
Module 3: Basic Event Handling, Mapping Modes, and a Scrolling View

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Basic Event Handling, Mapping Modes, and a Scrolling View
Getting User Input: Message Map Functions
The Message Map
Saving the View's State - Class Data Members
Initializing a View Class Data Member
Invalid Rectangle Theory
The Window's Client Area
CRect, CPoint, and CSize Arithmetic Classes
Is a Point Inside a Rectangle?
The CRect LPCRECT Operator
Is a Point Inside an Ellipse?
The MYMFC1 Example
Using ClassWizard with MYMFC1
Using AppWizard and ClassWizard Together
Mapping Modes
The MM_TEXT Mapping Mode
The Fixed-Scale Mapping Modes
The Variable-Scale Mapping Modes
Coordinate Conversion
The MYMFC2 Example: Converting to the MM_HIMETRIC Mapping Mode
A Scrolling View Window
A Window Is Larger than What You See
Scroll Bars
Scrolling Alternatives
The OnInitialUpdate() Function
Accepting Keyboard Input
The MYMFC3 Example - Scrolling
Other Windows Messages
The WM_CREATE Message
The WM_CLOSE Message
The WM_QUERYENDSESSION Message
The WM_DESTROY Message
The WM_NCDESTROY Message

Basic Event Handling, Mapping Modes, and a Scrolling View

In the previous Module, you saw how the MFC Library application framework called the view class's virtual
OnDraw() function. If you look at the MSDN documentation for the CView class and its base class, CWnd, you'll see
several hundred member functions. Functions whose names begin with On - such as OnKeyDown() and
OnLButtonUp() - are member functions that the application framework calls in response to various Windows
"events" such as keystrokes and mouse clicks.
Most of these application framework-called functions, such as OnKeyDown(), aren't virtual functions and thus require
more programming steps. This Module explains how to use the Visual C++ ClassWizard to set up the message map
structure necessary for connecting the application framework to your functions' code.
The first two examples use an ordinary CView class. In MYMFC1, you'll learn about the interaction between user-
driven events and the OnDraw() function. In MYMFC2, you'll see the effects of different Windows mapping modes.
More often than not, you'll want a scrolling view. The last example, MYMFC3, uses CScrollView in place of the
CView base class. This allows the MFC library application framework to insert scroll bars and connect them to the
view.

http://msdn.microsoft.com/visualc/

Getting User Input: Message Map Functions

Your mymfc application from previous Module did not accept user input other than the standard Microsoft Windows
resizing and window close commands. The window contained menus and a toolbar, but these were not "connected" to
the view code. The menus and the toolbar won't be discussed until the time comes, because they depend on the frame
class, but plenty of other Windows input sources will keep you busy until then. Before you can process any Windows
event, even a mouse click, however, you must learn how to use the MFC message map system.

The Message Map

When the user presses the left mouse button in a view window, Windows sends a message - specifically
WM_LBUTTONDOWN - to that window. If your program needs to take action in response to WM_LBUTTONDOWN, your
view class must have a member function that looks like this:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // event processing code here
}

Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

The afx_msg notation is a "no-op" that alerts you that this is a prototype for a message map function. Next, your code
file needs a message map macro that connects your OnLButtonDown() function to the application framework:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_WM_LBUTTONDOWN() // entry specifically for OnLButtonDown
 // other message map entries
END_MESSAGE_MAP()

Finally, your class header file needs the statement:

DECLARE_MESSAGE_MAP()

How do you know which function goes with which Windows message? The MFC library online documentation includes
a table that lists all standard Windows messages and corresponding member function prototypes. You can manually
code the message-handling functions - indeed, that is still necessary for certain messages. Fortunately, Visual C++
provides a tool, ClassWizard, that automates the coding of most message map functions.

Saving the View's State - Class Data Members

If your program accepts user input, you'll want the user to have some visual feedback. The view's OnDraw() function
draws an image based on the view's current "state," and user actions can alter that state. In a full-blown MFC
application, the document object holds the state of the application, but you're not to that point yet. For now, you'll use
two view class data members, m_rectEllipse and m_nColor. The first is an object of class CRect, which holds
the current bounding rectangle of an ellipse, and the second is an integer that holds the current ellipse color value. By
convention, MFC library non-static class data member names begin with m_.
You'll make a message-mapped member function toggle the ellipse color (the view's state) between gray and white and
the toggle is activated by the event of pressing the left mouse button. The initial values of m_rectEllipse and
m_nColor are set in the view's constructor, and the color is changed in the OnLButtonDown() member function.
Why not use a global variable for the view's state? Because if you did, you'd be in trouble if your application had
multiple views. Besides, encapsulating data in objects is a big part of what object-oriented programming is all about.

Initializing a View Class Data Member

The most efficient place to initialize a class data member is in the constructor, like this:

http://msdn.microsoft.com/visualc/

CMyView::CMyView() : m_rectEllipse(0, 0, 200, 200) {...}

You could initialize m_nColor with the same syntax. Because we're using a built-in type (integer), the generated code
is the same if you use an assignment statement in the constructor body.

Invalid Rectangle Theory

The OnLButtonDown() function could toggle the value of m_nColor all day, but if that's all it did, the OnDraw()
function wouldn't get called (unless, for example, the user resized the view window). The OnLButtonDown()
function must call the InvalidateRect() function (a member function that the view class inherits from CWnd).
InvalidateRect() triggers a Windows WM_PAINT message, which is mapped in the CView class to call to the
virtual OnDraw() function. If necessary, OnDraw() can access the "invalid rectangle" parameter that was passed to
InvalidateRect().
There are two ways to optimize painting in Windows. First of all, you must be aware that Windows updates only those
pixels that are inside the invalid rectangle. Thus, the smaller you make the invalid rectangle (in the
OnLButtonDown() handler, for instance), the quicker it can be repainted. Second, it's a waste of time to execute
drawing instructions outside the invalid rectangle. Your OnDraw() function could call the CDC member function
GetClipBox() to determine the invalid rectangle, and then it could avoid drawing objects outside it. Remember that
OnDraw() is being called not only in response to your InvalidateRect() call but also when the user resizes or
exposes the window. Thus, OnDraw() is responsible for all drawing in a window, and it has to adapt to whatever
invalid rectangle it gets.

The Window's Client Area

A window has a rectangular client area that excludes the border, caption bar, menu bar, and any docking toolbars. The
CWnd member function GetClientRect() supplies you with the client-area dimensions. Normally, you're not
allowed to draw outside the client area, and most mouse messages are received only when the mouse cursor is in the
client area. Various child windows, including the toolbar window, the view window, and the status bar window, occupy
the main frame window's client area, as shown in Figure 1.

Figure 1: Window client area.

CRect, CPoint, and CSize Arithmetic

The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT, and SIZE structures, and thus
they inherit public integer data members as follows:

Class Data member
CRect left, top, right, bottom

CPoint x, y
CSize cx, cy

Table 1.

If you look in the Microsoft Foundation Class Reference, you will see that these three classes have a number of
overloaded operators. You can, among other things, do the following:

▪ Add a CSize object to a CPoint object.
▪ Subtract a CSize object from a CPoint object.
▪ Subtract one CPoint object from another, yielding a CSize object.
▪ Add a CPoint or CSize object to a CRect object.
▪ Subtract a CPoint or CSize object from a CRect object.

The CRect class has member functions that relate to the CSize and CPoint classes. For example, the TopLeft()
member function returns a CPoint object, and the Size() member function returns a CSize object. From this, you
can begin to see that a CSize object is the "difference between two CPoint objects" and that you can "bias" a CRect
object by a CPoint object.

Is a Point Inside a Rectangle?

The CRect class has a member function PtInRect that tests a point to see whether it falls inside a rectangle. The
second OnLButtonDown() parameter (point) is an object of class CPoint that represents the cursor location in the
client area of the window. If you want to know whether that point is inside the m_rectEllipse rectangle, you can
use PtInRect() in this way:

if (m_rectEllipse.PtInRect(point))
{
 // point is inside rectangle
}

As you'll soon see, however, this simple logic applies only if you're working in device coordinates (which you are at this
stage).

The CRect LPCRECT Operator

If you read the Microsoft Foundation Class Reference carefully, you will notice that CWnd::InvalidateRect takes
an LPCRECT parameter (a pointer to a RECT structure), not a CRect parameter. A CRect parameter is allowed
because the CRect class defines an overloaded operator, LPCRECT that returns the address of a CRect object, which
is equivalent to the address of a RECT object. Thus, the compiler converts CRect arguments to LPCRECT arguments
when necessary. You call functions as though they had CRect reference parameters. The view member function code:

CRect rectClient;
GetClientRect(rectClient);

Retrieves the client rectangle coordinates and stores them in rectClient.

Is a Point Inside an Ellipse?

The MYMFC1 code determines whether the mouse hit is inside the rectangle. If you want to make a better test, you can
find out whether the hit is inside the ellipse. To do this, you must construct an object of class CRgn that corresponds to
the ellipse and then use the PtInRegion() function instead of PtInRect(). Here's the code:

CRgn rgn;
rgn.CreateEllipticRgnIndirect(m_rectEllipse);
if (rgn.PtInRegion(point)) {
// point is inside ellipse
}

http://msdn.microsoft.com/visualc/

Note that the CreateEllipticRgnIndirect() function is another function that takes an LPCRECT parameter. It
builds a special region structure within Windows that represents an elliptical region inside a window. That structure is
then attached to the C++ CRgn object in your program. The same type of structure can also represent a polygon.

The MYMFC1 Example

In the MYMFC1 example, an ellipse (which happens to be a circle) changes color when the user presses the left mouse
button while the mouse cursor is inside the rectangle that bounds the ellipse. You'll use the view class data members to
hold the view's state, and you'll use the InvalidateRect() function to cause the view to be redrawn. In the previous
Module example, drawing in the window depended on only one function, OnDraw(). The MYMFC1 example requires
three customized functions (including the constructor) and two data members. The complete CMymfc1View header and
source code files are listed in Listing 1. The steps for creating the program are shown after the program listings. All
changes to the original AppWizard and OnLButtonDown() ClassWizard output are in orange color.

MYMFC1VIEW.H
// mymfc1View.h : interface of the CMymfc1View class
//
///

#if !defined(AFX_MYMFC1VIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_)
#define AFX_MYMFC1VIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_

#if _MFC_VER > 1000
#pragma once
#endif // _MFC_VER > 1000
class CMymfc1View : public CView
{
protected: // create from serialization only
 CMymfc1View();
 DECLARE_DYNCREATE(CMymfc1View)

// Attributes
public:
 CMymfc1Doc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMymfc1View)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMymfc1View();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CMymfc1View)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 int m_nColor;
 CRect m_rectEllipse;
};
#ifndef _DEBUG // debug version in mymfc1View.cpp
inline CMymfc1Doc* CMymfc1View::GetDocument()
 { return (CMymfc1Doc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MYMFC1VIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2__INCLUDED_)

MYMFC1VIEW.CPP

// mymfc1View.cpp : implementation of the CMymfc1View class
//

#include "stdafx.h"
#include "mymfc1.h"

#include "mymfc1Doc.h"
#include "mymfc1View.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

///
// CMymfc1View

IMPLEMENT_DYNCREATE(CMymfc1View, CView)

BEGIN_MESSAGE_MAP(CMymfc1View, CView)
 //{{AFX_MSG_MAP(CMymfc1View)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()
///
// CMymfc1View construction/destruction

CMymfc1View::CMymfc1View() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}

CMymfc1View::~CMymfc1View()
{
}

BOOL CMymfc1View::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);
}

///
// CMymfc1View drawing

void CMymfc1View::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

///
// CMymfc1View printing

BOOL CMymfc1View::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CMymfc1View::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CMymfc1View::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CMymfc1View diagnostics

#ifdef _DEBUG
void CMymfc1View::AssertValid() const
{
 CView::AssertValid();
}

void CMymfc1View::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CMymfc1Doc* CMymfc1View::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMymfc1Doc)));
 return (CMymfc1Doc*)m_pDocument;
}
#endif //_DEBUG

///
// CMymfc1View message handlers

void CMymfc1View::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;

 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

Listing 1.

Using ClassWizard with MYMFC1

Look at the following mymfc1View.h source code, the declaration part:

//{{AFX_MSG(CMymfc1View)
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
//}}AFX_MSG

Now look at the following mymfc1View.cpp source code, the implementation part:

//{{AFX_MSG_MAP(CMymfc1View)
ON_WM_LBUTTONDOWN()
//}}AFX_MSG_MAP

AppWizard generated the funny-looking comment lines for the benefit of ClassWizard. ClassWizard adds message
handler prototypes between the AFX_MSG brackets and message map entries between the AFX_MSG_MAP brackets. In
addition, ClassWizard generates a skeleton OnLButtonDown() member function in mymfc1View.cpp, complete with
the correct parameter declarations and return type. You run AppWizard to generate the application only once, but you
can run ClassWizard as many times as necessary, and you can edit the code at any time. You're safe as long as you don't
alter what's inside the AFX_MSG and AFX_MSG_MAP brackets.

Using AppWizard and ClassWizard Together

The following steps show how you use AppWizard and ClassWizard together to create this application:

Run AppWizard to create MYMFC1 project. Use AppWizard to generate an SDI project named MYMFC1 in the
\mfcproject\mymfc1 subdirectory or any subdirectory that you have selected during the new project creation. The
options and the default class names are shown here.

Figure 2: AppWizard MYMFC1 project summary.

Add the m_rectEllipse and m_nColor data members to CMymfc1View. With the Workspace window set to
ClassView, right-click the CMymfc1View class, select Add Member Variable…, and then insert the following two
data members:

private:
 CRect m_rectEllipse;
 int m_nColor;

Figure 3: Adding Member Variable through the ClassView.

Figure 4: The variable type and name.

If you prefer, you could type the above code inside the class declaration in the file mymfc1View.h.

Use ClassWizard to add a CMymfc1View class message handler. Choose ClassWizard from the View menu of Visual
C++, or right-click inside a source code window and choose ClassWizard from the context menu. Both shown below.

Figure 5: Invoking the ClassWizard through the View menu.

Figure 6: Invoking the ClassWizard through the context menu.

When the MFC ClassWizard dialog appears, be sure that the CMymfc1View class is selected, as shown in the
illustration below. Now click on CMymfc1View at the top of the Object IDs list box, and then scroll down past the
virtual functions in the Messages list box and double-click on WM_LBUTTONDOWN. The OnLButtonDown() function
name should appear in the Member Functions list box, and the message name should be displayed in bold in the
Messages list box. Here's the ClassWizard dialog box.

Figure 7: ClassWizard dialog.

Instead of using ClassWizard, you can map the function from the Visual C++ WizardBar.

Figure 8: The WizardBar.

Edit the OnLButtonDown() code in mymfc1View.cpp. Click the Edit Code button in the ClassWizard dialog box.
ClassWizard opens an edit window for mymfc1View.cpp in Visual C++ and positions the cursor on the newly
generated OnLButtonDown() member function. The following replaces the previous code:

void CMymfc1View::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point))
 {
 if (m_nColor == GRAY_BRUSH)
 {
 m_nColor = WHITE_BRUSH;
 }
 else
 {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

Listing 2: C++ code segment.

Edit the constructor and the OnDraw() function in mymfc1View.cpp. The following replaces the previous code:

CMymfc1View::CMymfc1View() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CMymfc1View::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

Listing 3: C++ code segment.

Build and run the MYMFC1 program. Choose Build Mymfc1.exe from the Build menu, or, on the Build toolbar, click

the button. Then choose Execute Mymfc1.exe from the Build menu or, on the Build toolbar, click the button.
The resulting program responds to presses of the left mouse button by changing the color of the circle in the view
window. Don't press the mouse's left button too quickly in succession; Windows interprets this as a double click rather
than two single clicks.

Figure 9: MYMFC1 program output.

Mapping Modes

Up to now, your drawing units have been display pixels, also known as device coordinates. The MYMFC1 drawing
units are pixels because the device context has the default mapping mode, MM_TEXT, assigned to it. The statement:

pDC->Rectangle(CRect(0, 0, 200, 200));

draws a square of 200-by-200 pixels, with its top-left corner at the top left of the window's client area. The positive y
values increase as you move down the window. This square would look smaller on a high-resolution display of 1024-by-
768 pixels than it would look on a standard VGA display that is 640-by-480 pixels, and it would look tiny if printed on a
laser printer with 600-dpi resolution. Try MYMFC1's Print Preview feature to see for yourself.

Figure 10: Print preview of the MYMFC1 project.

What if you want the square to be 4-by-4 centimeters (cm), regardless of the display device? Windows provides a
number of other mapping modes, or coordinate systems that can be associated with the device context. Coordinates in
the current mapping mode are called logical coordinates. If you assign the MM_HIMETRIC mapping mode, for example,
a logical unit is 1/100 millimeter (mm) instead of 1 pixel. In the MM_HIMETRIC mapping mode, the y axis runs in the
opposite direction to that in the MM_TEXT mode: y values decrease as you move down. Thus, a 4-by-4-cm square is
drawn in logical coordinates this way:

pDC->Rectangle(CRect(0, 0, 4000, -4000));

Looks easy, doesn't it? Well, it isn't, because you can't work only in logical coordinates. Your program is always
switching between device coordinates and logical coordinates, and you need to know when to convert between them.
This section gives you a few rules that could make your programming life easier. First you need to know what mapping
modes Windows gives you.

The MM_TEXT Mapping Mode

At first glance, MM_TEXT appears to be no mapping mode at all, but rather another name for device coordinates.
Almost. In MM_TEXT, coordinates map to pixels, values of x increase as you move right, and values of y increase as you
move down, but you're allowed to change the origin through calls to the CDC functions SetViewportOrg() and
SetWindowOrg(). Here's some code that sets the window origin to (100, 100) in logical coordinate space and then
draws a 200-by-200-pixel square offset by (100, 100). An illustration of the output is shown in the following Figure. The
logical point (100, 100) maps to the device point (0, 0). A scrolling window uses this kind of transformation.

void CMyView::OnDraw(CDC* pDC)
{
 pDC->SetMapMode(MM_TEXT);
 pDC->SetWindowOrg(CPoint(100, 100));
 pDC->Rectangle(CRect(100, 100, 300, 300));
}

Figure 11: A square drawn after the origin has been moved to (100, 100).

The Fixed-Scale Mapping Modes

One important group of Windows mapping modes provides fixed scaling. You have already seen that, in the
MM_HIMETRIC mapping mode, x values increase as you move right and y values decrease as you move down. All
fixed mapping modes follow this convention, and you can't change it. The only difference among the fixed mapping
modes is the actual scale factor, listed in the table shown here.

Mapping Mode Logical Unit
MM_LOENGLISH 0.01 inch
MM_HIENGLISH 0.001 inch
MM_LOMETRIC 0.1 mm
MM_HIMETRIC 0.01 mm
MM_TWIPS 1/1440 inch

Table 2.

The last mapping mode, MM_TWIPS, is most often used with printers. One twip unit is 1/20 point. A point is a type
measurement unit. In Windows it equals exactly 1/72 inch. If the mapping mode is MM_TWIPS and you want, for
example, 12-point type, set the character height to 12 × 20, or 240, twips.

The Variable-Scale Mapping Modes

Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISOTROPIC that allow you to change the
scale factor as well as the origin. With these mapping modes, your drawing can change size as the user changes the size
of the window. Also, if you invert the scale of one axis, you can "flip" an image about the other axis and you can define
your own arbitrary fixed-scale factors. With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved. In other
words, a circle is always a circle as the scale factor changes. With the MM_ANISOTROPIC mode, the x and y scale
factors can change independently. Circles can be squished into ellipses. Here's an OnDraw() function that draws an
ellipse that fits exactly in its window:

void CMyView::OnDraw(CDC* pDC)
{
 CRect rectClient;

 GetClientRect(rectClient);
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1000, 1000);
 pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
 pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2);

 pDC->Ellipse(CRect(-500, -500, 500, 500));
}

The functions SetWindowExt() and SetViewportExt() work together to set the scale, based on the window's
current client rectangle returned by the GetClientRect() function. The resulting window size is exactly 1000-by-
1000 logical units. The SetViewportOrg() function sets the origin to the center of the window. Thus, a centered
ellipse with a radius of 500 logical units fills the window exactly, as illustrated in the following Figure.

Figure 12: A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent
y scale factor = y viewport extent / y window extent
device x = logical x × x scale factor + x origin offset
device y = logical y × y scale factor + y origin offset

Suppose the window is 448 pixels wide (rectClient.right). The right edge of the ellipse's client rectangle is 500
logical units from the origin. Then:

The x scale factor is 448/1000, and
The x origin offset is 448/2 device units.

If you use the formulas shown previously, the right edge of the ellipse's client rectangle comes out to 448 device units,
the right edge of the window. The x scale factor is expressed as a ratio (viewport extent/window extent) because
Windows device coordinates are integers, not floating-point values. The extent values are meaningless by themselves. If
you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the preceding example, the "ellipse" is always a circle, as
shown in the following Figure. It expands to fit the smallest dimension of the window rectangle.

Figure 13: A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion

Once you set the mapping mode (plus the origin) of a device context, you can use logical coordinate parameters for most
CDC member functions. If you get the mouse cursor coordinates from a Windows mouse message (the point parameter
in OnLButtonDown()), for example, you're dealing with device coordinates. Many other MFC functions, particularly
the member functions of class CRect, work correctly only with device coordinates. The CRect arithmetic functions
use the underlying Win32 RECT arithmetic functions, which assume that right is greater than left and bottom is greater
than top. A rectangle (0, 0, 1000, -1000) in MM_HIMETRIC coordinates, for example, has bottom less than top and
cannot be processed by functions such as CRect::PtInRect unless your program first calls
CRect::NormalizeRect, which changes the rectangle's data members to (0, -1000, 1000, 0).
Furthermore, you're likely to need a third set of coordinates that we will call physical coordinates. Why do you need
another set? Suppose you're using the MM_LOENGLISH mapping mode in which a logical unit is 0.01 inch, but an inch
on the screen represents a foot (12 inches) in the real world. Now suppose the user works in inches and decimal
fractions. A measurement of 26.75 inches translates to 223 logical units, which must be ultimately translated to device
coordinates. You will want to store the physical coordinates as either floating-point numbers or scaled long integers to
avoid rounding-off errors. For the physical-to-logical translation you're on your own, but the Windows GDI takes care of
the logical-to-device translation for you. The CDC functions LPtoDP() and DPtoLP() translate between the two
systems, assuming the device context mapping mode and associated parameters have already been set. Your job is to
decide when to use each system. Here are a few rules of thumb:

▪ Assume that the CDC member functions take logical coordinate parameters.
▪ Assume that the CWnd member functions take device coordinate parameters.
▪ Do all hit-test operations in device coordinates. Define regions in device coordinates. Functions such as

CRect::PtInRect work best with device coordinates.
▪ Store long-term values in logical or physical coordinates. If you store a point in device coordinates and the

user scrolls through a window, that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rectangle when the user presses the left mouse button.
The code is shown here.

// m_rect is CRect data member of the derived view class with
// MM_LOENGLISH logical coordinates

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

{
 CRect rect = m_rect; // rect is a temporary copy of m_rect.
 CClientDC dc(this); // This is how we get a device context
 // for SetMapMode and LPtoDP
 // -- more in next module
 dc.SetMapMode(MM_LOENGLISH);
 dc.LPtoDP(rect); // rect is now in device coordinates
 if (rect.PtInRect(point))
 {
 TRACE("Mouse cursor is inside the rectangle.\n");
 }
}

The TRACE is a macro. As you'll soon see, it's better to set the mapping mode in the virtual CView function
OnPrepareDC() instead of in the OnDraw() function.

The MYMFC2 Example: Converting to the MM_HIMETRIC Mapping Mode

MYMFC2 is MYMFC1 converted to MM_HIMETRIC coordinates. Like MYMFC1, MYMFC2 performs a hit-test so
that the ellipse changes color only when you click inside the bounding rectangle. Use ClassWizard to override the virtual
OnPrepareDC() function. ClassWizard can override virtual functions for selected MFC base classes, including
CView. It generates the correct function prototype in the class's header file and a skeleton function in the CPP file.
Select the class name CMymfc1View in the Object IDs list, and then double-click on the OnPrepareDC() function
in the Messages list.

Edit the function as shown here:

Using the ClassWizard to override the virtual OnPrepareDC() function.

Figure 14: Using ClassWizard to override the virtual OnPrepareDC() function.

Enter the OnPrepareDC() code.

void CMymfc1View::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
 CView::OnPrepareDC(pDC, pInfo);
}

Listing 4.

The application framework calls the virtual OnPrepareDC() function just before it calls OnDraw().
Edit the view class constructor. You must change the coordinate values for the ellipse rectangle. That rectangle is now 4-
by-4 centimeters instead of 200-by-200 pixels. Note that the y value must be negative; otherwise, the ellipse will be
drawn on the "virtual screen" right above your monitor! Change the values as shown here:

CMymfc1View::CMymfc1View() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}

Listing 5.

Edit the OnLButtonDown() function. This function must now convert the ellipse rectangle to device coordinates in
order to do the hit-test. Change the function as shown in the following code:

void CMymfc1View::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}

Listing 6.

Build and run the MYMFC2 program. The output should look similar to the output from MYMFC1, except that the
ellipse size will be different.

Figure 15: MYMFC2 program output.

If you try using Print Preview again, the ellipse should appear much larger than it did in MYMFC1.

Figure 16: Better print preview of the MYMFC1.

A Scrolling View Window

As the lack of scroll bars in MYMFC1 and MYMFC2 indicates, the MFC CView class, the base class of
CMymfc2View, doesn't directly support scrolling. Another MFC library class, CScrollView, does support scrolling.
CScrollView is derived from CView. We'll create a new program, MYMFC3 that uses CScrollView in place of
CView. All the coordinate conversion code you added in MYMFC2 sets you up for scrolling. The CScrollView class
supports scrolling from the scroll bars but not from the keyboard. It's easy enough to add keyboard scrolling, so we'll do
it.

A Window Is Larger than What You See

If you use the mouse to shrink the size of an ordinary window, the contents of the window remain anchored at the top
left of the window, and items at the bottom and/or on the right of the window disappear. When you expand the window,
the items reappear. You can correctly conclude that a window is larger than the viewport that you see on the screen. The
viewport doesn't have to be anchored at the top left of the window area, however. Through the use of the CWnd
functions ScrollWindow() and SetWindowOrg(), the CScrollView class allows you to move the viewport
anywhere within the window, including areas above and to the left of the origin.

Scroll Bars

Microsoft Windows makes it easy to display scroll bars at the edges of a window, but Windows by itself doesn't make
any attempt to connect those scroll bars to their window. That's where the CScrollView class fits in. CScrollView
member functions process the WM_HSCROLL and WM_VSCROLL messages sent by the scroll bars to the view. Those
functions move the viewport within the window and do all the necessary housekeeping.

Scrolling Alternatives

The CScrollView class supports a particular kind of scrolling that involves one big window and a small viewport.
Each item is assigned a unique position in this big window. If, for example, you have 10,000 address lines to display,
instead of having a window 10,000 lines long, you probably want a smaller window with scrolling logic that selects only
as many lines as the screen can display. In that case, you should write your own scrolling view class derived from
CView.
Microsoft Windows NT uses 32-bit numbers for logical coordinates, so your logical coordinate space is almost
unlimited. Microsoft Windows 95, however, still has some 16-bit components, so it uses 16-bit numbers for logical
coordinates, limiting values to the range -32,768 to 32,767. Scroll bars send messages with 16-bit values in both

operating systems. With these facts in mind, you probably want to write code to the lowest common denominator, which
is Windows 95.

The OnInitialUpdate() Function

You'll be seeing more of the OnInitialUpdate() function when you study the document-view architecture. The
virtual OnInitialUpdate() function is important here because it is the first function called by the framework after
your view window is fully created. The framework calls OnInitialUpdate() before it calls OnDraw() for the first
time, so OnInitialUpdate() is the natural place for setting the logical size and mapping mode for a scrolling view.
You set these parameters with a call to the CScrollView::SetScrollSizes function.

Accepting Keyboard Input

Keyboard input is really a two-step process. Windows sends WM_KEYDOWN and WM_KEYUP messages, with virtual key
codes, to a window, but before they get to the window they are translated. If an ANSI character is typed (resulting in a
WM_KEYDOWN message), the translation function checks the keyboard shift status and then sends a WM_CHAR message
with the proper code, either uppercase or lowercase. Cursor keys and function keys don't have codes, so there's no
translation to do. The window gets only the WM_KEYDOWN and WM_KEYUP messages. You can use ClassWizard to map
all these messages to your view. If you're expecting characters, map WM_CHAR; if you're expecting other keystrokes,
map WM_KEYDOWN. The MFC library neatly supplies the character code or virtual key code as a handler function
parameter.

The MYMFC3 Example - Scrolling

The goal of MYMFC3 is to make a logical window 20 centimeters wide by 30 centimeters high. The program draws the
same ellipse that it drew in the MYMFC2 project. You could edit the MYMFC2 source files to convert the CView base
class to a CScrollView base class, but it's easier to start over with AppWizard. AppWizard generates the
OnInitialUpdate() override function for you. Here are the steps:

Run AppWizard to create MYMFC3.Use AppWizard to generate a program named MYMFC3 in the
mfcproject\mymfc3 subdirectory. In AppWizard Step 6, set the CMymfc3View base class to CScrollView, as
shown here.

Figure 17: AppWizard Step 6, setting the CMymfc3View base class to CScrollView.

Figure 18: MYMFC3 project summary.

Add the m_rectEllipse and m_nColor data members in mymfc3View.h. Insert the following code by right-
clicking the CMymfc3View class in the Workspace window or by typing inside the CMymfc3View.h class declaration:

private:
 CRect m_rectEllipse;
 int m_nColor;

Figure 19: Adding private member variable.

These are the same data members that were added in the MYMFC1 and MYMFC2 projects.

Modify the AppWizard-generated OnInitialUpdate() function. Edit OnInitialUpdate() in
mymfc3View.cpp as shown here:

void CMymfc3View::OnInitialUpdate()

{
 CScrollView::OnInitialUpdate();
 // 20 by 30 cm
 CSize sizeTotal(20000, 30000);
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage, sizeLine);
}

Listing 7.

Use ClassWizard to add a message handler for the WM_KEYDOWN message.

Figure 20: Using ClassWizard to add a message handler for the WM_KEYDOWN message.

ClassWizard generates the member function OnKeyDown() along with the necessary message map entries and
prototypes. Edit the code as follows:

void CMymfc3View::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch (nChar) {
 case VK_HOME:
 OnVScroll(SB_TOP, 0, NULL);
 OnHScroll(SB_LEFT, 0, NULL);

 break;
 case VK_END:
 OnVScroll(SB_BOTTOM, 0, NULL);
 OnHScroll(SB_RIGHT, 0, NULL);
 break;
 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;
 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;
 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;
 case VK_NEXT:
 OnVScroll(SB_PAGEDOWN, 0, NULL);
 break;
 case VK_LEFT:
 OnHScroll(SB_LINELEFT, 0, NULL);
 break;
 case VK_RIGHT:
 OnHScroll(SB_LINERIGHT, 0, NULL);
 break;
 default:
 break;
 }
}

Listing 8.

Edit the constructor and the OnDraw() function. Change the AppWizard-generated constructor and the OnDraw()
function in mymfc3View.cpp as follows:

CMymfc3View::CMymfc3View() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CMymfc3View::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

Listing 9.

Listing 10.

These functions are identical to those used in the MYMFC1 and MYMFC2 projects. Map the WM_LBUTTONDOWN
message and edit the message handler by clicking the Edit Code button.

Figure 21: Using ClassWizard to map the WM_LBUTTONDOWN message when left mouse button is clicked.

Make the following changes to the ClassWizard-generated code:

void CMymfc3View::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}

Listing 11.

This function is identical to the OnLButtonDown() handler in the MYMFC2 project. It calls OnPrepareDC() as
before, but there is something different. The CMymfc2View class doesn't have an overridden OnPrepareDC()
function, so the call goes to CScrollView::OnPrepareDC. That function sets the mapping mode based on the first
parameter to SetScrollSizes(), and it sets the window origin based on the current scroll position. Even if your
scroll view used the MM_TEXT mapping mode, you'd still need the coordinate conversion logic to adjust for the origin
offset.

Build and run the MYMFC3 program. Check to be sure the mouse hit logic is working even if the circle is scrolled
partially out of the window (use the horizontal and vertical scroll bar). Also check the keyboard logic. The output should
look like this.

Figure 22: MYMFC3 program output with horizontal and vertical scroll bar.

Other Windows Messages

The MFC library directly supports hundreds of Windows message-handling functions. In addition, you can define your
own messages. You will see plenty of message-handling examples in later chapters, including handlers for menu items,
child window controls, and so forth. In the meantime, five special Windows messages deserve special attention:
WM_CREATE, WM_CLOSE, WM_QUERYENDSESSION, WM_DESTROY, and WM_NCDESTROY.

The WM_CREATE Message

This is the first message that Windows sends to a view. It is sent when the window's Create function is called by the
framework, so the window creation is not finished and the window is not visible. Therefore, your OnCreate() handler
cannot call Windows functions that depend on the window being completely alive. You can call such functions in an
overridden OnInitialUpdate() function, but you must be aware that in an SDI application
OnInitialUpdate() can be called more than once in a view's lifetime.

The WM_CLOSE Message

Windows sends the WM_CLOSE message when the user closes a window from the system menu and when a parent
window is closed. If you implement the OnClose() message map function in your derived view class, you can control
the closing process. If, for example, you need to prompt the user to save changes to a file, you do it in OnClose().
Only when you have determined that it is safe to close the window do you call the base class OnClose() function,
which continues the close process. The view object and the corresponding window are both still active. When you're
using the full application framework, you probably won't use the WM_CLOSE message handler. You can override the
CDocument::SaveModified virtual function instead, as part of the application framework's highly structured
program exit procedure.

The WM_QUERYENDSESSION Message

Windows sends the WM_QUERYENDSESSION message to all running applications when the user exits Windows. The
OnQueryEndSession() message map function handles it. If you write a handler for WM_CLOSE, write one for
WM_QUERYENDSESSION too.

The WM_DESTROY Message

Windows sends this message after the WM_CLOSE message and the OnDestroy() message map function handles it.
When your program receives this message, it should assume that the view window is no longer visible on the screen but
that it is still active and its child windows are still active. Use this message handler to do cleanup that depends on the
existence of the underlying window. Be sure to call the base class OnDestroy() function. You cannot "abort" the
window destruction process in your view's OnDestroy() function. OnClose() is the place to do that.

The WM_NCDESTROY Message

This is the last message that Windows sends when the window is being destroyed. All child windows have already been
destroyed. You can do final processing in OnNcDestroy() that doesn't depend on a window being active. Be sure to
call the base class OnNcDestroy() function. Do not try to destroy a dynamically allocated window object in
OnNcDestroy(). That job is reserved for a special CWnd virtual function, PostNcDestroy(), that the base class
OnNcDestroy() calls. MFC Technical Note #17 in the online documentation gives hints on when it's appropriate to
destroy a window object.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

