls

You've seen most of the common controls that appear on the dialog editor control palette. We've skipped the animation
control because this book doesn't cover multimedia, and we've skipped the hot key control because it isn't very
interesting. The tab control is interesting, but you seldom use it inside another dialog. Module 7 shows you how to
construct a tabbed dialog, sometimes known as a property sheet. In Module 7, you'll also see an application that is built
around the CRichEditView class, which incorporates the Windows rich edit control.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.

MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible
with 6.0 class library

MSDN Library

Windows data type.

Win32 programming Tutorial.

The best of C/C++, MFC, Windows and other related books.

Unicode and Multibyte character set: Story and program examples.

L

Nk w

http://www.tenouk.com/visualcplusmfc/visualcplusmfc7.html
http://www.tenouk.com/visualcplusmfc/visualcplusmfc7.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

