C FUNCTIONS

-INDEPENDENT ROUTINE WHICH DO A SPECIFIC
TASK(S)-

www.tenouk.com, ©

http://www.tenouk.com/

C FUNCTIONS

Some definition: A function is a named, independent section of C code that
performs a specific task and optionally returns a value to the calling program
or/and receives values(s) from the calling program.

= PBasically there are two categories of function:

1. Predefined functions: available in C / C++
standard library such as stdio.h, math.h,
string.h etc.

2. User-defined functions: functions that
programmers create for specialized tasks N~

such as graphic and multimedia libraries,
implementation extensions or dependen\t/
etc. "/

N ~
www.tenouk.com, ©

N
2/66

http://www.tenouk.com/

/C FUNCTIONS

._____// - \-__/

—

S

= |ettry a simple program example that using a simple user defined
N’ function,

e CAWINDOWSAsystem32\cmd.exe

—Calculating cube volume——
Enter a positive integer, for cube side (meterld:

Cube with side 7 meter,. iz 343 cubic meter.
Press any key to continue . . .

c—
www.tenouk.com, © | 3/66

http://www.tenouk.com/

C FUNCTIONS

—

The?ollowing statement call cube () function, bringing
along the value assigned to the flnput variable.

fAnswer = cube (fInput);

When this statement is executed, program jump to the
cube () function definition.

After the execution completed, the cube () function returns

to the caller program (main ()), assigning the returned

value, fCubeVolume to fAnswer variable for further
processing (if any). N
In this program the scanf () and print () are\aJexampIes

of the standard predefined functions. \/

N

\/ e S
www.tenouk.com, © _\) 4/66

http://www.tenouk.com/

C FUNCTIONS

= Basieally a function has thefollowing characteristics:

— 1. Named with unique name .

2. Performs a specific task - Task is a discrete job that the
program must perform as part of its overall operation, such
as sending a line of text to the printer, sorting an array into
numerical order, or calculating a cube root, etc.

3. Independent - A function can perform its task without
interference from or interfering with other parts of the
program.

4. May receive values from the calling program (caller) - -
Calling program can pass values to function for processing
whether directly or indirectly (by reference). '

5. May return a value to the calling program — the called
function may pass something@ to the calling program.

N =
www.tenouk.com, © : J 5/66

http://www.tenouk.com/

C FUNCTIONS

- Function Mechanism

S

C program does not execute the statements in
a function until the function is called.

When it is called, the program can send
information to the function in the form of one or
more arguments although it is not a mandatory.
Argument is a program data needed by the
function to perform its task.

When the function finished processing,

program returns to the same location whiU
called the function. _ =

N

\.4/ et o
www.tenouk.com, © J 6/66

¥

http://www.tenouk.com/

" C FUNCTIONS —

» The following figure illustrates function calls (also the memory’s
stack record activation — construction & destruction.

—
int main(?nid]]

'

o’

e’

{-.}

volid function 1l(int nIntArg)]
{...}

int main {void)

{

[vuid function Z(char chCharArg, float nFloatArg)]
{-}

function 1 (nIntZrg);

functiun_ﬂ{chcharhrg, nFloatirg) ;

ninotherInt = functiﬂn_B{chﬁnmtherchar};

.
functian_ﬂ{chcharhrgl, nFloathrgl) ; = ;)
return 0;) . - .)
| void function Z(char chCharArgl, float nFloatArgl)
[}

www.tenouk.com, © 7/66

http://www.tenouk.com/

S

C FUNCTIONS

= Function can be called as many

times as needed as shown for
function 2 (..).

= (Can be called in any order

provided that it has been
declared (as a prototype) and _

defined. ®
\-«'v "’\/

http://www.tenouk.com/

Y, " C FUNCTIONS

ck and Heap

= Each process in a multi-tasking OS runs in its own memory area.
~a This area is the virtual address space, which in 32-bit mode, is always a
4GB block of memory addresses.
» These virtual addresses are mapped to physical memory by page tables,
which are maintained by the OS’s kernel and consulted by the processor.
= Each process has its own set of page tables.
= More info at: Anatomy of program in memory.

Windows Windows booted
default memory with /3GB
aplit awitch

e _
Ox80000000 u=er mode

space (3GB) -

EXE=s flagged
as large-—

0x0 address

user mode

space (2GB)

S e
www.tenouk.com®)

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://www.tenouk.com/

' C FUNCTIONS
\/u

= As an example, the standard program’s/executable’s/binary’s segment'\'/

-’

S/

_Jlayout in a Linux process is shown in the following figure.

like the heap, stack, and so on.

1GB =

3GE ﬂi

The bands in the address space are correspond to memory segments

Kernel space

Bxcobeasea == TASK SIZE

Stack

Il

1r

Memory Mapping Region

dxd40aa80ee

7

Heap

B55 segment

Data Segment

Text Segment (ELF)

exe8ad488ee

hd \bnr(g
www.tenouk.com

e

http://www.tenouk.com/

C FUNCTIONS

Stack and heap are two memory sections in the user mode space.
Stack will be allocated automatically for function call.

It grows downward to the lower address.

It is Last-in First-out (LIFO) mechanism (tally with the assembly
language’s push and pop instructions)

Meanwhile, heap will be allocated by demand or request using C
memory management functions such as malloc (), memset (),
realloc () eftc.

It is dynamic allocation, grows upward to the higher memory
address.

By request means we need to release the allocation manually
using C functions such as free () and delete (if using new
keyword).

In a multi-threaded environment each thread will have its own
completely independent stack but they will share the heap as
needed.

=

N

www.t:;ouk.c\mfé \ s 11%6

http://www.tenouk.com/

C FUNCTIONS

= C:AWINDOWS\system 32\cmnd. exe

Allocating—>hlock: 92 address: BASBCSYE
————*Freeing the memory hlock: 22 address: BAS8CLH7S
— Allocating—>hlock: 93 address: BAS?A5A8

- II é& f ————*Freeing the memory hlock: 23 address: AA5785A8
ma OC() ree() fAllocating—>hlock: 94 address: BA5%45D8
EII_>FPEEing}E¥E ﬂemggy R&uck: Egaggggggs: Ba5745D8
ocating—— ock: address:
€3)(EirT1[)|EB ———*Freeing the memory bhlock: 9% addresz: BBLT7HGH8
Allocating—>block: 96 address:- BBA%9C638
————*Freeing the memory hlock: 76 addreszs: B057C638
Allocating—>hlock: 27 address: BASABGLE
————>*Freeing the memory bhlock: 27 address: BHESABGLE
Allocating—>hlock: 98 address: BB5A4678
————>*Freeing the memory block: 78 address: B05A4678
Allocating—>hlock: 99 address: BASABGCE
————>*Freeing the memory hlock: 29 address: AHESABGCE
Prezs any key to continue . . . _

o CAWINDOWS\system32\cmd. exe

Allocating—>hlock: 4383 address
Allocating—>*hlock: 4384 address
Allocating—>hlock: 4385 address
Allocating—*bhlock: 4386 address
Allocating—>hlock: 4387 address
Allocating—>hlock: 4388 address
Allocating—>bhlock: 4389 address
Allocating—>hlock: 4318 address
Allocating—>bhlock: 4311 address
Allocating—>hlock: 4312 address
Allocating—>*bhlock: 4313 address
Allocating—2>bhlock: 4314 addreszss
Allocating—>hlock: 4315 address
Allocating—>*bhlock: 4316 address
Allocating—>hlock: 4316 address
“CPress any key to continue . .

B47935A8
199 b0
B479F638 -

84797638 malloc() without free()
B4707698
A47AB6CE example
@47AFGFS
B47B3728
B47B7758 O,
@47EB788
@47BF7B8
@477C37ES
B47C7818

WWW.;]OUK.M s _ 12%6

A47C7R18 N

http://www.tenouk.com/

) ", C FUNCTIONS

. = By referring the previous function calls example, the stack should be in~—~
the equilibrium condition.
= ~ By considering the stack area of memory, the following figure illustrates
the condition of stack for function call.
= Inthis case, main () function has 3 function calls: function 1 (),
function 2 () and function 3 ().

7 tZ t3 to {6 tr
Backto | main) : : : : main(} | Backto
0s stack main() stack main() stack main() stack main() stack stack 08
function_1(...) function_2(...) function_3(...) function_2(...)
stack stack stack stack
=
\/

S
www.t;;ouk.&’mfé \ 1 3%6

http://www.tenouk.com/

—, C FUNCTIONS -
= The following is what a typical stack frame might look like.
= Smaller numbered/lower memory addresses are on top.
EEPE
Callee saved
registers
EBX, ESTI & EDI
{as needed)
temporary storage
local wvariable #2 [EBEF - £&]
local wvariable #1 [EER - 4]
EED Caller's EEP [EEF]
Return Address [EEFP + 4]
Argument #1 [EEP + £]
Argument #2 [EEP + 12]
Legends: Argument #3 [EBF + 1lg]
ESD stack pointer Caller saved J
EEBF base pointer registers
E2¥, EBRX, EAY, ECX & EDX
EC¥, EDX, | processors registers (as needed)
ESI, EDI next stack frame =
www.tenouk.come® \) 9 14%6

http://www.tenouk.com/

C FUNCTIONS

=_ This would be the contents of the stack if we have a
function MyFunct () with the prototype,

int MyFunct (int argl, int arg?2, int arg3) ;

= and in this case, MyFunct () has two local int variables.
(We are assuming here that sizeof (int) is 4 bytes).

= The stack would look like this if the main () function
called MyFunct () and control of the program is still
iInside the function MyFunct ().

* main () IS the "caller" and MyFunct () Is the "callee”.

= The ESP register is being used by MyFunct () to point tc?_/

the top of the stack.

= The EBP register is acting as a "base pointer". \

'
www.t\e?ouk.&n',fé . \ 1 5%6

http://www.tenouk.com/

C FUNCTIONS

IhHe arguments passed by main () to MyFunct () and the local
variables in MyFunct () can all be referenced as an offset from the
base pointer.

The convention used here (cdecl) is that the callee is allowed to mess
up the values of the EAX, ECX and EDX registers before returning.
Depend on the calling convention used: cdecl, stdcall or
fastcall

So, if the caller wants to preserve the values of EAX, ECX and EDX, the
caller must explicitly save them on the stack before making the
subroutine call.

On the other hand, the callee must restore the values of the EBX, EST
and EDI registers.

If the callee makes changes to these registers, the callee must save the
affected registers on the stack and restore the original values before

returning.

Parameters passed to MyFunct () are pushed on the stack. ~
The last argument is pushed first so in the end the first argument is on

top. N

Local variables declared in MyFunct () as well as temporary variables
are all stored on the stack.,,,..iseou S ~ 16ﬁ6
’ h X

"www.tenouk.))

http://en.wikipedia.org/wiki/X86_calling_conventions
http://www.tenouk.com/

" C FUNCTIONS —

exercise_5 Property Pages

i Configuration: | Active(Debug) * | Platform: | Active(win32) V| [CDI‘IFiQLIFEItiDI‘I Managet. ..]

= Comman Properties __rcded {jad)

- Calling Convention

- - Framewark and References Compile As
{El-- Canfiguration F'rclpertieb‘a Disable Specific Warnings __Fastcall {far)
- aeneral Force Includes __skdeall {faz)
- Debugging Force #usin
g
{=-Cic++) Show Includes Mo
Gen.er.al _ IUndefine Preprocessor Definitions
Eptll‘l‘llZEltlDl’l Undefine &ll Preprocessor Definitions Mo
FEprocessor) Use Full Paths Mo
- Code Generation . .
Crrnit Defaulk Library Marmes o
- Language - diatel =] k: k
- Precompiled Headers Error Repoarting Prompt Irnrmediately {ferrorReport: prompk)
- Dukput Files

- Browse Information
=)

- Zommand Line

- Linker

|- Manifest Tool

H - #ML Document Generakor
|- Browese Information

|- Build Events

|- Cuskam Euild Skep

o T o T oy O oy Y oy O o |

Calling Convention

Select the default calling convention For your application {can be overridden by function), {fad, far,
fiaz)

®

[QK H_ Cancel] apply

www.r;\oukM Q J) 9 s \ 17/

http://www.tenouk.com/

C FUNCTIONS

= Return values of 4 bytes or less are stored in the EAX__
, reqister.

= |f areturn value with more than 4 bytes is needed,
then the caller passes an "extra" first argument to the
callee.

* This extra argument is address of the location where
the return value should be stored. i.e., in C jargon the
function call,

X = MyFunct (a, b, c);
= |s transformed into the call,
MyFunct (&x, a, b, c); —

= Note that this only happens for function calls that —r’
return more than 4 bytes.

ww.tenouk.c\m,fé : 3 s \ 18%6

J

http://www.tenouk.com/

- JC FUNCTIONS

Function Definition

S

» |s the actual function body, which contains the code
N~ that will be executed as shown below (previous
example).

int cube(int fCubeSide)
{

// local scope (local to this function)
// only effective in this function 'body'
int fCubeVolume;

// calculate volume

fCubeVolume = fCubeSide * fCubeSide * fCubeSide;
// return the result to caller

return fCubeVolume;

T .\l

—
www.tenouk.com, © \ 19/66

S

http://www.tenouk.com/

C FUNCTIONS

First line of a function definition is called the function
header, should be identical to the function prototype,
except the semicolon.

Although the argument variable names (fCubeSide in this
case) were optional in the prototype, they must be included
In the function header.

Function body, containing the statements, which the
function will perform, should begin with an opening brace
and end with a closing brace.

If the function returns data type is anything other than voi

(nothing to be returned), a return statement should be

included, returning a value matching the return.data type /
(int in this case). ® I
O N S C
www.tenouk.com, © : J 20/66

http://www.tenouk.com/

The Funﬁ'i'mﬂéer S—

C FUNCTIONS

Theirst line of every function definition is called function header. It has 3
components, as shown below,

parameter list (which hold arguments) with

function’s their respective types if any else void. This 1=
retumed tvpe if

any else void

a value(s) or reference(s) received by
function.

returned type function_name(type 1 parameter 1, type 2 parameter 2, ...)

function names

Function return type - Specifies the data type that the function should
returns to the caller program. Can be any of C data types: char, float, ™=
int, long, double, pointers etc. If there is no return value, specify a
return type of void. For example, O,

s’
int calculate yield(..)/ // returns an int type
float mark (..) // gjys a float type
void calculate) interest(..) eturns nothing "/

—
www.tenouk.com, © \) 21/66

http://www.tenouk.com/

C FUNCTIONS

S—

1. Function name - Can have any name as long as the
rules for C / C++ variable names are followed and
must be unique.

2. Parameter list - Many functions use arguments, the

value passed to the function when it is called. A
function needs to know the data type of
each argument. Argument type is provided in the
function header by the parameter list. Parameter list

acts as a placeholder. |
S
O, 9 \/

.
www.tenouk.com, © : J 22/66

http://www.tenouk.com/

C FUNCTIONS

S— | . .
For,each argument that is passed to the function, the

parameter list must contain one entry, which specifies the
type and the name.
For example,

vold myfunction (int x, float y, char z)

vold yourfunction (float myfloat, char mychar)
int ourfunction(long size)

The first line specifies a function with three
arguments: type int named x, type float named y
and type char named z.

Some functions take no arguments, so the parameter list

should be void or empty such as, ®
long thefunction (void)/ ~ __—,////
void testfunct (void) .
int zerofunckt () \"’/

—
www.tenouk.com, © _\ 23/66

http://www.tenouk.com/

C FUNCTIONS

Parameter is an entry in a function header. It serves as a
placeholder for an argument. It is fixed, that is, do not change

during execution.

The argument is an actual value passed to the function by the
caller program. Each time a function is called, it can be

passed with different arguments.

A function must be passed with the same number and type of

arguments each time it is called, but the argument values can

be different.

e C:AWINDOWSA\system32vcmd.exe

The function call statement is = =-ha1f_nf{x}
where «x = 3.5 and v = 65.11

Paszing argument x
The value of =z = 1.758800A4

Pazsing argument y
The value of =z = 32.5558080

Pressz any key to continue . . .

www.tenouk.com, ©

Function -
example:
parameter and
argumens
N N
24/66

http://www.tenouk.com/

/C FUNCTIONS

N— —_/ |
- z = half of(x): J
For thefirst function call:
flcat nalf of (float k)
z = half :ffLE: l
Then, the second function call: -

float half of (float k)

= Each time a function is called, the different arguments are passed to
the function’s parameter.

= z = half of(y) andz = half of (x), each send a different
argumentto half of () through the k parameter.

= The first call send x, which is 3.5, then the second call send vy, which

is 65.11. N
= The value of x and y are passed (copied) into the parameter k of
half of (). 9 -

= Same effect as copying the values from x to k, and then y 1o k.
= half of () thenreturns this value.a\ft_epdividing it by 2.

N’ St

—
www.tenouk.com, © _\) 25/66

http://www.tenouk.com/

The Function Bod

/C FUNCTIONS

Enclosed in curly braces, immediately follows the function header.
Real work in the program is done here.

When a function is called execution begins at the start of the
function body and terminates (returns to the calling program) when
a return statement is encountered or when execution reaches

the closing braces (}).

Variable declaration can be made within the body of a function.
Which are called local variables. The scope, that is the visibility
and validity of the variables are local.

Local variables are the variables apply only to that particular
function, are distinct from other variables of the same name (if any)
declared elsewhere in the program outside the function.

It is declared, initialized and use like any other variable. |
Outside of any functions, those vartables are called gT()bU

variables. " \-/

\/ Nt S
www.tenouk.com, © : J 26/66

http://www.tenouk.com/

C FUNCTIONS

Functien program example: local and global variable

e C:AWINDOWS\system32\cmd.exe

globhallar <in main<>>» = 8.

Before calling function demo<), x
qgloballar (in demo<>> = 9.

Wlithin demod>»,. x = 88, Uy 9.
After calling demo<», x j [P

Prezs any key to cuntlnue .

The function parameters are considered to be variable

declarations.

Function prototype normally placed before main () and your

function definition after main () as shown below.

For C++, the standard said that we must include the prototype but

not for C.
S

N

www.tenouk.com, ©

'

S

"/

Rt
27/66

http://www.tenouk.com/

....... L. L FUNCTIONS

;#1nclude /
/* function prototype \-—/J
= But it is OKIif we directly declare and define the function
‘int functl (int); : before main () as shown below.
- #include ...
___, int main () :
P ; : /* declare and define */
/* function call ;intfunct1(intx)
. */ : |
: int y = :]
. functl (3) ; § i
} int main()
2 2 3
! /* Function ; : /" function call */
' definition */ . inty = funct1(3);
:int functl (int x)
O : e
Three rules govern the use of variables in functions:
S
1. To use a variable in a function, we must declare it in the function header or the
function body. o/
2. For a function to obtain a value from the calling program (caller), the value must be
passed as an argument (the actual value). et

3. For a calling program (caller) to obtain a VW function, the value must be
explicitly returned from the called function (c "

—
www.tenouk.com, © \ 28/66

http://www.tenouk.com/

N

/C FUNCTIONS

The Functib‘iTStﬁements\——/

—

Any statements can be included within a function, however a function may
not contain the definition of another function.
For examples: if statements, loop, assignments etc are valid statements.

e+ C:AWINDOWSA\system 3 2vcmd. exe

Enter two different integer values,

Returning a Value ieﬁpigated by space. Then pressz Enter key:

The larger value i=s 45.
Press any key to continue . . .

A function may or may not return a value.

If function does not return a value, then the function return type is said to
be of type void.

To return a value from a function, use return keyword, followed by C
expression.

The value is passed back to the caller.

The return value must match the return data type.

A function can contain multiple return statements. O,
Program example: multiple ™ \/

return statement N’/

N’ St

www.tenouk.com, ©

http://www.tenouk.com/

C FUNCTIONS

The FunctionPrototype ™

L

= Must be included for each function that will be defined, (required by
Standards for C++ but optional for C) if not directly defined before
main ().

* |n most cases it is recommended to include a function prototype in
your C program to avoid ambiguity.

= |dentical to the function header, with semicolon (;) added at the
end.

= Function prototype includes information about the function’s return
type, name and parameters’ list and type.

= The general form of the function prototype is shown below,

N—

function return type function name (type parameterl, type parameterz, ..,
type parameterN)

N
= An example of function prototype,™ \/
S ~

long cube (long) ; _ /

\/ e S
www.tenouk.com, © : 30/66

http://www.tenouk.com/

C FUNCTIONS

Function prototype providés the C compiler the name and arguments of
the functions and must appear before the function is used or defined.

It is @ model for a function that will appear later, somewhere in the
program.

From the previous prototype example, 'we' know the function is named
cube, it requires a variable of the type 1ong, and it will return a value of
type long.

Then, the compiler can check every time the source code calls the
function, verify that the correct number and type of arguments are being
passed to the function and check that the return value is returned
correctly.

If mismatch occurs, the compiler generates an error message enabling
programmers to trap errors. N
A function prototype need not exactly match the function header.

The optional parameter names can be different, as long as they are the)
same data type, number and in the same order. \ada/
But, having the name identical fo#/prototype and the furiction h

makes source code easier to understand.
\/ e o
www.tenouk.com, © : J 31/66

http://www.tenouk.com/

C FUNCTIONS

Normally placed before the start of main () but must

be before the function definition.

Provides the compiler with the description of a function
that will be defined at a later point in the program.
Includes a return type which indicates the type of
variable that the function will return.

And function name, which normally describes what the
function does.

Also contains the variable types of the arguments that
will be passed to the function. N
Optionally, it can contain the names of the variables |
that will be returned by the function. |

A prototype should always end with a semTcoloNﬂ./

\/ Nt S
www.tenouk.com, © : J 32/66

http://www.tenouk.com/

- C FUNCTIONS

Passingm to a-Function

'

= |n order function to interact with another functions or

~— codes, the function passes arguments.

= The called function receives the values passed to it and
stores them in its parameters.

= List them in parentheses following the function name.

= Program example: passing arguments

e C:AWINDOWS\system32\cmd.exe

z value
Local variabhle value: p's value 38
Prezs any key to continue . . .

Jalue from the calling program: x'

L=
www.tenouk.com, ©) 33/66

http://www.tenouk.com/

/C FUNCTIONS

—

S

The number of arguments and the type of each argument must match
the parameters in the function header and prototype.

If the function takes multiple arguments, the arguments listed in the
function call are assigned to the function parameters in order.

The first argument to the first parameter, the second argument to the
second parameter and so on as illustrated below.

functionlia, b, <)

T
EH'““H___ -_H“"-__
-\-\\\\\\\\\-_-\-\-\--\-\-\-""—\-
. o . T
vold functionl{int x, int v, int z)
4 \-

Basically, there are two ways how we can pass something to

function parameters,)
1. Passing by value. = S
2. Passing by reference using-array and pointer.

N’ St s
www.tenouk.com, © _\ 34/66

http://www.tenouk.com/

C FUNCTIONS

—— Maeros and Inline Functions

= |f the Same sequence of steps or instructions is required in several different
places in a program, you will normally write a function for the steps and call the

~ function whenever these steps are required. But this involves time overhead.

= Also can place the actual sequence of steps wherever they are needed in the
program, but this increase the program size and memory required to store the
program. Also need retyping process or copying a block of program.

= Use function if the sequence of steps is long. If small, use macros or inline
function, to eliminate the need for retyping and time overhead.

Macros

» Need #define compiler directive. For example, to obtain just the area of a
triangle, we could create a macro,

#define area(base, height) (0.3 * base * height)

Identifier / \ Arguments \ Definition of the macro

www.tenouk.com, ©

Rt
35/66

http://www.tenouk.com/

C FUNCTIONS

R— —_/
Then, we can use it anywhere in the program e.g.,

printf ("\nArea = $f\n", area(4.0, 6.0));

Example for finding an average of 4 numbers (a, b, ¢ and
d),

#define avg(x, vy) (x + v)/2.0

Then in the program we can define something like this,

avgl = avg(avg(a, b), avg(c, d))
Doing the substitution, N
avgd = ((a + b)/2.0 + (¢ + d)/2.0) / 2.0
The drawback: nesting of macros may resultin code tha
difficult to read. -/

N’ N

L=
www.tenouk.com, © : 36/66

http://www.tenouk.com/

C FUNCTIONS

= C:\WINDOWS\system32\cmd.e

walue 1 = 49
walue 2 =5

Program example: macro

Area = (B.5%hazexheight

where, bhaszse = 4, height = e o

firea = 12._000AGAA Press any key to continue .
Presz any key to continue .

Inline Function

= |s preferred alternative to the macro since it provides most of the features of
the macro without its disadvantages.
= Same as macro, the compiler will substitute the code for the inline function
wherever the function is called in the program.
= |nline function is a true function whereas a macro is not.
= The best time to use inline functions is when:
1.There is a time critical function
2.That is called often

3.And is respectfully small
= Usekeyword inline whichis placed before the function_

N

Program e@mple: inline funcﬁbn-/ &
www.tenouk.com, © _\ 37/66

http://www.tenouk.com/

C FUNCTIONS

HeaderEiIes and Functions

» Header files contain numerous frequently used functions that programmers

~ can use without having to write codes for them.

» Programmers can also write their own declarations and functions and store
them in header files which they can include in any program that may require
them (these are called user-defined header file which contains user defined
functions).

Standard Header File

» To simplify and reduce program development time and cycle, C provides
numerous predefined functions.

= These functions are normally defined for most frequently used routines.

= These functions are stored in what are known as standard library which o
consist of header files (with extension .h, .hh etc).

= Inthe wider scope, each header file stores functions, macros, enum,
structures (struct), types etc. that are related to a particular apW

task. " -
N/

\/ e S
www.tenouk.com, © : 38/66

http://www.tenouk.com/

C FUNCTIONS

—

We need to know which functions that are going to use,
how to write the syntax to call the functions and which
header files to be included in your program.

Before any function contained in a header file can be
used, you have to include the header file in your
program. You do this by writing,

#include <header filename.h>

This is called preprocessor directive, normally placed at

the top of your program. N
You should be familiar with these preprocessor

directives, encountered many-times in the program
examples previously discussed. .

\/ Nt S
www.tenouk.com, © : J 39/66

http://www.tenouk.com/

- C FUNCTIONS

Using Predefined Functions from Header File

_ / = Complete information about the functions and the header file
normally provided by the compiler’s documentation.
= For your quick reference: C standard library reference.

User-defined Header Files

= We can define program segments (including functions) and store
them in files.

= Then, we can include these files just like any standard header file in
our programs.

e C:AWINDOWS\system32\emd. exe

Proqram example Please enter the temperature in Fa}u'enhe-it= LH.5 n
user defined £@.50800 Pahrenheit = 18.277778 Celcius =
- Press any key to continue . . .
function
N’ S

—
www.tenouk.com, © \ 40/66

http://en.wikipedia.org/wiki/C_standard_library
http://www.tenouk.com/

/] N\ N
| C FUNCTIONS
\/“

= Next, let convert the user defined function to header fiIe.'
= Step: Add new header file to the existing project.

Solution Explorer - ex... « @ X exercise_5 1 src.c

= | 3| [F G (=Elobal Scope)
o 31| // & function prototype

.onvert (£loat) ;

|| Reso .
Rebild ;
~ . Souro n(wodld)
i:.+_+’| & Clean

) it TempFer:;
Project Only 3 vt TempCel:
Profile Guided Optimization 3
It ("FPlease enter

1T ("L, &TempFer)

Zustom Build Rules., ..

Tool Build Qrder... Cel = Convert |Ter ./
Add P hew Ikem...
References. .. 22 Existing Item...

S N
www.tenouk.com _) 3} \ 41ﬂ6

http://www.tenouk.com/

" C FUNCTIONS

Step: Put the header file name.

Add New ltem - exercise_b

Cakteqgaries:

Templates:

= WVisual C++
I
Code
Data
Resource
Web
Litility
Property Sheets

¥isual Studio installed templates

j.;] Z++ File {.cpp)

@ Header File_{.h]l |

| Ml File (il
#_E’]Mndule-DeFinitinn File {.def)
;EH Component Class

o] Installer Class

My Templates

| Search Online Templates. .

Creates a C++ header File

Marne: | kempconwverter

Locakion: cHamadiexercise_Sexercise_5 [Browse, .]

http://www.tenouk.com/

" C FUNCTIONS

Step: Cut the function definition from the source file
and paste it into the header file.

// a function definition

float Convert(float TempFer)

{
// return the result to the calling program
return ((TempFer - 32) * 5) / 9;

@2 exercise_5 - Microsoft Visual Studio

File Edit Wiew Project Build Debug Tools Test Window Help

RS R W= R TEENF - B & - B Debug - Win3z2 -
B 7 U = = =

Solukion Explorer - So.., - 0 X I tempmnverter.hl exercise 5_1_stc.c

= 'é'j =] r‘%" (ialobal Scope)

J Solution ‘exercise_5' (1 projec
= 33 exercise_5
= L Header Files
i] temponyverter.b
[Resource Files
= | Source Files
Ej exercise_S 1 src

13 // a function definition

297 £loat Conwvert (float TempFer)

CE |

4 A return the result to the calling program
5

B

return | (TempFer - 32) * &) / 9:
¥

A e
www.tenou k.M _) ¥ \

4

N’

http://www.tenouk.com/

, _,//
| C FUNCTIONS
\/\/

= Step: Next, include the header file at the top, just after the #include

\-/.

<stdio.h>.

Use double quotes because the header file is under the project
folder/sub folder instead of the default or VC++ . .\include sub

folder.

#include "tempconverter.h"

DS @ bR

Solution Explorer - S0, » I X

2| o Ea
_: Solution 'exercise_5' (1 projec
= t‘E exercise_5
= | Header Files
] tempeonverter,h
[Resource Files
= | Source Files
CH] exercise_S_1_str

(GElobal Scope)

& - b Debug - Win32 - | [it
B 7 U=

41

tempconverter.h - EHercise_5_1_src.c

-] #include <stdio.hs

-] int
i

-t

www.tenouk.com™©

H#include "tempoconverter.h™

/4 a function prototype
float Converti(float):

main(wvoid)

float TempFer:
float TempCel:

printf ("Flease enter the temperature in Fahrenheit: "):

scanf ("5£", &£TempFer) ;
TempCel = Convert (TempFer);
printf ("hvn™;

printf ("3f Fahrenheit = %f Celciushn™, TempFer, TempCel):

return 0O:

N/

N’

http://www.tenouk.com/

" C FUNCTIONS

= Step: Re-build and re-run the project.

s C:AWINDOWS\system32\cmd.exe

86 .548881 Fahrenheit = 38.38H8HA1 Celcius
Preszs any key to continue . . .

= Next, we are going to use < > instead of " .

= To accomplish this, we need to put the header file
under the VC++ include folder/sub folder.

S \ S
ww.tenouk.c?bm,‘é 0 \ 45%6

http://www.tenouk.com/

" C FUNCTIONS

= The VC++ include sub folder can be found in VC++
~ Directories Options settings.

= Step: Select Tools menu > Select Options sub-menu.
Options @E|

Erviranmment FlatFarmm; Shiow direckories for:
{I_EI Projects and Snlutinns-] WinJz % | |Include Files w
Genetal
Build and Fun J||‘_‘“ﬁ|}(|+|+|
Y& Defaulks

$WCInskalDiriincude
$WCInskalDirdatimfoiinclude

WC++ Direckories

YC++ Project Settings $(WindowssdkDirinclude
Source Conkrol $(FramesorkaDkDirlinchide
Text Editor
Database Tools
Debugging
Device Tools
HTML Desigrner
Office Tools ¥ >
Test Tools include Directors o
; nclude Directories
I;:td;z?g:;? Designer Path to use when sgarching For iljclude files while building a W4+ project,
Corresponds ko environment variable INCLUDE,
Workflow Designer

— _—
www.tenou k.M \) 9 \

http://www.tenouk.com/

" " C FUNCTIONS

~

= Step: When you have found your VC++ include sub folder, copy the

4

N’

Jheader file (tempconverter.h) into the VC++ include sub folder.
» Step: The header file can be found under the project folder/sub folder.

& exercise 5

File Edit \Wiew Faworites Tools Help

Q Back - J ‘ﬁh p) Search ‘l{__ Folders

Address (I C:'l,amanﬁ-e:{ercise_S'l,e:{ercise_S]

Folders = Mame

=) Se Mazurivol (C) ~ IJDebug
) 2bffa7cce?z2f478d5150d244 '?HE:{EF':'EE_S'WF”’D]
) 15F11cdafad44f4109549354: ;jj,e:-:ern:ise_S.vcprnj.N.ﬁ.ELIFlI.mike SpOOn.User
D) 762577210949208F a53d528:] exercise_5_1_src.c
=) amad E] EXercise_5_src.cC
I2) anothersample
I arravsample

S’
www.tenouk.com®)

Size

4 KB
£ KB
1 KB
1KE
1 kKB

Type
File Folder
YiZ4++ Project
Yisual Studio Project s
i_ Source
Z Source
CC++ Header

http://www.tenouk.com/

" C FUNCTIONS

% include

File Edit ‘iew Faworites Tools Help

Qﬁack > ? j-_-x: Search ‘H_ Folders

Address |3 Ci\Program FilesIMicrosoft Yisual Studio 9.00Cinclude

Falders x Mame Size Twpe Crake Modified

) vE A ﬂ zkring.h 27 KB C)C++ Header 12007 8:11 AM

= v 95 KB C/C++ Header a/14/2007 8:25 PM
) atlmfc Eﬂterm:u:-:nn'-.-'er'l:er.h 1 KB CJC++ Header 12/15/2012 5:31 PM
) bin il kime. h 12KE Cj)C++ Header 1/12/2007 12:10 AM

) ce il Ernmminkrin. b 4 KB C/C++ Header 11/3/2006 4:43 PM
) ort ﬂ byvpeinfo,h 1 KB C/C++ Header 10/15/2004 11:39 AM
) include ﬂ use_ansi.h 4 KB C/C++ Header Bi4/2005 11:25 4M
I lib h] vadefs.h 4 KB C/C++ Header 12/16/2004 11:41 AM
) redist] varargs.h 4 KB CJC++ Header 392005 £:50 PM
) WCAddClass ﬂ wocle b 2KB C/CH++ Header 12712004 12:27 AM
) WCConkextItems ﬂ wihar. b 7SKBE C)C++ Header 52007 2:48 AM
) YCNewltems] wickype.h 7KE C/C++ Header 4/15{2005 10:21 PM
) vepackages a il wrniaklprow. b 29KB CfC++ Header 8/10J2005 12:59PM

£ > £ >
Type: CfC++ Header Date Modified: 12/15/2012 5:31 PM Size: 147 bytes 147 bytes J Py Compuker

www.tenouk.cCom©) 9 \ 5/B6

http://www.tenouk.com/

‘_#//
C FUNCTIONS
\/v

N/

. ~—
= Step: Now, change the double quotes (" ") to less-than-
— greater-than brackets (< >) brackets.

#include <tempconverter.h>

tempoonterter.h Ieuercise_S_l_src.c I

(Global Scope) W || =
1l ginclude <stdio.h>
2 (ﬁinclude {tempcnnverter.h}]
3
44 44 a function prototype
5| float Converti(float):
E -
7 int mwain(woid)
=F | I
= float TempFer:;
10 float Tempilel;
11
12 printf ("Please enter the temperature in Fahrenheit: ') ;:
13 scanft ("s£", eTempFer): o/
14 TempCel = Conwvert (TempFer):
15 printf ("vn'")
16 printf (":f Fahrenheit = &f Celciusin™, TempFer, TempCel):
17 return 0O; \ o
15§31

o
www.’:r;ouk.M) 9 \ 49%6

http://www.tenouk.com/

" C FUNCTIONS —

» Step: Then, we can delete the header file in the project.

N’

Solukion Explorer - So... - @ X

tempconyverter.h
= @["El {Global Scope)

: E:DlLItIDI‘I e:-:erclse_E (1 projec 15 #incl
= 33 EXEercise_5 5 fincl
= | Header Files ‘

) [— g

1 Resource F j Open
= LLZF Source File: Cpen With. .. -
L4 ewercis
[Z] wiew Code
.:."_",_1. Wiew Class Diagram -
T
Exclude From Project
£ Cut 2
23 Copy 4
IIj Microsoft Visual Studio E|
Fename T 3 Choose Remove to remove tempoonverter. b’ from 'exercise_5',
‘= Propetties . Choose Delete to permanently delete tempoonverter b,

L

uemwe |[Delete [Cancel]
——

www.t'e'nouk.M) 9 B \ 50/66

http://www.tenouk.com/

/) " C FUNCTIONS

= Step: Re-build and re-run the project.

J—_

s C:AWINDOWS\system32\cmd.exe

Please enter the temperature in Fahrenheit:

34.458881 Fahrenheit = 1.361112 Celcius
Preszs any key to continue . 5

— \ g -’
www.tenouk.coms 9 \

http://www.tenouk.com/

C FUNCTIONS

Recursive Function

= \We€annot define function within function, but we can call the same
function within that function.

= Arecursive function is a function that calls itself either directly or
indirectly through another function.

= Classic example for recursive function is factorial, which used in
mathematics.

= Program example: recursive function

e C:AWINDOWSA\system3 2\cmd. exe

2¢1>t
32t
4¢3 >
GC4)t
6¢5>¢
<6t 56840

B0t 48320

¢8>t = 362880

18<92>* = 3628800

11<1@>t 379168088

12<11 >t 479001688
13<12>t 19328535684
14<13>¢ 12789452808

any key to continue . . .

728

sononon

www.tenouk.com, ©

http://www.tenouk.com/

C FUNCTIONS

Passing an array to a function What are the output and
T S the content of num &
| mood variables after
// function prototype _
void Wish(int, char[1); program execution was
void main (void) Completed?
{
Wish (5, "Happy"): wish
} l.-J::Ls}l
wizh
_ . wizh
Function definition wizh
volid Wish({int num, char mood([])
{
int i: num jilatals |
for(i = 1y 1 <= numy 1 = i + 1}
printf ("I wish I'm %s\n", mood): L
}

¥

.
www.tenouk.com, © : 53/66

http://www.tenouk.com/

1.
2. InwWish (), what becomes the value of num? What becomes the value of

S =

C FUNCTIONS

_—
What.are the two values passed towish () ?

mood? Write them in the provided boxes.

Notice that in both the prototype and the definition of Wish (), there is no
number in the brackets, giving the number of cells of mood[1. Can you
think why omitting this number makes the function more flexible for use in
other instances?

How can we tell that "Happy" is a character string? How can we tell that
mood [] should also be a character string?

If Wish () were called from main () with this statement, Wish (3,
"Excited"); , then what would be the output?

An integer 5 and a string "Happy".

num is an integer of 5 and mood is a string of "Happy".
This unsized array make the system decide the actual size needed for storage.
"Happy" is a character string because it is.enclosed in the double-quotes and an
array mood|[] has been declared as a char type. D |
Only the first 3 alphabets from "Excited" will be displayed that is "I wish

N’ -

www.tenouk.com, ©

http://www.tenouk.com/

C FUNCTIONS

void Rus%ed(ch;r[1) Bu”d thIS programs ShOW
' the output & what it do?

void main (void)

MJ/{
// all work done in function Rusted()...
Rusted ("Test Test");
printf ("\n"); E . -
nter an integer: 4
J In RBusted<>», x = Te=st Test
In RBusted<>», x = Test Test
void Rusted(char x[]) In Rusted<>», x = Test Test
{ In Busted<>», x = Test Test
int 3; .
PRl Bt an integer: ") ; Prezs any key to continue . .
scanf s ("%d", &Jj):;
for(; J '= 0; --3J)
printf ("In Rusted(), x = %s\n", x);
} S

S
A function call frommain () that passgs a character string and
callee will print the number of character string based on the user
input.) \-/g 2 (s
www.tenouk.com, © _ 55/66

http://www.tenouk.com/

C FUNCTIONS

Function, Array and Pointers

Functions in C cannot return array types however they can
return pointers to arrays or a reference.

When you pass in the array, you're only passing in a pointer. So
when you modify the array's data, you're actually modifying the
data that the pointer is pointing at.

Functions shall not have a return type of type array or function,
although they may have a return type of type pointer or
reference to such things.

So, there shall be no arrays of functions, although there can be
arrays of pointers to functions. N
Since arrays are not objects, you can't pass them in and out of

functions. o o '
Pointers are objects, so you can pass a pointer ta.the first

element of an object. _/

\/ Nt S
www.tenouk.com, © : J 56/66

http://www.tenouk.com/

=~ C FUNCTIONS

. Funct.i@;(jnéud'@_;/main ()) are constructed automatically
on the 'stack' memory.

* When functions return, the stack will be destroyed/rewound.

~— Hence, local variables, including array, will be destroyed,
leaving a garbage.

* Program example: passing arrays to a function using array
notation.

* Program example: passing arrays to a function using
pointer notation.

= Program example: passing arrays to a function & returning
a pointer to the first element of the array + global variable.

= Program example: passing arrays to a function & returning >
a pointer to the first element of the array + static

keyword. ~ 2 \/
= Program example: passing-arrays to a functionh usint

pointer & return the array’s contents O

—
www.tenouk.com, © \ 57/66

http://www.tenouk.com/

C FUNCTIONS
Output samples

nArrayl[B] is

nArrayll] is

nArrayl?] 13

is

nArrayl4] is

nArrayls1 is

nArraylb] is

nArrayl?] is

naArra ; nArrayl81 is

1 + 4 nArravl?] is
nafdrra Press any key to continue

key to continue .
naflrrav[B@]
1 + 4 =5

In main<>:
Sum of two
Prezs any

.
www.tenouk.com, © : 58/66

http://www.tenouk.com/

C FUNCTIONS

Function and Pointers (Function Pointers)

—

We can use pointers to point to C functions because C
function have its memory address.

When we can point to it, then it is another way to invoke
it.

Function pointers are pointer variables which point to
functions.

Function pointers can be declared, assigned values and
then used to access the functions they point to.

The following is an example of function pointer

declaration, N
int (*functptr) (); S — \Oﬁ/
Here, functptr is declared as a pointer to a funct

that returns int data type. —

.
www.tenouk.com, © : J 59/66

http://www.tenouk.com/

C FUNCTIONS

It is a~de-refereneed-value of functptr, thatis
(*funptr) followed by) which indicates a function,
which returns an integer data type.

The parentheses are essential in the declarations because
of the operators’ precedence.

The declaration without the parentheses as the following,

int * functptr();

Will declare a function functptr that returns an integer
pointer that is not our intention in this case.

In C, the name of a function, which used in an expression
by itself, is a pointer to that function.

For example, if a function, test funct () is degclared as '
follows, I

S

¥

int testfunct (int xIﬁ%A{g); 9,

N
www.tenouk.com, © : J 60/66

http://www.tenouk.com/

-

N
= The name of this function, testfunct is a
pointer to that function.

= Then, we can assign the function name to a
pointer variable functptr, something like this:

functptr = testfunct;

= The function can now be accessed or called, by
dereferencing the function pointer,

/* calls testfunct() with xIntArg as an argument S
then assign the returned value to nRetVal */

nRetVal = (*funptr) (xIntArg) ; N’ \\\-"’//

= Program example: fuﬁ/ctiqn pointers
) J O

—
www.tenouk.com, © \ 61/66

http://www.tenouk.com/

C FUNCTIONS

e C:AWINDOWS\system32\cmd.exe

The address of functptr(» pointed to iz HAABAAAA

The ‘value’ pointed by (functptr?{) iz HAABHAAHA

ilthat about the address of &functptr? Which is HA417164
The address of testfunct{} iz B8411136

The address of functptr<> pointed to iz HB411136

The 'wvalue' pointed by (functptr>{> iz BA411136

lthat about the address of &functptr? Which is A8417164
The address of testfunct{) iz BA411136

This is testfunctd{> body

The returned data by (functptr>(> iz 18
Press any key to continue . . .

www.tenouk.com, ©

http://www.tenouk.com/

L FUNCTIONS

FunctiOﬂ—pe'rme/m canbe.passed as parameters in function calls and can be

returned as function values.
It's common to use typedef with complex types such as function pointers

to simplify the syntax (typing).
For example, after defining,

typedef 1nt (*functptr) ();

The identifier functptr is now a synonym for the type of 'a pointer to a

function which takes no arguments and returning int type'.
Then declaring pointers such as pTestVar as shown below, considerably

simpler,
functptr pTestVar;

Another example, you can use this type in a sizeof () expression or as a
function parameter as shown below,

/* get the size of a function pointer */ N’
unsigned pPtrSize i{sizeof (int (*funetptrh()),
/* used as a function parameter} */

void signe}dint (*functﬁbr#%ﬁ); 2

www.tenouk.com, ©

Rt
63/66

http://www.tenouk.com/

C FUNCTIONS

—

S—

The following table summarizes the various

ways of using functions.

We can categorize functions by whether or not

arguments are passed to them.

Or we can categorize them by whether or not

values are received from them.

Intersecting these two methods of categorizing

functions, we come up with four basic methods

of writing and using functions. \/
N/

.
www.tenouk.com, © : J 64/66

http://www.tenouk.com/

C FUNCTIONS

J/

Do not pass argument

Do pass arguments

No return

void main (void)
{
TestFunct () ;

void TestFunct (void)

{
// receive nothing
// and nothing to be
// returned

void main (void)
{
TestFunct (123) ;

void TestFunct (int 1)

{
// receive something and
// the received/passed
// value just
// used here. Nothing
// to be returned.

}

With a return

void main (void)
{
x = TestFunct () ;

int TestFunct (void)

{
// received/passed
// nothing but need to
// return something

return 123;

vold main (void)
{
X = TestFunct (123);

int TestFunct (int x)

{

// received/passed something

// and need to return something

return (x + x);

N’

www.tenouk.com, ©

Rt
65/66

http://www.tenouk.com/

END of C
FUNCTIONS

More exercises can be found at:
tenouk's C lab worksheet

http://www.tenouk.com/clabworksheet/clabworksheet.html
http://www.tenouk.com/

	C FUNCTIONS�-independent routine which do a specific task(s)-
	C FUNCTIONS
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

