
Module 15: Context-Sensitive Help

Program examples compiled using Visual C++ 6.0 (MFC 6.0) compiler on Windows XP Pro machine with Service Pack
2. Topics and sub topics for this Tutorial are listed below:

Context-Sensitive Help
The Windows WinHelp Program
Rich Text Format
Writing a Simple Help File
An Improved Table of Contents
The Application Framework and WinHelp
Calling WinHelp
Using Search Strings
Calling WinHelp from the Application's Menu
Help Context Aliases
Determining the Help Context
F1 Help
Shift-F1 Help
Message Box Help: The AfxMessageBox() Function
Generic Help
A Help Example: No Programming Required
The MAKEHELP Process
Help Command Processing
F1 Processing
Shift-F1 Processing
A Help Command Processing Example: MYMFC22B
Header Requirements
CStringView Class
CHexView Class
Resource Requirements
Help File Requirements
Testing the MYMFC22B Application

Context-Sensitive Help

Help technology is in a transition phase at the moment. The Hypertext Markup Language (HTML) format seems to be
replacing rich text format (RTF). You can see this in the new Visual C++ online documentation via the MSDN viewer,
which uses a new HTML-based help system called HTML Help. Microsoft is developing tools for compiling and
indexing HTML files that are not shipped with Visual C++ 6.0. In the meantime, Microsoft Foundation Class (MFC)
Library version 6.0 application framework programs are set up to use the WinHelp help engine included with Microsoft
Windows. That means you'll be writing RTF files and your programs will be using compiled HLP files.
This module first shows you how to construct and process a simple stand-alone help file that has a table of contents and
lets the user jump between topics. Next you'll see how your MFC library program activates WinHelp with help context
IDs derived from window and command IDs keyed to an AppWizard-generated help file. Finally you'll learn how to use
the MFC library help message routing system to customize the help capability.

The Windows WinHelp Program

If you've used commercial Windows-based applications, you've probably marveled at their sophisticated help screens:
graphics, hyperlinks, and popups abound. At some software firms, including Microsoft, help authoring has been elevated
to a profession in its own right. This section won't turn you into a help expert, but you can get started by learning to
prepare a simple no-frills help file.

Rich Text Format

The original Windows SDK documentation showed you how to format help files with the ASCII file format called rich
text format. We'll be using rich text format too, but we'll be working in WYSIWYG mode, thereby avoiding the direct
use of awkward escape sequences. You'll write with the same fonts, sizes, and styles that your user sees on the help
screens. You'll definitely need a word processor that handles RTF. I've used Microsoft Word for this book, but many
other word processors accommodate the RTF format.
Several commercial Windows help tools are available, including RoboHELP from Blue Sky Software and ForeHelp
from the Forefront Corporation. RoboHELP is a set of templates and macros for Microsoft Word, and ForeHelp is a
stand-alone package that simulates WinHelp, giving you immediate feedback as you write the help system.

Writing a Simple Help File

We're going to write a simple help file with a table of contents and three topics. This help file is designed to be run
directly from WinHelp and started from Windows. No C++ programming is involved. Here are the steps:

Create a \mfcproject \mymfc22 directory or any other directory that you have designated for your project.

Write the main help text file. Use Microsoft Word (or another RTF-compatible word processor) to type text as shown
here. In this example it is Microsoft Word 2003.

Figure 1: Main help text file saved in RTF format.

Be sure to apply the double-underline and hidden text formatting correctly and to insert the page break at the
correct place.

To see hidden text, you must turn on your word processor's hidden text viewing mode. In Word, choose Options from
the Tools menu, click on the View tab, and select All in the Formatting marks (Nonprinting Characters – for older

version) section or click the Show/Hide ()icon.

Figure 2: Enabling the Word’s Show/Hide view option.

Insert footnotes for the Table Of Contents screen. The Table Of Contents screen is the first topic screen in this help
system. Using the specified custom footnote marks, insert the following footnotes at the beginning of the topic title.

Footnote
Mark Text Description

HID_CONTENTS Help context
ID

$ SIMPLE Help
Contents Topic title

Table 1

When you're finished with this step, the document should look like this.

Figure 3: Our completed main help text file.

Insert footnotes for the Help Topic 1 screen. The Help Topic 1 screen is the second topic screen in the help system.
Using the specified custom footnote marks, insert the footnotes shown here.

Footnote
Mark Text Description

HID_TOPIC1 Help context
ID

$ SIMPLE Help
Topic 1 Topic title

K SIMPLE Topics Keyword text

Table 2.

Clone the Help Topic 1 screen. Copy the entire Help Topic 1 section of the document, including the page break, to the
clipboard, and then paste two copies of the text into the document. The footnotes are copied along with the text. In the
first copy, change all occurrences of 1 to 2. In the second copy, change all occurrences of 1 to 3. Don't forget to change
the footnotes. With Word, seeing which footnote goes with which topic can be a little difficult, so, be careful. When
you're finished with this step, the document text (including footnotes) should look something like this.

Figure 4: Creating other help topics by copying/cloning.

Save the document. Save the document as \mfcproject\mymfc22\Simple.rtf. Specify Rich Text Format as the file type.

Figure 5: Saving our main help text file in RTF format.

Write a help project file. Using Visual C++ or another text editor, create the file \mfcproject\mymfc22\Simple.hpj, as
follows:

[OPTIONS]

CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
COMPRESS=true
WARNING=2

[FILES]
Simple.rtf

This file specifies the context ID of the Table Of Contents screen and the name of the RTF file that contains the help
text. Be sure to save the file in text (ASCII) format.
Build the help file. From Windows, run the Microsoft Help Workshop (HCRTF.EXE) utility (located by default in
Program Files\Microsoft Visual Studio\Common\Tools).

Figure 6: The HCRTF.EXE utility, just double click to launch it.

Open the file \mfcproject\mymfc22\Simple.hpj, and then click the Save And Compile button.

Figure 7: Simple.hpj file opened in HCRTF.EXE program.

Figure 8: Compiled Simple.hpj file generating Simple.hlp file.

This step runs the Windows Help Compiler with the project file Simple.hpj. The output is the help file Simple.hlp in
the same directory.

If you use Word 97 to create or edit RTF files, make sure you use version 4.02 (or later) of the HCRTF.EXE utility.
Earlier versions of the HCRTF.EXE cannot process the rich text flags generated by Word 97.

Run WinHelp with the new help file. From Windows Explorer, double-click the file \mfcproject
\mymfc22\Simple.hlp. The Table Of Contents screen should look like this.

Figure 9: Our Simple.hlp program.

Now move the mouse cursor to Topic 1. Notice that the cursor changes from an arrow to a pointing hand. When you
press the left mouse button, the Help Topic 1 screen should appear, as shown here.

Figure 10: Exploring our help file.

The HID_TOPIC1 text in the Table Of Contents screen links to the corresponding context ID (the # footnote) in the
topic page. This link is known as a jump. The link to Help Topic 2 is coded as a pop-up jump. When you click on Topic
2, here's what you see.

Figure 11: Pop-up window for our help file.

Click the WinHelp Contents pushbutton. Clicking this button should take you to the Table Of Contents screen, as
shown at the beginning of the previous step. WinHelp knows the ID of the Table Of Contents window because you
specified it in the HPJ file.

Click the WinHelp Index pushbutton. When you click the Index button, WinHelp opens its Index dialog, which
displays the help file's list of keywords. In Simple.hlp, all topics (excluding the table of contents) have the same
keyword (the K footnotes): SIMPLE Topics. When you double-click on this keyword, you see all associated topic titles
(the $ footnotes), as shown here.

Figure 12: Invoking WinHelp Index.

What you have here is a two-level help search hierarchy. The user can type the first few letters of the keyword and then
select a topic from a list box. The more carefully you select your keywords and topic titles, the more effective your help
system will be.

An Improved Table of Contents

You've been looking at the "old-style" help table of contents. The latest Win32 version of WinHelp can give you a
modern tree-view table of contents. All you need is a text file with a CNT extension. Add a new file, Simple.cnt, in the
\mfcproject\mymfc22 directory, containing this text:

:Base Simple.hlp
1 Help topics
2 Topic 1=HID_TOPIC1
2 Topic 2=HID_TOPIC2
2 Topic 3=HID_TOPIC3

Figure 13: Creating Simple.cnt, a better WinHelp.

Notice the context IDs that match the help file. The next time you run WinHelp with the Simple.hlp file, you'll see a
new contents screen similar to the one shown here.

Figure 14: A better WinHelp version.

You can also use HCRTF.EXE to edit CNT files. The CNT file is independent of the HPJ file and the RTF files. If you
update your RTF files, you must make corresponding changes in your CNT file.

The Application Framework and WinHelp

You've seen WinHelp running as a stand-alone program. The application framework and WinHelp cooperate to give you
context-sensitive help. Here are some of the main elements:

1. You select the Context-Sensitive Help option when you run AppWizard.
2. AppWizard generates a Help Topics item on your application's Help menu, and it creates one or more generic

RTF files together with an HPJ file and a batch file that runs the Help Compiler.
3. AppWizard inserts a keyboard accelerator for the F1 key, and it maps the F1 key and the Help Topics menu

item to member functions in the main frame window object.
4. When your program runs, it calls WinHelp when the user presses F1 or chooses the Help Topics menu item,

passing a context ID that determines which help topic is displayed.

You now need to understand how WinHelp is called from another application and how your application generates
context IDs for WinHelp.

Calling WinHelp

The CWinApp member function WinHelp activates WinHelp from within your application. If you look up WinHelp in
the online documentation, you'll see a long list of actions that the optional second parameter controls. Ignore the second
parameter and pretend that WinHelp has only one unsigned long integer parameter, dwData. This parameter
corresponds to a help topic. Suppose that the SIMPLE help file is available and that your program contains the
statement:

AfxGetApp()->WinHelp(HID_TOPIC1);

When the statement is executed in response to the F1 key or some other event the Help Topic 1 screen appears, as it
would if the user had clicked on Topic 1 in the Help Table Of Contents screen.

"Wait a minute," you say. "How does WinHelp know which help file to use?" The name of the help file matches the
application name. If the executable program name is Simple.exe, the help file is named Simple.hlp.

You can force WinHelp to use a different help file by setting the CWinApp data member m_pszHelpFilePath.

"And how does WinHelp match the program constant HID_TOPIC1 to the help file's context ID?" you ask. The help
project file must contain a MAP section that maps context IDs to numbers. If your application's resource.h file defines
HID_TOPIC1 as 101, the Simple.hpj MAP section looks like this:

[MAP]
HID_TOPIC1 101

The program's #define constant name doesn't have to match the help context ID; only the numbers must match.
Making the names correspond, however, is good practice.

Using Search Strings

For a text-based application, you might need help based on a keyword rather than a numeric context ID. In that case, use
the WinHelp HELP_KEY or HELP_PARTIALKEY option as follows:

CString string("find this string");
AfxGetApp()->WinHelp((DWORD) (LPCSTR) string, HELP_KEY);

The double cast for string is necessary because the first WinHelp parameter is multipurpose; its meaning depends on the
value of the second parameter.

Calling WinHelp from the Application's Menu

AppWizard generates a Help Topics option on the Help menu, and it maps that option to CWnd::OnHelpFinder in
the main frame window, which calls WinHelp this way:

AfxGetApp()->WinHelp(0L, HELP_FINDER);

With this call, WinHelp displays the Help Table Of Contents screen, and the user can navigate the help file through
jumps and searches. If you want the old-style table of contents, call WinHelp this way instead:

AfxGetApp()->WinHelp(0L, HELP_INDEX);

And if you want a "help on help" item, make this call:

AfxGetApp()->WinHelp(0L, HELP_HELPONHELP);

Help Context Aliases

The ALIAS section of the HPJ file allows you to equate one context ID with another. Suppose your HPJ file contained
the following statements:

[ALIAS]

HID_TOPIC1 = HID_GETTING_STARTED

[MAP]
HID_TOPIC1 101

Your RTF files could use HID_TOPIC1 and HID_GETTING_STARTED interchangeably. Both would be mapped to
the help context 101 as generated by your application.

Determining the Help Context

You now have enough information to add a simple context-sensitive help system to an MFC program. You define F1
(the standard MFC library Help key) as a keyboard accelerator, and then you write a command handler that maps the
program's help context to a WinHelp parameter. You could invent your own method for mapping the program state to a
context ID, but why not take advantage of the system that's already built into the application framework? The
application framework determines the help context based on the ID of the active program element. These identified
program elements include menu commands, frame windows, dialog windows, message boxes, and control bars. For
example, a menu item might be identified as ID_EDIT_CLEAR_ALL. The main frame window usually has the
IDR_MAINFRAME identifier. You might expect these identifiers to map directly to help context IDs.
IDR_MAINFRAME, for example, would map to a help context ID of the same name. But what if a frame ID and a
command ID had the same numeric value? Obviously, you need a way to prevent these overlaps. The application
framework solves the overlap problem by defining a new set of help #define constants that are derived from program
element IDs. These help constants are the sum of the element ID and a base value, as shown in the following table.

Program Element Element ID Prefix Help Context ID Prefix Base (Hexadecimal)
Menu Item or toolbar button ID_, IDM_ HID_, HIDM_ 10000
Frame or dialog IDR_, IDD_ HIDR_, HIDD 20000
Error message box IDP_ HIDP_ 30000
Non-client area H… 40000
Control bar IDW_ HIDW_ 50000
Dispatch error messages - - 60000

Table 3.

HID_EDIT_CLEAR_ALL (0x1E121) corresponds to ID_EDIT_CLEAR_ALL (0xE121), and HIDR_MAINFRAME
(0x20080) corresponds to IDR_MAINFRAME (0x80).

F1 Help

Two separate context-sensitive help access methods are built into an MFC application and are available if you have
selected the AppWizard Context-Sensitive Help option. The first is standard F1 help. The user presses F1; the program
makes its best guess about the help context and then calls WinHelp. In this mode, it is possible to determine the
currently selected menu item or the currently selected window (frame, view, dialog, or message box).

Shift-F1 Help

The second context-sensitive help mode is more powerful than the F1 mode. With Shift-F1 help, the program can
identify the following help contexts:

▪ A menu item selected with the mouse cursor.
▪ A toolbar button.
▪ A frame window.
▪ A view window.
▪ A specific graphics element within a view window.
▪ The status bar.
▪ Various nonclient elements such as the system menu control.

Shift-F1 help doesn't work with modal dialogs or message boxes. The user activates Shift-F1 help by pressing Shift-F1
or by clicking the Context Help toolbar button, shown here.

Figure 15: Context Help button.

In either case, the mouse cursor changes to:
On the next mouse click, the help topic appears, with the position of the mouse cursor determining the context.

Message Box Help: The AfxMessageBox() Function

The global function AfxMessageBox() displays application framework error messages. This function is similar to
the CWnd::MessageBox member function except that it has a help context ID as a parameter. The application
framework maps this ID to a WinHelp context ID and then calls WinHelp when the user presses F1. If you can use the
AfxMessageBox() help context parameter, be sure to use prompt IDs that begin with IDP_. In your RTF file, use
help context IDs that begin with HIDP_. There are two versions of AfxMessageBox(). In the first version, the
prompt string is specified by a character-array pointer parameter. In the second version, the prompt ID parameter
specifies a string resource. If you use the second version, your executable program will be more efficient. Both
AfxMessageBox() versions take a style parameter that makes the message box display an exclamation point, a
question mark, or another graphics symbol.

Generic Help

When context-sensitive help is enabled, AppWizard assembles a series of default help topics that are associated with
standard MFC library program elements. Following are some of the standard topics:

▪ Menu and toolbar commands (File, Edit, and so forth).
▪ Nonclient window elements (maximize box, title bar, and so forth).
▪ Status bar.
▪ Error message boxes.

These topics are contained in the files AfxCore.rtf and AfxPrint.rtf, which are copied, along with the associated bitmap
files, to the application's \hlp subdirectory. Your job is to customize the generic help files. AppWizard generates
AfxPrint.rtf only if you specify the Printing And Print Preview option.

A Help Example: No Programming Required

If you followed the instructions for MYMFC21D in Module 20, you already selected the AppWizard Context-Sensitive
Help option. We'll now return to that example and explore the application framework's built-in help capability. You'll
see how easy it is to link help topics to menu command IDs and frame window resource IDs. You edit RTF files, not
CPP files. Here are the steps for customizing the help for MYMFC21D:

Verify that the help file was built correctly. If you have built the MYMFC21D project already, chances are that the help
file was created correctly as part of the build process. Check this by running the application and then pressing the F1
key. You should see the generic Application Help screen with the title "Modifying the Document", something
like as shown below.

http://www.tenouk.com/visualcplusmfc/visualcplusmfc14.html

Figure 16: Verifying that the help file was built correctly in MYMFC21D.

If you do not see this screen, the MAKEHELP batch file did not run correctly. First check the last two lines of the
mymfc21D.hpj file in the \hlp subdirectory. Are the paths correct for your Visual C++ installation? Next choose
Options from the Tools menu, and click on the Directories tab. Make sure that the \VC98\bin subdirectory of your
Visual C++ directory is one of the search directories for Executable Files.

Figure 17: Verifying the executable path for visual C++ 6.0.

To generate the help file, highlight the mymfc21D.hpj file in the Workspace FileView window, and then choose
Compile Mymfc21D.hpj from the Build menu or select the Compile Mymfc21D.hpj menu from the mouse right click
action.

Figure 18: Compiling the mymfc21D.hpj file to generate WinHelp through Build menu.

Figure 19: Compiling the mymfc21D.hpj file to generate WinHelp through FileView.

This runs the MAKEHELP batch file that is in your project directory. You can also run it directly from an MS-DOS
prompt. You should observe some "file(s) copied" messages but no error messages. Rerun the MYMFC21D program,
and press F1 again.
The Visual C++ make processor doesn't always detect all the dependencies in your help system. Sometimes you must
run the MAKEHELP batch file yourself to rebuild the HLP file after making changes.

Test the generic help file. Try the following experiments:

▪ Close the Help dialog, press Alt-F and then press F1. This should open the help topic for the File New
command. You can also press F1 while holding down the mouse button on the File New menu item to see
the same help topic.

Figure 20: The WinHelp when F1 or Alt-F key is pressed.

▪ Close the Help dialog, click the Context Help toolbar button and then choose Save from the File
menu. Do you get the appropriate help topic?

Figure 21: Using Context help button to invoke the WinHelp.

▪ Click the Context Help toolbar button again, and then select the frame window's title bar. You should get
an explanation of a Windows title bar.

Figure 22: Using Context help to invoke the Title bar help.

▪ Close all child windows and then press F1. You should see a main index page that is also an old-style
table of contents.

Figure 23: Pressing F1, invoking the help main index page.

Change the application title. The file AfxCore.rtf, in the \mfcproject\mymfc21D\hlp directory, contains the string
<<YourApp>> throughout. Open the AfxCore.rtf and replace it globally with MYMFC21D.

Figure 24: Modifying the AfxCore.rtf to reflect our real WinHelp content.

Change the Modifying The Document Help screen. The file AfxCore.rtf in the \mfcproject\mymfc21D\hlp directory
contains text for the generic Application Help screen. Search for Modifying the Document, and then change the text to
something appropriate for the application. This topic has the help context ID HIDR_DOC1TYPE. The generated
mymfc21D.hpj file provides the alias HIDR_MYMFC21DTYPE.

Add a topic for the Window New String Window menu item. The New String Window menu item was added to
MYMFC21D and thus didn't have associated help text. Add a topic to AfxCore.rtf, as shown here.

Figure 25: Modifying the AfxCore.rtf to reflect our real WinHelp content.

Notice the # footnote that links the topic to the context ID HID_WINDOW_NEW_STRING as defined in
hlp\mymfc21D.hm. The program's command ID for the New String Window menu item is, of course,
ID_WINDOW_NEW_STRING.

Rebuild the help file and test the application. Run the MAKEHELP batch file again, from the FileView or Build menu,
and then rerun the MYMFC21D program. Try the two new help links.

Figure 26: Our rebuilt WinHelp.

The MAKEHELP Process

The process of building the application's HLP file is complex. Part of the complexity results from the Help Compiler's
non-acceptance of statements such as:

HID_MAINFRAME = ID_MAINFRAME + 0x20000

Because of the Help Compiler's non-acceptance, a special preprocessing program named makehm.exe must read the
resource.h file to produce a help map file that defines the help context ID values. Below is a diagram of the entire
MAKEHELP process.

Figure 27: The MAKEHELP process.

AppWizard generates the application's help project file (HPJ) and the help contents file (CNT). In the project file, the
[FILES] section brings in RTF files and the [MAP] section contains #include statements for the generic and the
application-specific help map (HM) files. The Help Workshop (HCRTF.EXE) processes the project file to produce the
help file that WinHelp reads.

Help Command Processing

You've seen the components of a help file, and you've seen the effects of F1 and Shift-F1. You know how the
application element IDs are linked to help context IDs. What you haven't seen is the application framework's internal
processing of the help requests. Why should you be concerned? Suppose you want to provide help on a specific view
window instead of a frame window. What if you need help topics linked to specific graphics items in a view window?
These and other needs can be met by mapping the appropriate help messages in the view class. Help command
processing depends on whether the help request was an F1 request or a Shift-F1 request. The processing of each help
request will be described separately.

F1 Processing

The F1 key is normally handled by a keyboard accelerator entry that AppWizard inserts in the RC file. The accelerator
associates the F1 key with an ID_HELP command that is sent to the OnHelp() member function in the CFrameWnd
class.

In an active modal dialog or a menu selection in progress, the F1 key is processed by a Windows hook that causes the
same OnHelp() function to be called. The F1 accelerator key would otherwise be disabled.

The CFrameWnd::OnHelp function sends an MFC-defined WM_COMMANDHELP message to the innermost window,
which is usually the view. If your view class does not map this message or if the handler returns FALSE, the framework
routes the message to the next outer window, which is either the MDI child frame or the main frame. If you have not
mapped WM_COMMANDHELP in your derived frame window classes, the message is processed in the MFC CFrameWnd
class, which displays help for the symbol that AppWizard generates for your application or document type.

If you map the WM_COMMANDHELP message in a derived class, your handler must call CWinApp::WinHelp with the
proper context ID as a parameter.
For any application, AppWizard adds the symbol IDR_MAINFRAME to your project and the HM file defines the help
context ID HIDR_MAINFRAME, which is aliased to main_index in the HPJ file. The standard AfxCore.rtf file
associates the main index with this context ID.
For an MDI application named SAMPLE, for example, AppWizard also adds the symbol IDR_SAMPLETYPE to your
project and the HM file defines the help context ID HIDR_SAMPLETYPE, which is aliased to HIDR_DOC1TYPE in the
HPJ file. The standard AfxCore.rtf file associates the topic "Modifying the Document" with this context ID.

Shift-F1 Processing

When the user presses Shift-F1 or clicks the Context Help toolbar button, a command message is sent to the
CFrameWnd function OnContextHelp(). When the user presses the mouse button again after positioning the mouse
cursor, an MFC-defined WM_HELPHITTEST message is sent to the innermost window where the mouse click is
detected. From that point on, the routing of this message is identical to that for the WM_COMMANDHELP message,
described previously in "F1 Processing". The lParam parameter of OnHelpHitTest() contains the mouse
coordinates in device units, relative to the upper-left corner of the window's client area. The y value is in the high-order
half; the x value is in the low-order half. You can use these coordinates to set the help context ID specifically for an item
in the view. Your OnHelpHitTest() handler should return the correct context ID; the framework will call WinHelp.

A Help Command Processing Example: MYMFC22B

MYMFC22B is based on example MYMFC21D from Module 21. It's a two-view MDI application with view-specific
help added. Each of the two view classes has an OnCommandHelp() message handler to process F1 help requests and
an OnHelpHitTest() message handler to process Shift-F1 help requests. Make a copy of the MYMFC21D project
folder as a backup. Use the original for this exercise. All the following codes were copied into those relevant files
manually.

Header Requirements

The compiler recognizes help-specific identifiers only if the following #include statement is present:

#include <afxpriv.h>

Listing 1.

In MYMFC22B, the statement is in the StdAfx.h file.

CStringView Class

The modified string view in StringView.h needs message map function prototypes for both F1 help and Shift-F1 help,
as shown here:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);

Listing 2.

Here are the message map entries in StringView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)

Listing 3.

The OnCommandHelp() message handler member function in StringView.cpp processes F1 help requests. It
responds to the message sent from the MDI main frame and displays the help topic for the string view window, as shown
here:

LRESULT CStringView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_STRINGVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}

Listing 4.

Finally the OnHelpHitTest() member function handles Shift-F1 help, as shown here:

LRESULT CStringView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)

{
 return HID_BASE_RESOURCE + IDR_STRINGVIEW;
}

Listing 5.

In a more complex application, you might want OnHelpHitTest() to set the help context ID based on the mouse
cursor position.

CHexView Class

The CHexView class processes help requests the same way as the CStringView class does. Following is the
necessary header code in HexView.h:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);

Listing 6.

Here are the message map entries in HexView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)

Listing 7.

And here is the implementation code in HexView.cpp:

LRESULT CHexView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{

 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_HEXVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}

LRESULT CHexView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_HEXVIEW;
}

Listing 8.

Resource Requirements

Two new symbols were added to the project's Resource.h file. Their values and corresponding help context IDs are
shown here.

Symbol Value Help Context ID Value
IDR_STRINGVIEW 101 HIDR_STRINGVIEW 0x20065
IDR_HEXVIEW 102 HIDR_HEXVIEW 0x20066

Table 4

Figure 28: Invoking the resource symbol dialog.

Figure 29: Adding new resource symbols.

Help File Requirements

Two topics were added to the AfxCore.rtf file with the help context IDs HIDR_STRINGVIEW and HIDR_HEXVIEW,
as shown here.

Figure 30: Adding two new help topics to the AfxCore.rtf file.

The generated mymfc22B.hm file, in the project's \hlp subdirectory, should look something like this:

// MAKEHELP.BAT generated Help Map file. Used by MYMFC22B.HPJ.

// Commands (ID_* and IDM_*)
HID_WINDOW_NEW_STRING 0x18003
HID_WINDOW_NEW_HEX 0x18005

// Prompts (IDP_*)

// Resources (IDR_*)
HIDR_STRINGVIEW 0x20065
HIDR_HEXVIEW 0x20066
HIDR_MAINFRAME 0x20080
HIDR_MYMFC22BTYPE 0x20081

// Dialogs (IDD_*)
HIDD_ABOUTBOX 0x20064

// Frame Controls (IDW_*)

Figure 31: mymfc21D.hm file content.

Testing the MYMFC22B Application

Open a string child window and a hexadecimal child window. Test the action of F1 help and Shift-F1 help within those
windows. If the help file didn't compile correctly, follow the instructions in the previous step of the help example in "A
Help Example: No Programming Required".

Figure 32: The MYMFC22B (MYMFC21D) output used to test the F1 and Shift-F1 help functionalities.

When the F1 is hit the following help windows launched.

Figure 33: WinHelp when F1 key is pressed for string window.

And another one for the Hex view.

Figure 34: Invoking the Hex window.

Figure 35: WinHelp when Shift-F1 key is pressed for Hex window.

Further reading and digging:

1. MSDN MFC 6.0 class library online documentation - used throughout this Tutorial.
2. MSDN MFC 7.0 class library online documentation - used in .Net framework and also backward compatible

with 6.0 class library
3. MSDN Library
4. Windows data type.
5. Win32 programming Tutorial.
6. The best of C/C++, MFC, Windows and other related books.
7. Unicode and Multibyte character set: Story and program examples.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp
http://www.tenouk.com/ModuleC.html
http://www.tenouk.com/cnwin32tutorials.html
http://www.tenouk.com/cplusbook.html
http://www.tenouk.com/ModuleG.html
http://www.tenouk.com/ModuleM.html

